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1 Detailed Proofs

This document aims to provide the detailed proofs of Theorems 2 and 10, which are
omitted in our original paper due to space limitations.

Proof of Theorem 2. We use Lemma 4 to prove this theorem. We first analyze pi,i+d

as that analyzed in the proof of Theorem 1. Note that for a solution x, the fitness value
output by sampling with k = 2 is f̂(x) = (fn1 (x) + fn2 (x))/2, where fn1 (x) and fn2 (x) are
noisy fitness values output by two independent fitness evaluations.
(1) When d ≥ 3, f̂(x′) ≤ n− i− d+ 1 ≤ n− i− 2 < f̂(x). Thus, the offspring x′ will be
discarded, then we have ∀d ≥ 3 : pi,i+d = 0.
(2) When d = 2, the offspring solution x′ will be accepted if and only if f̂(x′) = n −
i− 1 = f̂(x). The probability of f̂(x′) = n− i− 1 is ( i+2

n )2, since it needs to always flip
one 0-bit of x′ in two noisy fitness evaluations. The probability of f̂(x) = n − i − 1 is
(n−i

n )2, since it needs to always flip one 1-bit of x. Thus, pi,i+2 = P2 · ( i+2
n )2(n−i

n )2.
(3) When d = 1, there are three possible cases for the acceptance of x′: f̂(x′) = n− i∧
f̂(x) = n− i− 1, f̂(x′) = n− i ∧ f̂(x) = n− i and f̂(x′) = n− i− 1 ∧ f̂(x) = n− i− 1.
The probability of f̂(x′) = n − i is ( i+1

n )2, since it needs to always flip one 0-bit of
x in two noisy evaluations. The probability of f̂(x′) = n − i − 1 is 2 i+1

n
n−i−1

n , since
it needs to flip one 0-bit of x in one noisy evaluation and flip one 1-bit in the other
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noisy evaluation. Similarly, we can derive that the probabilities of f̂(x) = n− i−1 and
f̂(x) = n − i are (n−i

n )2 and 2n−i
n

i
n , respectively. Thus, pi,i+1 = P1 · (( i+1

n )2((n−i
n )2 +

2n−i
n

i
n ) + 2 i+1

n
n−i−1

n (n−i
n )2).

(4) When d = −1, x′ will be rejected if and only if f̂(x′) = n − i ∧ f̂(x) = n − i + 1.
The probability of f̂(x′) = n− i is (n−i+1

n )2, since it needs to always flip one 1-bit of x′

in two noisy evaluations. The probability of f̂(x) = n − i + 1 is ( i
n )2, since it needs to

always flip one 0-bit of x. Thus, pi,i−1 = P−1 · (1− (n−i+1
n )2( i

n )2).
(5) When d ≤ −2, f̂(x′) ≥ n− i− d− 1 ≥ n− i+ 1 ≥ f̂(x). Thus, the offspring x′ will
always be accepted, then we have ∀d ≤ −2 : pi,i+d = Pd.

Using these probabilities, we have

E[[Xt −Xt+1 | Xt = i]] =

i∑
d=1

d · pi,i−d −
n−i∑
d=1

d · pi,i+d

=

(
1−

(
n− i+ 1

n

)2(
i

n

)2
)
P−1 +

i∑
d=2

dP−d − 2

(
i+ 2

n

)2(
n− i
n

)2

P2

−

((
i+ 1

n

)2
((

n− i
n

)2

+ 2
n− i
n

i

n

)
+ 2

i+ 1

n

n− i− 1

n

(
n− i
n

)2
)
P1

≤

(
1−

(
n− i+ 1

n

)2(
i

n

)2
)
i

n

(
1− 1

n

)n−1

· 1.14 +
i

n

((
1 +

1

n

)i−1

− 1

)

− 2

(
i+ 2

n

)2(
n− i
n

)2
(n− i)(n− i− 1)

2n2

(
1− 1

n

)n−2

− n− i
n

(
1− 1

n

)n−1

·

((
i+ 1

n

)2
((

n− i
n

)2

+ 2
n− i
n

i

n

)
+ 2

i+ 1

n

n− i− 1

n

(
n− i
n

)2
)

(by using the bounds of Pd in the proof of Theorem 1)

≤ i

n

(
1− 1

n

)n−1

(1.14− 2) +O

((
i

n

)2
)

(since i < n1/4)

≤ −0.3 · i
n

+O

((
i

n

)2
)
. (by

(
1− 1

n

)n−1

≥ 1

e
)

It is also easy to verify that P (Xt+1 6= i | Xt = i) = Θ( i
n ) for 1 ≤ i < n1/4. Thus,

E[[Xt −Xt+1 | Xt = i]] = −Ω(P (Xt+1 6= i | Xt = i)), which implies that condition 1 of
Lemma 4 holds.

Condition 2 of Lemma 4 still holds with δ = 1 and r(l) = 32e
7 . The analysis proce-

dure is the same as that in the proof of Theorem 1, because the following inequality
holds:

P (|Xt+1 −Xt| ≥ 1 | Xt = i) ≥ pi,i−1 =

(
1−

(
n− i+ 1

n

)2(
i

n

)2
)
· P−1

≥
(

1− n− i+ 1

n

i

n

)
· P−1.

Thus, by Lemma 4, the expected running time is exponential. �
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Proof of Theorem 10. We use Lemma 2 to prove this theorem. The proof is very
similar to that of Theorem 3 except that the probabilities pi,i+d are different due to
the difference on the noise and the value of k.

We use the distance function V (x) = |x|0. Let i (where 1 ≤ i ≤ n) denote the
number of 0-bits of the current solution x. Let pi,i+d be the probability that the next
solution after mutation and selection has i+dnumber of 0-bits (where−i ≤ d ≤ n−i).
Thus,

E[[V (ξt)− V (ξt+1) | ξt = x]] =
∑i

d=1
d · pi,i−d −

∑n−i

d=1
d · pi,i+d. (1)

We then analyze pi,i+d (1 ≤ i ≤ n). For a solution x, the fitness value output
by sampling is the average of noisy fitness values by k independent evaluations, i.e.,
f̂(x) =

∑k
i=1 f

n
i (x)/k. Note that for the flipping in asymmetric one-bit noise, the

probability of flipping a 0 (or 1) bit is different when |x|0 = 0, |x|0 = n and 0 < |x|0 < n.
In these three cases, the probabilities of flipping a 0 bit are 0, 1 and 1

2 , respectively; the
probabilities of flipping a 1 bit are 1, 0 and 1

2 , respectively. Thus, the analysis of pi,i+d

will also be separated into several cases if necessary. Let Pd denote the probability
that the offspring solution x′ generated by mutation has i+ d number of 0-bits.
(1) When d ≥ 3, f̂(x′) ≤ n− i− d+ 1 ≤ n− i− 2 < f̂(x). Thus, the offspring x′ will be
discarded, then ∀d ≥ 3 : pi,i+d = 0.
(2) When d = 2, x′ will be accepted if and only if f̂(x′) = n − i − 1 = f̂(x), that is, it
needs to always flip one 0-bit of x′ and flip one 1-bit of x in k noisy fitness evaluations.
We then consider three cases:

• i = n or n− 1. It trivially holds that pi,i+2 = 0.

• i = n − 2. Note that |x′|0 = i + 2 = n, thus the probability of flipping a 0 bit of x′

in noisy evaluation is 1. Then, we have pi,i+2 = P2 · 1k · 1
2k

.

• 1 ≤ i < n− 2. We have pi,i+2 = P2 · 1
2k
· 1
2k

.

(3) When d = 1, there are two possible values for fn(x′): n − i − 2 or n − i. Similarly,
fn(x) = n−i−1 or n−i+1. In the k independent noisy evaluations for x′, let k1 ∈ [0, k]
denote the number of times that fn(x′) = n − i. Similarly, let k2 ∈ [0, k] denote the
number of times that fn(x) = n − i − 1. The condition for the acceptance of x′ is
f̂(x′) ≥ f̂(x), which can be simplified as follows.

f̂(x′) ≥ f̂(x)⇔
∑k

i=1
fni (x′) ≥

∑k

i=1
fni (x)

⇔ k1(n−i) + (k−k1)(n−i−2) ≥ k2(n− i− 1) + (k − k2)(n− i+ 1)

⇔ k1 + k2 ≥
3

2
k.

We then consider three cases:

• i = n. It trivially holds that pi,i+1 = 0.

• i = n − 1. Note that |x′|0 = i + 1 = n, thus the probability of flipping a 0 bit
of x′ in noisy evaluation (i.e., fn(x′) = n − i) is 1, which implies that k1 = k.
Thus, the condition of accepting x′ changes to be k2 ≥ k

2 . Then, we have pi,i+1 =

P1 ·
∑

k2≥ k
2

(
k
k2

)
1
2k

.

• 1 ≤ i < n−1. We have pi,i+1 = P1 ·
∑

k1+k2≥ 3
2k

(
k
k1

)
1
2k
·
(
k
k2

)
1
2k

= P1 ·
∑

k′≥ 3
2k

(
2k
k′

)
1

22k
.
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(4) When d = −1, fn(x′) = n − i or n − i + 2; fn(x) = n − i − 1 or n − i + 1. In the k
independent noisy evaluations for x′, let k1 ∈ [0, k] denote the number of times that
fn(x′) = n−i. Similarly, let k2 ∈ [0, k] denote the number of times that fn(x) = n−i+1.
The condition for the rejection of x′ is f̂(x′) < f̂(x), which can be simplified as follows.

f̂(x′) < f̂(x)⇔
∑k

i=1
fni (x′) <

∑k

i=1
fni (x)

⇔ k1(n−i) + (k−k1)(n−i+2) < k2(n− i+ 1) + (k − k2)(n− i− 1)

⇔ k1 + k2 >
3

2
k.

We then consider three cases:

• i = n. Note that the probability of flipping a 0 bit of x in noisy evaluation (i.e.,
fn(x) = n− i+ 1) is 1, which implies that k2 = k. Thus, the condition of rejecting
x′ changes to be k1 > k

2 . Then, we have pi,i−1 = P−1 · (1−
∑

k1>
k
2

(
k
k1

)
1
2k

).

• i = 1. Note that |x′|0 = i − 1 = 0, thus the probability of flipping a 1 bit of x′ in
noise (i.e., fn(x′) = n − i) is 1, which implies that k1 = k. Thus, the condition of
rejecting x′ changes to be k2 > k

2 . Then, we have pi,i−1 = P−1 ·(1−
∑

k2>
k
2

(
k
k2

)
1
2k

).

• 1 < i < n. pi,i−1 = P−1·(1−
∑

k1+k2>
3
2k

(
k
k1

)
1
2k
·
(
k
k2

)
1
2k

) = P−1·(1−
∑

k′> 3
2k

(
2k
k′

)
1

22k
).

By combining the above three cases, we can easily derive that pi,i−1 ≥ P−1 · 12 .
(5) When d ≤ −2, f̂(x′) ≥ n − i − d − 1 ≥ n − i + 1 ≥ f̂(x). Thus, x′ will always be
accepted, then we have ∀d ≤ −2 : pi,i+d = Pd.

By applying these probabilities to Eq. (1), we have

E[[V (ξt)− V (ξt+1) | ξt = x]] ≥ pi,i−1 − pi,i+1 − 2 · pi,i+2. (2)

We then analyze Eq. (2) in three cases.
(1) When i = n, pi,i+2 = 0 and pi,i+1 = 0. Thus, we have

E[[V (ξt)− V (ξt+1) | ξt = x]] ≥ P−1 ·
1

2
≥ i

n

(
1− 1

n

)n−1

· 1

2
≥ i

2en
.

(2) When i = n− 1, pi,i+2 = 0 and pi,i+1 = P1 ·
∑

k2≥ k
2

(
k
k2

)
1
2k
< P1 ≤ n−i

n = 1
n . Thus,

E[[V (ξt)− V (ξt+1) | ξt = x]] ≥ P−1 ·
1

2
− P1 ≥

i

2en
− 1

n
≥ 0.01 · i

n
,

where the last inequality holds with n ≥ 7.
(3) When 1 ≤ i < n−1, pi,i+2 ≤ P2 · 1

2k
and pi,i+1 = P1 ·

∑
k′≥ 3

2k

(
2k
k′

)
1

22k
. LetXi (1 ≤ i ≤

2k) be independent random variables such that P (Xi = 1) = 1
2 and P (Xi = 0) = 1

2 .

Then,
∑

k′≥ 3
2k

(
2k
k′

)
1

22k
= P (

∑2k
i=1Xi ≥ 3

2k) ≤ e−
k
12 , where the “≤” is by Chernoff’s

inequality. Thus, we have

E[[V (ξt)− V (ξt+1) | ξt = x]] ≥ P−1
2
− P1 · e−

k
12 − 2 · P2

2k

≥ i

2en
− 1

n2
− 1

n12
≥ 0.01 · i

n
,

where the second inequality is by k = d24 log ne (note that log corresponds to the
natural logarithm, i.e., the base is e), and the last inequality holds with n ≥ 6.
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Thus, the condition of Lemma 2 holds with E[[V (ξt)− V (ξt+1) | ξt = x]] ≥ 0.01
n ·

V (x). We then have

E[[τ | ξ0]] ≤ n

0.01
· (1 + log V (ξ0)) ∈ O(n log n),

i.e., the expected iterations for finding the optimal solution is upper bounded by
O(n log n). Because the cost of each iteration is 2k = 2 · d24 log ne, the expected run-
ning time is O(n log2 n). �
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