Supplementary Material of "On the Effectiveness of Sampling for Evolutionary Optimization in Noisy Environments"

Chao Qian ${ }^{1,2}$
Yang Yu ${ }^{2}$
Ke Tang ${ }^{1}$
Yaochu Jin ${ }^{3}$
Xin Yao ${ }^{1,4}$
Zhi-Hua Zhou ${ }^{2 *}$
chaoqian@ustc.edu.cn
yuy@nju.edu.cn
ketang@ustc.edu.cn
yaochu.jin@surrey.ac.uk
x.yao@cs.bham.ac.uk
zhouzh@nju.edu.cn
${ }^{1}$ USTC-Birmingham Joint Research Institute in Intelligent Computation and Its
Applications, School of Computer Science and Technology, University of Science and
Technology of China, Hefei, 230027, China
${ }^{2}$ National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China
${ }^{3}$ Department of Computer Science, University of Surrey, Guildford, GU2 7XH, UK
${ }^{4}$ Center of Excellence for Research in Computational Intelligence and Applications, School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK

1 Detailed Proofs

This document aims to provide the detailed proofs of Theorems 2 and 10, which are omitted in our original paper due to space limitations.

Proof of Theorem 2. We use Lemma 4 to prove this theorem. We first analyze $p_{i, i+d}$ as that analyzed in the proof of Theorem 1. Note that for a solution x, the fitness value output by sampling with $k=2$ is $\hat{f}(x)=\left(f_{1}^{n}(x)+f_{2}^{n}(x)\right) / 2$, where $f_{1}^{n}(x)$ and $f_{2}^{n}(x)$ are noisy fitness values output by two independent fitness evaluations.
(1) When $d \geq 3, \hat{f}\left(x^{\prime}\right) \leq n-i-d+1 \leq n-i-2<\hat{f}(x)$. Thus, the offspring x^{\prime} will be discarded, then we have $\forall d \geq 3: p_{i, i+d}=0$.
(2) When $d=2$, the offspring solution x^{\prime} will be accepted if and only if $\hat{f}\left(x^{\prime}\right)=n-$ $i-1=\hat{f}(x)$. The probability of $\hat{f}\left(x^{\prime}\right)=n-i-1$ is $\left(\frac{i+2}{n}\right)^{2}$, since it needs to always flip one 0 -bit of x^{\prime} in two noisy fitness evaluations. The probability of $\hat{f}(x)=n-i-1$ is $\left(\frac{n-i}{n}\right)^{2}$, since it needs to always flip one 1-bit of x. Thus, $p_{i, i+2}=P_{2} \cdot\left(\frac{i+2}{n}\right)^{2}\left(\frac{n-i}{n}\right)^{2}$.
(3) When $d=1$, there are three possible cases for the acceptance of $x^{\prime}: \hat{f}\left(x^{\prime}\right)=n-i \wedge$ $\hat{f}(x)=n-i-1, \hat{f}\left(x^{\prime}\right)=n-i \wedge \hat{f}(x)=n-i$ and $\hat{f}\left(x^{\prime}\right)=n-i-1 \wedge \hat{f}(x)=n-i-1$. The probability of $\hat{f}\left(x^{\prime}\right)=n-i$ is $\left(\frac{i+1}{n}\right)^{2}$, since it needs to always flip one 0 -bit of x in two noisy evaluations. The probability of $\hat{f}\left(x^{\prime}\right)=n-i-1$ is $2 \frac{i+1}{n} \frac{n-i-1}{n}$, since it needs to flip one 0 -bit of x in one noisy evaluation and flip one 1 -bit in the other

[^0]noisy evaluation. Similarly, we can derive that the probabilities of $\hat{f}(x)=n-i-1$ and $\hat{f}(x)=n-i$ are $\left(\frac{n-i}{n}\right)^{2}$ and $2 \frac{n-i}{n} \frac{i}{n}$, respectively. Thus, $p_{i, i+1}=P_{1} \cdot\left(\left(\frac{i+1}{n}\right)^{2}\left(\left(\frac{n-i}{n}\right)^{2}+\right.\right.$ $\left.\left.2 \frac{n-i}{n} \frac{i}{n}\right)+2 \frac{i+1}{n} \frac{n-i-1}{n}\left(\frac{n-i}{n}\right)^{2}\right)$.
(4) When $d=-1$, x^{\prime} will be rejected if and only if $\hat{f}\left(x^{\prime}\right)=n-i \wedge \hat{f}(x)=n-i+1$. The probability of $\hat{f}\left(x^{\prime}\right)=n-i$ is $\left(\frac{n-i+1}{n}\right)^{2}$, since it needs to always flip one 1-bit of x^{\prime} in two noisy evaluations. The probability of $\hat{f}(x)=n-i+1$ is $\left(\frac{i}{n}\right)^{2}$, since it needs to always flip one 0 -bit of x. Thus, $p_{i, i-1}=P_{-1} \cdot\left(1-\left(\frac{n-i+1}{n}\right)^{2}\left(\frac{i}{n}\right)^{2}\right)$.
(5) When $d \leq-2, \hat{f}\left(x^{\prime}\right) \geq n-i-d-1 \geq n-i+1 \geq \hat{f}(x)$. Thus, the offspring x^{\prime} will always be accepted, then we have $\forall d \leq-2: p_{i, i+d}=P_{d}$.

Using these probabilities, we have

$$
\begin{aligned}
\mathbb{E} & \llbracket X_{t}-X_{t+1} \mid X_{t}=i \rrbracket=\sum_{d=1}^{i} d \cdot p_{i, i-d}-\sum_{d=1}^{n-i} d \cdot p_{i, i+d} \\
= & \left(1-\left(\frac{n-i+1}{n}\right)^{2}\left(\frac{i}{n}\right)^{2}\right) P_{-1}+\sum_{d=2}^{i} d P_{-d}-2\left(\frac{i+2}{n}\right)^{2}\left(\frac{n-i}{n}\right)^{2} P_{2} \\
& -\left(\left(\frac{i+1}{n}\right)^{2}\left(\left(\frac{n-i}{n}\right)^{2}+2 \frac{n-i}{n} \frac{i}{n}\right)+2 \frac{i+1}{n} \frac{n-i-1}{n}\left(\frac{n-i}{n}\right)^{2}\right) P_{1} \\
\leq & \left(1-\left(\frac{n-i+1}{n}\right)^{2}\left(\frac{i}{n}\right)^{2}\right) \frac{i}{n}\left(1-\frac{1}{n}\right)^{n-1} \cdot 1.14+\frac{i}{n}\left(\left(1+\frac{1}{n}\right)^{i-1}-1\right) \\
& -2\left(\frac{i+2}{n}\right)^{2}\left(\frac{n-i}{n}\right)^{2} \frac{(n-i)(n-i-1)}{2 n^{2}}\left(1-\frac{1}{n}\right)^{n-2}-\frac{n-i}{n}\left(1-\frac{1}{n}\right)^{n-1} \\
& \cdot\left(\left(\frac{i+1}{n}\right)^{2}\left(\left(\frac{n-i}{n}\right)^{2}+2 \frac{n-i}{n} \frac{i}{n}\right)+2 \frac{i+1}{n} \frac{n-i-1}{n}\left(\frac{n-i}{n}\right)^{2}\right)
\end{aligned}
$$

(by using the bounds of P_{d} in the proof of Theorem 1)

$$
\begin{aligned}
& \leq \frac{i}{n}\left(1-\frac{1}{n}\right)^{n-1}(1.14-2)+O\left(\left(\frac{i}{n}\right)^{2}\right) \quad\left(\text { since } i<n^{1 / 4}\right) \\
& \leq-0.3 \cdot \frac{i}{n}+O\left(\left(\frac{i}{n}\right)^{2}\right) \cdot \quad\left(\operatorname{by}\left(1-\frac{1}{n}\right)^{n-1} \geq \frac{1}{e}\right)
\end{aligned}
$$

It is also easy to verify that $P\left(X_{t+1} \neq i \mid X_{t}=i\right)=\Theta\left(\frac{i}{n}\right)$ for $1 \leq i<n^{1 / 4}$. Thus, $\mathbb{E} \llbracket X_{t}-X_{t+1} \mid X_{t}=i \rrbracket=-\Omega\left(P\left(X_{t+1} \neq i \mid X_{t}=i\right)\right)$, which implies that condition 1 of Lemma 4 holds.

Condition 2 of Lemma 4 still holds with $\delta=1$ and $r(l)=\frac{32 e}{7}$. The analysis procedure is the same as that in the proof of Theorem 1, because the following inequality holds:

$$
\begin{aligned}
P\left(\left|X_{t+1}-X_{t}\right| \geq 1 \mid X_{t}=i\right) \geq p_{i, i-1} & =\left(1-\left(\frac{n-i+1}{n}\right)^{2}\left(\frac{i}{n}\right)^{2}\right) \cdot P_{-1} \\
& \geq\left(1-\frac{n-i+1}{n} \frac{i}{n}\right) \cdot P_{-1}
\end{aligned}
$$

Thus, by Lemma 4, the expected running time is exponential.

Proof of Theorem 10. We use Lemma 2 to prove this theorem. The proof is very similar to that of Theorem 3 except that the probabilities $p_{i, i+d}$ are different due to the difference on the noise and the value of k.

We use the distance function $V(x)=|x|_{0}$. Let i (where $1 \leq i \leq n$) denote the number of 0 -bits of the current solution x. Let $p_{i, i+d}$ be the probability that the next solution after mutation and selection has $i+d$ number of 0 -bits (where $-i \leq d \leq n-i$). Thus,

$$
\begin{equation*}
\mathbb{E} \llbracket V\left(\xi_{t}\right)-V\left(\xi_{t+1}\right) \mid \xi_{t}=x \rrbracket=\sum_{d=1}^{i} d \cdot p_{i, i-d}-\sum_{d=1}^{n-i} d \cdot p_{i, i+d} . \tag{1}
\end{equation*}
$$

We then analyze $p_{i, i+d}(1 \leq i \leq n)$. For a solution x, the fitness value output by sampling is the average of noisy fitness values by k independent evaluations, i.e., $\hat{f}(x)=\sum_{i=1}^{k} f_{i}^{n}(x) / k$. Note that for the flipping in asymmetric one-bit noise, the probability of flipping a 0 (or 1) bit is different when $|x|_{0}=0,|x|_{0}=n$ and $0<|x|_{0}<n$. In these three cases, the probabilities of flipping a 0 bit are 0,1 and $\frac{1}{2}$, respectively; the probabilities of flipping a 1 bit are 1,0 and $\frac{1}{2}$, respectively. Thus, the analysis of $p_{i, i+d}$ will also be separated into several cases if necessary. Let P_{d} denote the probability that the offspring solution x^{\prime} generated by mutation has $i+d$ number of 0 -bits.
(1) When $d \geq 3, \hat{f}\left(x^{\prime}\right) \leq n-i-d+1 \leq n-i-2<\hat{f}(x)$. Thus, the offspring x^{\prime} will be discarded, then $\forall d \geq 3: p_{i, i+d}=0$.
(2) When $d=2$, x^{\prime} will be accepted if and only if $\hat{f}\left(x^{\prime}\right)=n-i-1=\hat{f}(x)$, that is, it needs to always flip one 0 -bit of x^{\prime} and flip one 1 -bit of x in k noisy fitness evaluations. We then consider three cases:

- $i=n$ or $n-1$. It trivially holds that $p_{i, i+2}=0$.
- $i=n-2$. Note that $\left|x^{\prime}\right|_{0}=i+2=n$, thus the probability of flipping a 0 bit of x^{\prime} in noisy evaluation is 1 . Then, we have $p_{i, i+2}=P_{2} \cdot 1^{k} \cdot \frac{1}{2^{k}}$.
- $1 \leq i<n-2$. We have $p_{i, i+2}=P_{2} \cdot \frac{1}{2^{k}} \cdot \frac{1}{2^{k}}$.
(3) When $d=1$, there are two possible values for $f^{n}\left(x^{\prime}\right): n-i-2$ or $n-i$. Similarly, $f^{n}(x)=n-i-1$ or $n-i+1$. In the k independent noisy evaluations for x^{\prime}, let $k_{1} \in[0, k]$ denote the number of times that $f^{n}\left(x^{\prime}\right)=n-i$. Similarly, let $k_{2} \in[0, k]$ denote the number of times that $f^{n}(x)=n-i-1$. The condition for the acceptance of x^{\prime} is $\hat{f}\left(x^{\prime}\right) \geq \hat{f}(x)$, which can be simplified as follows.

$$
\begin{aligned}
\hat{f}\left(x^{\prime}\right) \geq \hat{f}(x) & \Leftrightarrow \sum_{i=1}^{k} f_{i}^{n}\left(x^{\prime}\right) \geq \sum_{i=1}^{k} f_{i}^{n}(x) \\
& \Leftrightarrow k_{1}(n-i)+\left(k-k_{1}\right)(n-i-2) \geq k_{2}(n-i-1)+\left(k-k_{2}\right)(n-i+1) \\
& \Leftrightarrow k_{1}+k_{2} \geq \frac{3}{2} k .
\end{aligned}
$$

We then consider three cases:

- $i=n$. It trivially holds that $p_{i, i+1}=0$.
- $i=n-1$. Note that $\left|x^{\prime}\right|_{0}=i+1=n$, thus the probability of flipping a 0 bit of x^{\prime} in noisy evaluation (i.e., $f^{n}\left(x^{\prime}\right)=n-i$) is 1 , which implies that $k_{1}=k$. Thus, the condition of accepting x^{\prime} changes to be $k_{2} \geq \frac{k}{2}$. Then, we have $p_{i, i+1}=$ $P_{1} \cdot \sum_{k_{2} \geq \frac{k}{2}}\binom{k}{k_{2}} \frac{1}{2^{k}}$.
- $1 \leq i<n-1$. We have $p_{i, i+1}=P_{1} \cdot \sum_{k_{1}+k_{2} \geq \frac{3}{2} k}\binom{k}{k_{1}} \frac{1}{2^{k}} \cdot\binom{k}{k_{2}} \frac{1}{2^{k}}=P_{1} \cdot \sum_{k^{\prime} \geq \frac{3}{2} k}\binom{2 k}{k^{\prime}} \frac{1}{2^{2 k}}$.
C. Qian, Y. Yu, K. Tang, Y. Jin, X. Yao, and Z.-H. Zhou
(4) When $d=-1$, $f^{n}\left(x^{\prime}\right)=n-i$ or $n-i+2$; $f^{n}(x)=n-i-1$ or $n-i+1$. In the k independent noisy evaluations for x^{\prime}, let $k_{1} \in[0, k]$ denote the number of times that $f^{n}\left(x^{\prime}\right)=n-i$. Similarly, let $k_{2} \in[0, k]$ denote the number of times that $f^{n}(x)=n-i+1$. The condition for the rejection of x^{\prime} is $\hat{f}\left(x^{\prime}\right)<\hat{f}(x)$, which can be simplified as follows.

$$
\begin{aligned}
\hat{f}\left(x^{\prime}\right)<\hat{f}(x) & \Leftrightarrow \sum_{i=1}^{k} f_{i}^{n}\left(x^{\prime}\right)<\sum_{i=1}^{k} f_{i}^{n}(x) \\
& \Leftrightarrow k_{1}(n-i)+\left(k-k_{1}\right)(n-i+2)<k_{2}(n-i+1)+\left(k-k_{2}\right)(n-i-1) \\
& \Leftrightarrow k_{1}+k_{2}>\frac{3}{2} k
\end{aligned}
$$

We then consider three cases:

- $i=n$. Note that the probability of flipping a 0 bit of x in noisy evaluation (i.e., $f^{n}(x)=n-i+1$) is 1 , which implies that $k_{2}=k$. Thus, the condition of rejecting x^{\prime} changes to be $k_{1}>\frac{k}{2}$. Then, we have $p_{i, i-1}=P_{-1} \cdot\left(1-\sum_{k_{1}>\frac{k}{2}}\binom{k}{k_{1}} \frac{1}{2^{k}}\right)$.
- $i=1$. Note that $\left|x^{\prime}\right|_{0}=i-1=0$, thus the probability of flipping a 1 bit of x^{\prime} in noise (i.e., $f^{n}\left(x^{\prime}\right)=n-i$) is 1 , which implies that $k_{1}=k$. Thus, the condition of rejecting x^{\prime} changes to be $k_{2}>\frac{k}{2}$. Then, we have $p_{i, i-1}=P_{-1} \cdot\left(1-\sum_{k_{2}>\frac{k}{2}}\binom{k}{k_{2}} \frac{1}{2^{k}}\right)$.
- $1<i<n \cdot p_{i, i-1}=P_{-1} \cdot\left(1-\sum_{k_{1}+k_{2}>\frac{3}{2} k}\binom{k}{k_{1}} \frac{1}{2^{k}} \cdot\binom{k}{k_{2}} \frac{1}{2^{k}}\right)=P_{-1} \cdot\left(1-\sum_{k^{\prime}>\frac{3}{2} k}\binom{2 k}{k^{\prime}} \frac{1}{2^{2 k}}\right)$.

By combining the above three cases, we can easily derive that $p_{i, i-1} \geq P_{-1} \cdot \frac{1}{2}$.
(5) When $d \leq-2, \hat{f}\left(x^{\prime}\right) \geq n-i-d-1 \geq n-i+1 \geq \hat{f}(x)$. Thus, x^{\prime} will always be accepted, then we have $\forall d \leq-2: p_{i, i+d}=P_{d}$.

By applying these probabilities to Eq. (1), we have

$$
\begin{equation*}
\mathbb{E} \llbracket V\left(\xi_{t}\right)-V\left(\xi_{t+1}\right) \mid \xi_{t}=x \rrbracket \geq p_{i, i-1}-p_{i, i+1}-2 \cdot p_{i, i+2} \tag{2}
\end{equation*}
$$

We then analyze Eq. (2) in three cases.
(1) When $i=n, p_{i, i+2}=0$ and $p_{i, i+1}=0$. Thus, we have

$$
\mathbb{E} \llbracket V\left(\xi_{t}\right)-V\left(\xi_{t+1}\right) \left\lvert\, \xi_{t}=x \rrbracket \geq P_{-1} \cdot \frac{1}{2} \geq \frac{i}{n}\left(1-\frac{1}{n}\right)^{n-1} \cdot \frac{1}{2} \geq \frac{i}{2 e n}\right.
$$

(2) When $i=n-1, p_{i, i+2}=0$ and $p_{i, i+1}=P_{1} \cdot \sum_{k_{2} \geq \frac{k}{2}}\binom{k}{k_{2}} \frac{1}{2^{k}}<P_{1} \leq \frac{n-i}{n}=\frac{1}{n}$. Thus,

$$
\mathbb{E} \llbracket V\left(\xi_{t}\right)-V\left(\xi_{t+1}\right) \left\lvert\, \xi_{t}=x \rrbracket \geq P_{-1} \cdot \frac{1}{2}-P_{1} \geq \frac{i}{2 e n}-\frac{1}{n} \geq 0.01 \cdot \frac{i}{n}\right.
$$

where the last inequality holds with $n \geq 7$.
(3) When $1 \leq i<n-1, p_{i, i+2} \leq P_{2} \cdot \frac{1}{2^{k}}$ and $p_{i, i+1}=P_{1} \cdot \sum_{k^{\prime} \geq \frac{3}{2} k}\binom{2 k}{k^{\prime}} \frac{1}{2^{2 k}}$. Let $X_{i}(1 \leq i \leq$ $2 k)$ be independent random variables such that $P\left(X_{i}=1\right)=\frac{1}{2}$ and $P\left(X_{i}=0\right)=\frac{1}{2}$. Then, $\sum_{k^{\prime} \geq \frac{3}{2} k}\binom{2 k}{k^{\prime}} \frac{1}{2^{2 k}}=P\left(\sum_{i=1}^{2 k} X_{i} \geq \frac{3}{2} k\right) \leq e^{-\frac{k}{12}}$, where the " \leq " is by Chernoff's inequality. Thus, we have

$$
\begin{aligned}
\mathbb{E} \llbracket V\left(\xi_{t}\right)-V\left(\xi_{t+1}\right) \mid \xi_{t}=x \rrbracket & \geq \frac{P_{-1}}{2}-P_{1} \cdot e^{-\frac{k}{12}}-2 \cdot \frac{P_{2}}{2^{k}} \\
& \geq \frac{i}{2 e n}-\frac{1}{n^{2}}-\frac{1}{n^{12}} \geq 0.01 \cdot \frac{i}{n},
\end{aligned}
$$

where the second inequality is by $k=\lceil 24 \log n\rceil$ (note that \log corresponds to the natural logarithm, i.e., the base is e), and the last inequality holds with $n \geq 6$.

On the Effectiveness of Sampling for Evolutionary Optimization in Noisy Environments

Thus, the condition of Lemma 2 holds with $\mathbb{E} \llbracket V\left(\xi_{t}\right)-V\left(\xi_{t+1}\right) \left\lvert\, \xi_{t}=x \rrbracket \geq \frac{0.01}{n}\right.$. $V(x)$. We then have

$$
\mathbb{E} \llbracket \tau \left\lvert\, \xi_{0} \rrbracket \leq \frac{n}{0.01} \cdot\left(1+\log V\left(\xi_{0}\right)\right) \in O(n \log n)\right.
$$

i.e., the expected iterations for finding the optimal solution is upper bounded by $O(n \log n)$. Because the cost of each iteration is $2 k=2 \cdot\lceil 24 \log n\rceil$, the expected running time is $O\left(n \log ^{2} n\right)$.

[^0]: * Corresponding author

