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In this appendix, we first introduce some definitions and notations in Section 1. Then, we prove
Lemma 1 in Section 2 and Lemma 2 in Section 3. Theorem 1 is proved in Section 4, and the proofs
of Corollary 1, 2 and 3 are presented in Section 5, 6 and 7, respectively.

Definitions and Notations

Let X denote a solution space that is a compact subset of Rn, and f : X → R denote a min-
imization problem. Assume that there exist x∗, x′ ∈ X such that f(x∗) = minx∈X f(x) and
f(x′) = maxx∈X f(x). Let F denote a collection of functions that satisfy this assumption. Given
f ∈ F , the minimization problem is to find a solution x∗ ∈ X s.t. f(x∗) ≤ f(x) for all x ∈ X .

For a subset D ⊆ X , let #D =
∫
x∈X I[x ∈ D] dx (or #D =

∑
x∈X I[x ∈ D] for finite discrete

domains), where I[·] is the indicator function. Define |D| = #D/#X and thus |D| ∈ [0, 1]. Let
Dα = {x ∈ X | f(x) ≤ α}, and Dε = {x ∈ X | f(x) − f(x∗) ≤ ε} for ε > 0. Let ∆ denote
the symmetric difference of two sets defined as A1∆A2 = (A1 ∪ A2) − (A1 ∩ A2). A hypothesis
is a mapping h : X → {−1,+1}. Let H ⊆ {h : X → {−1,+1}} be a hypothesis space. Let
Dh = {x ∈ X |h(x) = +1} for hypothesis h ∈ H, i.e., the positive class region represented by
h. Denote UX and UDh the uniform distribution over X and Dh, respectively, and denote Th the
distribution defined on Dh induced by h. Let DKL denote the Kullback-Leibler (KL) divergence
between two probability distributions. Let log(·) and ln(·) be the base two logarithm and natural
logarithm, respectively. Let poly(·) be the set of all polynomials w.r.t. the related variables and
superpoly(·) be the set of all functions that grow faster than any function in poly(·) w.r.t. the
related variables.

Proof of Lemma 1

LEMMA 1
Given f ∈ F , 0 < δ < 1 and ε > 0, the (ε,δ)-query complexity of a classification-based optimiza-
tion algorithm is upper bounded by

O

(
max

{
1

(1− λ)|Dε|+ λPrh
ln

1

δ
,

T∑
t=1

mPrht

})
,

where Prh = 1
T

∑T
t=1 Prht = 1

T

∑T
t=1

∫
Dε
UDht (x) dx (or Prh = 1

T

∑T
t=1

∑
x∈Dε UDht (x) for

finite discrete domains) is the average success probability of sampling from the learned positive area
of ht, and mPrht

is the sample size required to realize the success probability Prht .

Proof. In each iteration, mPrht
samples are needed to realize the probability Prht . Generally

speaking, the higher the probability the larger the sample size, but it depends on the concrete imple-
mentation of the algorithm. Thus,

∑T
t=1mPrht

number of samples is naturally required. We next
prove the rest of the bound.
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The total number of calls toO by a classifier-based optimization algorithm is (m+1)T . We consider
the probability that, after T iterations, a classifier-based optimization algorithm outputs a bad solu-
tion x̃ s.t. f(x̃)−f(x∗) > ε, and we denote it as Pr(f(x̃)−f(x∗) > ε). Since x̃ is the best solution
among all sampled solutions, Pr(f(x̃)− f(x∗) > ε) is the probability of intersection of events that
sampling in each step does not generate a good solution x s.t. f(x)−f(x∗) ≤ ε. For sampling from
UX , the probability of failure is 1−Pru, where Pru = |Dε| = #Dε/#X is the success probabil-
ity of uniform sampling in X . For sampling from the distribution Tht defined on Dht induced by
the learned hypothesis ht, the probability of failure is 1 − Prht , where Prht =

∫
Dε
Tht(x) dx (or

Prht =
∑
x∈Dε Tht(x) for finite discrete domains) is the success probability of sampling from Tht .

Let exp(x) denote ex. Since that every sampling is independent, we have

Pr(f(x̃)− f(x∗) > ε) = (1−Pru)m ·
T∏
t=1

m∑
i=0

(
m

i

)
(1− λ)iλm−i(1−Pru)i(1−Prht)

m−i

= (1−Pru)m
T∏
t=1

(
(1− λ)(1−Pru) + λ(1−Prht)

)m
= (1−Pru)m

T∏
t=1

(
1− (1− λ)Pru − λPrht

)m
≤ exp

(
−Pru ·m

)
·
T∏
t=1

exp
(
−
(
(1− λ)Pru ·m+ λPrht ·m

))
= exp

(
−
(
Pru ·m+ (1− λ)

T∑
t=1

Pru ·m+ λ

T∑
t=1

Prht ·m
))

≤ exp
(
−
(
(1− λ)

T∑
t=1

Pru ·m+ λ

T∑
t=1

Prht ·m
))

= exp
(
−
(
(1− λ)Pru + λPrh

)
·mT

)
,

where the first inequality is by (1− x) ≤ exp(−x) for x ∈ [0, 1], and Prh = 1
T

∑T
t=1 Prht .

In order to let Pr(f(x̃)− f(x∗) > ε) < δ, it suffices that

exp
(
−
(
(1− λ)Pru + λPrh

)
·mT

)
< δ.

Therefore, we derive that mT ∈ O
(

1
(1−λ)Pru+λPrh

ln 1
δ

)
. At last, by (m + 1)T ≤ 2mT ∈

O
(

1
(1−λ)Pru+λPrh

ln 1
δ

)
and Pru = |Dε| = #Dε/#X , we prove the lemma. �

Proof of Lemma 2

LetRD denote the generalization error of h ∈ Hwith respect to the target function under distribution
D, and DKL denote the Kullback-Leibler (KL) divergence between two probability distributions.

LEMMA 2
Given f ∈ F , ε > 0, the average success probability of sampling from the distributions induced by
the learned hypotheses of any classifier-based optimization algorithm Prh is lower bounded by

Prh ≥
1

T

T∑
t=1

(
|Dε| − 2Ψ

RDt
DKL(Dt‖UX)

)
/
(
|Dαt |+ Ψ

RDt
DKL(Dt‖UX)

)
,

where Dt = λ UDht + (1 − λ)UX is the sampling distribution at iteration t, and Ψ
RDt
DKL(Dt‖UX) =

RDt + #X
√

1
2DKL(Dt‖UX).
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To prove this lemma, our strategy is to first bound Prht , which is the success probability of sampling
from the distributions induced by the learned hypothesis at iteration t, and then bound Prh by
definition.

Bounding Prht

In this section, we will bound Prht by two steps. A primary lower bound of Prht is shown in
Lemma 3 below, and an explicit lower bound will be presented later.

LEMMA 3
Given f ∈ F , ε > 0 and any hypothesis ht ∈ H, Prht is lower bounded by

Prht ≥
|Dε ∩Dht |
|Dht |

−#(Dε ∩Dht)

√
1

2
DKL(Tht‖UDht ),

where DKL denotes the Kullback-Leibler (KL) divergence between two probability distributions.

Proof. We only consider continuous domains situation and omit finite discrete domains situation
since the proof procedure is quite similar. Let I[·] denote the indicator function, the proof starts from
the definition of Prht .

Prht =

∫
Dht

Tht(x) · I[x ∈ Dε] dx =

∫
Dht

(
Tht(x)− UDht (x) + UDht (x)

)
· I[x ∈ Dε] dx

=
|Dε ∩Dht |
|Dht |

+

∫
Dht

(
Tht(x)− UDht (x)

)
· I[x ∈ Dε] dx

≥ |Dε ∩Dht |
|Dht |

−
∫
Dht

sup
x
|Tht(x)− UDht (x)| · I[x ∈ Dε] dx

≥ |Dε ∩Dht |
|Dht |

−
√

1

2
DKL(Tht‖UDht )

∫
Dht

I[x ∈ Dε] dx

=
|Dε ∩Dht |
|Dht |

−#(Dε ∩Dht)

√
1

2
DKL(Tht‖UDht ),

where UDht is the uniform distribution over Dht , and the last inequality is by the Pinsker’s inequal-
ity. �

In order to derive an more explicit lower bound of Prht , we need to investigate |Dht | and |Dε∩Dht |,
and we will bound them respectively.

Bounding |Dht |

LEMMA 4
Given f ∈ F and any hypothesis ht ∈ H, |Dht | is bounded by

|Dαt | −RUX ,t ≤ |Dht | ≤ |Dαt |+RUX ,t,

where RUX ,t is the generalization error of ht with respect to Dαt under distribution UX .

Proof. Let ∆ denote the symmetric difference operator of two sets. We can verify directly that∣∣|Dht | − |Dαt |
∣∣ ≤ |Dht∆Dαt | = RUX ,t, where RUX ,t is the generalization error of ht with respect

to Dαt under distribution UX . Thus, |Dαt | −RUX ,t ≤ |Dht | ≤ |Dαt |+RUX ,t. �

Bounding |Dε ∩Dht |

LEMMA 5
Given f ∈ F , ε > 0 and any hypothesis ht ∈ H, |Dε ∩Dht | is lower bounded by

|Dε ∩Dht | ≥ |Dε| − 2RU,t,

where RUX ,t is the generalization error of ht with respect to Dαt under distribution UX .
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Proof. We w.l.o.g. assume that ε ≤ αt for all t. Let ∆ denote the symmetric difference operator of
two sets, by set operators, we have

|Dε ∩Dht | = |Dε ∪Dht | − |Dε∆Dht |
≥ |Dε ∪Dht | − |Dε∆Dαt | − |Dαt∆Dht |
= |Dε ∪Dht | − |Dε∆Dαt | −RU,t
= |Dε ∪Dht |+ |Dε| − |Dαt | −RU,t
≥ |Dht |+ |Dε| − |Dαt | −RU,t,

where the first inequality is by the triangle inequality, and the last equality is by Dε ⊆ Dαt . Com-
bining it with the conclusion of Lemma 4 results in that

|Dε ∩Dht | ≥ (|Dht | − |Dαt |) + |Dε| −RU,t ≥ |Dε| − 2RU,t.

�

Bounding |Dht | and |Dε ∩Dh|More Explicitly

Lemma 4 and 5 show that |Dht | and |Dε ∩ Dh| are bounded by the generalization error RUX ,t of
ht under UX . Since the true sampling distribution in the classifier-based optimization framework at
each iteration isDt = λTht +(1−λ)UX instead of UX , it is necessary to investigate the relationship
between RUX ,t and RDt in order to bound |Dht | and |Dε ∩Dh| more explicitly via RDt .

LEMMA 6
The generalization error RUX of h under UX and the generalization error RD of h under any distri-
bution D have the following relationship:

RUX ≤ RD + #X

√
1

2
DKL(D‖UX).

Proof. We only take continuous domains situation into consideration and omit finite discrete do-
mains situation, since the proof procedure is quite similar. The proof starts from the definition of
RD.

RD =

∫
X

D(x) · I[x ∈ Dα∆Dh] dx

=

∫
X

(
UX(x) +D(x)− UX(x)

)
· I[x ∈ Dα∆Dh] dx

= RUX +

∫
X

(
D(x)− UX(x)

)
· I[x ∈ Dα∆Dh] dx

≥ RUX −
∫
X

sup
x
|D(x)− UX(x)| · I[x ∈ Dα∆Dh] dx

≥ RUX −
√

1

2
DKL(D‖UX)

∫
X

I[x ∈ Dα∆Dh] dx

= RUX −#(Dα∆Dh)

√
1

2
DKL(D‖UX)

≥ RUX −#X

√
1

2
DKL(D‖UX),

where the second inequality is by the Pinsker’s inequality. �

Denote λTht + (1−λ)UX as Dt, and RDt + #X
√

1
2DKL(Dt‖UX) as Ψ

RDt
DKL(Dt‖UX). We now can

bound |Dht | and |Dε ∩Dh| more explicitly.

LEMMA 7
Given f ∈ F , ε > 0 and any hypothesis ht ∈ H, |Dht | is upper bounded by

|Dht | ≤ |Dαt |+ Ψ
RDt
DKL(Dt‖UX),
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and |Dε ∩Dht | is lower bounded by

|Dε ∩Dht | ≥ |Dε| − 2Ψ
RDt
DKL(Dt‖UX),

where Dt = λTht + (1− λ)UX , and Ψ
RDt
DKL(Dt‖UX) = RDt + #X

√
1
2DKL(Dt‖UX).

Proof. By Lemma 4 and Lemma 6, we have |Dht | ≤ |Dαt | + RDt + #X
√

1
2DKL(Dt‖UX). By

Lemma 5 and Lemma 6, we have |Dε ∩Dht | ≥ |Dε| − 2RDt − 2#X
√

1
2DKL(Dt‖UX). �

Bounding Prht Explicitly

On the basis of Lemma 3 and Lemma 7, we are able to derive an explicit lower bound of Prht .

LEMMA 8
Given f ∈ F , ε > 0 and any hypothesis ht ∈ H, Prht is lower bounded by

Prht ≥
|Dε| − 2Ψ

RDt
DKL(Dt‖UX)

|Dαt |+ Ψ
RDt
DKL(Dt‖UX)

−#Dε

√
1

2
DKL(Tht‖UDht ),

where Tht is the distribution defined on Dht induced by ht, UDht is the uniform distribution over

Dht , Dt = λTht + (1− λ)UX , and Ψ
RDt
DKL(Dt‖UX) = RDt + #X

√
1
2DKL(Dt‖UX).

Proof. By Lemma 3, we have Prht ≥
|Dε∩Dht |
|Dht |

−#(Dε ∩Dht)
√

1
2DKL(Tht‖UDht ). Combining

it with Lemma 7 results in that

Prht ≥
|Dε| − 2Ψ

RDt
DKL(Dt‖UX)

|Dαt |+ Ψ
RDt
DKL(Dt‖UX)

−#(Dε ∩Dht)

√
1

2
DKL(Tht‖UDht )

≥
|Dε| − 2Ψ

RDt
DKL(Dt‖UX)

|Dαt |+ Ψ
RDt
DKL(Dt‖UX)

−#Dε

√
1

2
DKL(Tht‖UDht ).

�

Proof of Lemma 2

Proof. Since Dt = λ UDht + (1 − λ)UX , we have Tht = UDht and thus DKL(Tht‖UDht ) = 0.
Now, combining the definition of Prh (= 1

T

∑T
t=1 Prht ) and Lemma 8 proves the theorem. �

Proof of Theorem 1

THEOREM 1
Given f ∈ F , 0 < δ < 1 and ε > 0, if a classifier-based optimization algorithm has error-target
θ-dependence and γ-shrinking rate, its (ε,δ)-query complexity belongs to

O

 1

|Dε|

(
(1− λ) +

λ

γT

T∑
t=1

1−Q ·RDt − θ
|Dαt |

)−1

ln
1

δ

 ,

where Q = 1/(1− λ).

To prove this theorem, our strategy is to refine the bound of |Dε ∩ Dht | under the error-target
θ-dependence condition and the bound of |Dht | under the γ-shrinking rate condition, respectively.
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Refining the Bounds of |Dε ∩Dht | and |Dht |

LEMMA 9
For the classifier-based optimization algorithms under the condition of error-target θ-dependence,

|Dε ∩Dht | ≥ |Dε| · (1−RUX ,t − θ)

holds for all t, where RUX ,t is the generalization error of ht under UX in iteration t.

Proof. Assume w.l.o.g. that ε ≤ αt for all t, we have

|Dε ∩Dht | = |Dε| − |Dε ∩ (Dαt∆Dht)|
≥ |Dε| − |Dε| · |Dαt∆Dht | − θ|Dε|
= |Dε|(1− |Dαt∆Dht | − θ),

where the first equality is by Dε ⊆ Dαt , and the first inequality is by the condition of error-target
θ-dependence.

Let RUX ,t denote the generalization error of ht under UX in iteration t, it can be verified directly
that RUX ,t = |Dαt∆Dht | under 0-1 loss. Thus, we have |Dε ∩Dht | ≥ |Dε|(1−RUX ,t − θ). �

In order to refine Lemma 9, i.e., lower bound |Dε ∩Dht | using the generalization error of ht under
the true sampling distribution Dt = λUDht + (1− λ)UX instead of UX , we need Lemma 10 below.
It gives a relationship between RUX ,t and RDt , where RDt is the generalization error of ht under
Dt in iteration t.

LEMMA 10
For any ht ∈ H, let Dt = λUDht + (1− λ)UX , it holds for all t that RUX ,t ≤ RDt/(1− λ), where
λ ∈ (0, 1).

Proof. We only consider continuous domains situation and omit finite discrete domains situation
since the proof procedure is quite similar. LetD6=,t be the region where ht makes mistakes. Splitting
D6=,t into D+

6=,t = D6=,t ∩Dht and D−6=,t = D 6=,t −D+
6=,t, we can calculate the probability density

Dt(x) = λ 1
#Dht

+ (1 − λ)
#Dht
#X

1
#Dht

= λ 1
#Dht

+ (1 − λ) 1
#X for any x ∈ D+

6=,t, and Dt(x) =

(1− λ)
#(X−Dht )

#X
1

#(X−Dht )
= (1− λ) 1

#X for any x ∈ D−6=,t. Thus,

RDt =

∫
X

Dt(x) · I[ht makes mistake on x] dx

=

∫
D6=,t

Dt(x) dx =

∫
D+
6=,t

Dt(x) dx+

∫
D−6=,t

Dt(x) dx

≥
∫
D+
6= ,t

(1− λ)
1

#X
dx+

∫
D−6= ,t

(1− λ)
1

#X
dx

= (1− λ)RUX ,t,

which proves the lemma. �

Let Q = 1/(1 − λ). Combining Lemma 10 with Lemma 9, we can conclude that |Dε ∩ Dht | ≥
|Dε| · (1−Q ·RDt − θ). Meanwhile, the γ-shrinking rate condition admits |Dht | ≤ γ|Dαt | for all
t directly.

Proof of Theorem 1

Proof. By Lemma 3 and the assumption of Tht = UDht , we have DKL(Tht‖UDht ) = 0 and thus
Prht ≥ |Dε ∩Dht |/|Dht | for all t. Combining it with the refined bounds of |Dε ∩Dht | and |Dht |
results in that Prht ≥

(1−Q·RDt−θ)·|Dε|
γ·|Dαt |

, where Q = 1/(1 − λ). Finally, by the definition of Prh
and Lemma 1 we prove the theorem. �
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Proof of Corollary 1

COROLLARY 1
In finite discrete domains X = {0, 1}n, given f ∈ Fβ1,L1,β2,L2

L , 0 < δ < 1 and
0 < ε ≤ L1(n2 )β1 , for a classifier-based optimization algorithm using a classification algorithm with
convergence rate Θ̃( 1

m ), under the conditions that error-target dependence θ < 1 and shrinking
rate γ > 0, the (ε,δ)-query complexity of the classifier-based optimization algorithm belongs to
poly( 1

ε , n,
1
β1
, β2, lnL1, ln

1
L2

) · ln 1
δ .

Proof. By the proof procedure of Theorem 1, letting Q = 2 (i.e., λ = 1/2), we have Prh ≥
1
T

∑T
t=1(Kt · |Dε|)/(γ · |Dαt |), where Kt = 1 − 2RDt − θ. Assume that θ < 1, since Kt =

1 − 2RDt − θ for all t, there must exist a constant K > 0 such that Kt ≥ K as long as RDt <
(1 − θ)/2 for all t. Under the assumption of classifier-based optimization using the classification
algorithms with convergence rate Θ̃( 1

m ),RDt < (1−θ)/2 can be guaranteed if the sampled solution
size m in each iteration belongs to poly( 1

ε , n) [2]. Letting K ′ = K/γ, we therefore obtain that
Prh ≥ 1

T

∑T
t=1(K · |Dε|)/(γ · |Dαt |) = K′

T

∑T
t=1 |Dε|/|Dαt |.

Since f ∈ Fβ1,L1,β2,L2

L , we know L2‖x − x∗‖β2

H ≤ f(x) − f(x∗) ≤ L1‖x − x∗‖β1

H . Denote
D̃ε = {x ∈ X | ‖x− x∗‖β1

H ≤
ε
L1
}. It can be verified directly that D̃ε ⊆ Dε and thus |D̃ε| ≤ |Dε|.

Let α′t = αt − f(x∗) and we assume that α′t > 0. Dαt = {x ∈ X | f(x) ≤ αt} = {x ∈
X | f(x) − f(x∗) ≤ α′t}. Denote D̃αt = {x ∈ X | ‖x − x∗‖β2

H ≤ α′t
L2
}. Similarly, we have

Dαt ⊆ D̃αt and thus |Dαt | ≤ |D̃αt |. For simplicity, we assume that ( ε
L1

)
1
β1 and (

α′t
L2

)
1
β2 are both

positive integers. By the definition of Hamming distance, we have

#D̃ε =

( ε
L1

)
1
β1∑

i=0

(
n

i

)
, #D̃αt =

(
α′t
L2

)
1
β2∑

i=0

(
n

i

)
.

LetH(p) = −p log p−(1−p) log(1−p) which is the binary entropy function of p, where 0 ≤ p ≤ 1
and H(p) = 0 for p = 0, 1. Then, the following inequality [1] holds for all integers 0 ≤ k ≤ n with
p = k/n ≤ 1/2

1

1 +
√

8np(1− p)
· 2nH(p) ≤

k∑
i=0

(
n

i

)
≤ 2nH(p).

Since 0 < ε ≤ L1(n2 )β1 , we have ( ε
L1

)
1
β1 ≤ n

2 . Meanwhile, choosing α′t = 2L2

2t for all t can

guarantee that (
α′t
L2

)
1
β2 ≤ n

2 for all t because (
α′1
L2

) = 1 ≤ (n2 )β2 for n ≥ 2. If n = 1, we can still

choose smaller α′t s.t. (
α′t
L2

)
1
β2 ≤ n

2 , and we omit the details since it is easy to verify. Combing the

above statement with the inequality Prh ≥ K′

T

∑T
t=1 |Dε|/|Dαt |, we have

Prh ≥
K ′

T

T∑
t=1

|D̃ε|
|D̃αt |

=
K ′

T

T∑
t=1

#D̃ε

#D̃αt

=
K ′

T

T∑
t=1

∑( ε
L1

)
1
β1

i=0

(
n
i

)
∑(

α′t
L2

)
1
β2

i=0

(
n
i

)
≥ K ′

T
· 2nH

(
( ε
L1

)
1
β1

)
1 +

√
8( ε
L1

)
1
β1

(
1− ( ε

L1
)

1
β1 /n

) T∑
t=1

2−nH
(

(
α′t
L2

)
1
β2

)
.

Let the number of iterations T to approach (
α′T
L2

)
1
β2 = ( ε

L1
)

1
β1 . Solving this equation results in that

T = β2

β1
log L1

ε + 1 ∈ poly( 1
ε , n,

1
β1
, β2, logL1). For simplicity, we assume that β2

β1
log L1

ε + 1 is a
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positive integer and let the classifier-based optimization algorithms run T = β2

β1
log L1

ε + 1 number

of iterations. Now, we can conclude that Prh ≥
(
poly( 1

ε , n,
1
β1
, β2, logL1, log 1

L2
)
)−1

.

Substituting Prh ≥
(
poly( 1

ε , n,
1
β1
, β2, logL1, log 1

L2
)
)−1

into Lemma 1, we have (m + 1)T ∈
poly( 1

ε , n,
1
β1
, β2, lnL1, ln

1
L2

) · ln 1
δ , with probability at least 1 − δ. Finally, combining the fact

that RDt < (1 − θ)/2 can be guaranteed with poly( 1
ε , n) sampled solutions in each iteration

and T ∈ poly( 1
ε , n,

1
β1
, β2, lnL1), the (ε,δ)-query complexity of the classifier-based optimization

algorithms belongs to poly( 1
ε , n,

1
β1
, β2, lnL1, ln

1
L2

) · ln 1
δ . �

Proof of Corollary 2

COROLLARY 2
In compact continuous domains X , given f ∈ Fβ1,L1,β2,L2

L , 0 < δ < 1 and ε > 0, for a classifier-
based optimization algorithm using a classification algorithm with convergence rate Θ̃( 1

m ), under the
conditions that error-target dependence θ < 1 and shrinking rate γ > 0, the (ε,δ)-query complexity
of the classifier-based optimization algorithm belongs to poly( 1

ε , n,
1
β1
, β2, lnL1, ln

1
L2

) · ln 1
δ .

Proof. By the proof procedure of Theorem 1, letting Q = 2 (i.e., λ = 1/2), we have Prh ≥
1
T

∑T
t=1(Kt · |Dε|)/(γ · |Dαt |), where Kt = 1 − 2RDt − θ. Assume that θ < 1, since Kt =

1 − 2RDt − θ for all t, there must exist a constant K > 0 such that Kt ≥ K as long as RDt <
(1 − θ)/2 for all t. Under the assumption of classifier-based optimization using the classification
algorithms with convergence rate Θ̃( 1

m ),RDt < (1−θ)/2 can be guaranteed if the sampled solution
size m in each iteration belongs to poly( 1

ε , n) [2]. Letting K ′ = K/γ, we therefore obtain that
Prh ≥ 1

T

∑T
t=1(K · |Dε|)/(γ · |Dαt |) = K′

T

∑T
t=1 |Dε|/|Dαt |.

Since f ∈ Fβ1,L1,β2,L2

L , we know L2‖x − x∗‖β2

2 ≤ f(x) − f(x∗) ≤ L1‖x − x∗‖β1

2 . Denote
D̃ε = {x ∈ X | ‖x− x∗‖β1

2 ≤ ε
L1
}. It can be verified directly that D̃ε ⊆ Dε and thus |D̃ε| ≤ |Dε|.

Let α′t = αt − f(x∗) and we assume that α′t > 0. Dαt = {x ∈ X | f(x) ≤ αt} = {x ∈
X | f(x) − f(x∗) ≤ α′t}. Denote D̃αt = {x ∈ X | ‖x − x∗‖β2

2 ≤ α′t
L2
}. Similarly, we have

Dαt ⊆ D̃αt and thus |Dαt | ≤ |D̃αt |. Note that #D̃ε is the volume of `2 ball of radius ( ε
L1

)
1
β1 in

Rn which is proportional to ( ε
L1

)
n
β1 , and #D̃αt is the volume of `2 ball of radius (

α′t
L2

)
1
β2 in Rn

which is proportional to (
α′t
L2

)
n
β2 . Combing it with the inequality Prh ≥ K′

T

∑T
t=1 |Dε|/|Dαt |, we

have

Prh ≥
K ′

T

T∑
t=1

|D̃ε|
|D̃αt |

=
K ′

T

T∑
t=1

#D̃ε

#D̃αt

=
K ′

T

T∑
t=1

(ε/L1)
n
β1

(α′t/L2)
n
β2

=
K ′

T
·

L 1
β2
2

L
1
β1
1

ε
1
β1

n
T∑
t=1

(α′t)
− n
β2 .

We choose α′t = 1
2t , and use the number of iterations T to approach (α′T )−

n
β2 = (L

1
β2
2 ε

1
β1 /L

1
β1
1 )−n.

Solving this equation results in that T = β2

β1
log L1

ε − logL2 ∈ poly( 1
ε , n,

1
β1
, β2, logL1, log 1

L2
).

For simplicity, we assume that β2

β1
log L1

ε − logL2 is a positive integer and let the classifier-based

optimization algorithms run T = β2

β1
log L1

ε − logL2 number of iterations. Now, we can conclude

that Prh ≥
(
poly( 1

ε , n,
1
β1
, β2, logL1, log 1

L2
)
)−1

.
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Substituting Prh ≥
(
poly( 1

ε , n,
1
β1
, β2, logL1, log 1

L2
)
)−1

into Lemma 1, we have (m + 1)T ∈
poly( 1

ε , n,
1
β1
, β2, lnL1, ln

1
L2

) · ln 1
δ , with probability at least 1 − δ. Finally, combining the fact

that RDt < (1 − θ)/2 can be guaranteed with poly( 1
ε , n) sampled solutions in each iteration and

T ∈ poly( 1
ε , n,

1
β1
, β2, lnL1, ln

1
L2

), the (ε,δ)-query complexity of the classifier-based optimiza-
tion algorithms belongs to poly( 1

ε , n,
1
β1
, β2, lnL1, ln

1
L2

) · ln 1
δ . �

Proof of Corollary 3

COROLLARY 3
In compact continuous domains X , given f ∈ F satisfying

∑T
t=1 (α′t)

Nc−n ∈ Ω
(
εNp−n

)
, 0 <

δ < 1 and ε > 0, for a classifier-based optimization algorithm using the classification algorithms
with convergence rate Θ̃( 1

m ), under the conditions that error-target dependence θ < 1 and shrinking
rate γ > 0, the (ε,δ)-query complexity of the classifier-based optimization algorithm belongs to
poly( 1

ε , n) · ln 1
δ .

Proof. By the proof procedure of Theorem 1, letting Q = 2 (i.e., λ = 1/2), we have Prh ≥
1
T

∑T
t=1(Kt · |Dε|)/(γ · |Dαt |), where Kt = 1 − 2RDt − θ. Assume that θ < 1, since Kt =

1 − 2RDt − θ for all t, there must exist a constant K > 0 such that Kt ≥ K as long as RDt <
(1 − θ)/2 for all t. Under the assumption of classifier-based optimization using the classification
algorithms with convergence rate Θ̃( 1

m ),RDt < (1−θ)/2 can be guaranteed if the sampled solution
size m in each iteration belongs to poly( 1

ε , n) [2]. Letting K ′ = K/γ, we therefore obtain that
Prh ≥ 1

T

∑T
t=1(K · |Dε|)/(γ · |Dαt |) = K′

T

∑T
t=1 |Dε|/|Dαt |.

Recall that Dε = {x ∈ X | f(x)− f(x∗) ≤ ε} for any ε > 0. Let α′t = αt − f(x∗) and we assume
that α′t > 0, thus, Dαt = {x ∈ X | f(x) ≤ αt} = {x ∈ X | f(x) − f(x∗) ≤ α′t}. Let V (Dε),
V (Dαt) and V (ηε) denote the volume of Dε, Dαt and `2 ball of radius ηε in Rn respectively. By
the definition of Np and Nc, we have

C1ε
−Np · V (ηε) ≤ V (Dε) = #Dε ≤ C2ε

−Nc · V (ηε),

C1(α′t)
−Np · V (ηα′t) ≤ V (Dαt) = #Dαt ≤ C2(α′t)

−Nc · V (ηα′t).

Note that the volume of `2 ball of radius ηε in Rn is πn/2

Γ(n/2+1) (ηε)n. Combing it with the inequality

Prh ≥ K′

T

∑T
t=1 |Dε|/|Dαt |, we have

Prh ≥
K ′

T

T∑
t=1

|Dε|
|Dαt |

=
K ′

T

T∑
t=1

#Dε

#Dαt

≥ K ′

T

T∑
t=1

C1ε
−Np · V (ηε)

C2(α′t)
−Nc · V (ηα′t)

=
K ′

T

T∑
t=1

C1ε
−Np · (ηε)n

C2(α′t)
−Nc · (ηα′t)n

=
C1K

′

C2T

T∑
t=1

εn−Np

(α′t)
n−Nc

=
C1K

′ · εn−Np
C2T

T∑
t=1

(α′t)
Nc−n.

Let T ∈ poly( 1
ε , n), if the problem f ∈ F satisfying

∑T
t=1 (α′t)

Nc−n ∈ Ω
(
εNp−n

)
, we can

conclude that Prh ≥
(
poly( 1

ε , n)
)−1

.

Substituting Prh ≥
(
poly( 1

ε , n)
)−1

into Lemma 1, we have (m+ 1)T ∈ poly( 1
ε , n) · ln 1

δ , with
probability at least 1− δ. Finally, combining the fact that RDt < (1− θ)/2 can be guaranteed with
poly( 1

ε , n) sampled solutions in each iteration and T ∈ poly( 1
ε , n), the (ε,δ)-query complexity of

the classifier-based optimization algorithms belongs to poly( 1
ε , n) · ln 1

δ . �
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