9/12: Introduction (Download PDF)
| |
Reading material:
Z.-H. Zhou. Three perspectives of data mining. Artificial Intelligence, 2003, 143(1): 139-146.
H.-P. Kriegel, et al. Future trends in data mining. Data Mining and Knowledge Discovery, 2007, 15(1): 87-97.
Q. Yang and X. Wu. 10 challenging problems in data mining research. International Journal of Information Technology & Decision Making, 2006, 5(4): 597-604.
|
|
9/19: Data, Measurements, and Visualization (Download PDF)
| |
Reading material:
M. C. F. de Oliveira and H. Levkowitz. From visual data exploration to visual data mining: A survey. IEEE TVCG, 2003, 9(3): 378-394.
H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization: An enabling technique. DMKD, 2002, 6(4): 393-423.
J. Dougherty, R. Kohavi, M. Sahami. Supervised and unsupervised discretization of continuous features. In Proceedings of ICML'95, 194-202, Tahoe City, CA.
X. Zhu and X. Wu. Class noise vs. attribute noise: A qualitative study of their impacts. AI Review, 2004, 22(3-4): 177-210.
Link: A javascript for simple data visualization
|
|
9/26: Supervised Learning (Download PDF)
| |
Reading material:
Chapter 2 of Introduction to Machine Learning (E. Alpaydin, MIT Press, 2010).
L. Valiant. A theory of the learnable. Communication of the ACM, 27(11):1134-1142, 1984.
|
|
10/10: Decision Tree and Neural Networks (Download PDF)
| |
Reading material:
Chapters 9 and 11 of Introduction to Machine Learning (E. Alpaydin, MIT Press, 2010).
R. Quinlan. Induction of decision trees. MLJ, 1:81-106, 1986.
A. Roy. Artificial neural networks - A science in trouble. SIGKDD Explorations, 2000, 1(2): 33-38.
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313:504-507, 2006.
|
|
10/17: Linear Models and Kernel Trick (Download PDF)
| |
Reading material:
Chapters 3, 4, 6, and 7 of Pattern Recognition and Machine Learning (C. M. Bishop, Springer, 2007) (You may find the ebook to download using Baidu.com)
C. J. C. Burges. A tutorial on support vector machines for pattern recognition. DMKD, 1998, 2(2): 121-167.
K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based learning algorithms. IEEE TNN, 2001, 12(2): 181-201.
|
|
10/24: Bayesian Methods and Lazy Methods (Download PDF)
| |
Reading material:
D. Heckerman. Bayesian networks for data mining. DMKD, 1997, 1(1): 79-119.
H. Zhang. The Optimality of Naive Bayes. FLAIRS Conference 2004.
F. Zheng and G. I. Webb. A Comparative Study of Semi-naive Bayes Methods in Classification Learning. In AusDM'05, 141-156.
A. Andoni and P. Indyk. Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions. CACM, 2008, 51(1): 117-121.
|
|
10/31: Discussion of Assignment 1 and Assignment 2
|
|
|
11/7: Ensemble Methods (Download PDF)
| |
Reading material:
L. Breiman. Random Forest. Machine Learning 45 (1): 5–32.
Z.-H. Zhou. Ensemble Methods: Foundations and Algorithms, Boca Raton, FL: Chapman & Hall/CRC, 2012. (Chapter 2: Boosting).
E. Bauer and R. Kohavi. An Empirical Comparison of Voting Classication Algorithms: Bagging, Boosting, and Variants. Machine Learning, 1999, 36(1):105-139.
|
|
11/14: Unsupervised learning: Density estimation and clustering (Download PDF)
| |
Reading material:
Chapter 8 and 7 of Introduction to Machine Learning (E. Alpaydin, MIT Press, 2010).
V. Estivill-Castro. Why so many clustering algorithms - a position paper. SIGKDD Explorations, 2002, 4(1): 65-75.
R. Xu and D. Wunsch II. Survey of clustering algorithms. IEEE Transactions on Neural Networks, 2005, 16(3): 645-678.
C. Elkan. Using the Triangle Inequality to Accelerate k-Means. ICML'03, 147-153.
|
|
11/21: Handling Big Data (Download PDF)
| |
Reading material:
M. Banko and E. Brill. Scaling to very very large corpora for natural language disambiguation. ACL'01.
J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. OSDI'04.
B. Panda, et al. PLANET: Massively parallel learning of tree ensembles with MapReduce. VLDB'09.
J. Friedman. Stochastic gradient boosting. Computational Statistics & Data Analysis, 2002, 38(4):367-378.
J. Lin and A. Kolcz. Large-Scale Machine Learning at Twitter. SIGMOD'12.
|
|
11/28: Feature Processing (Download PDF)
| |
Reading material:
A. L. Blum and P. Langley. Selection of relevant features and examples in machine learning. AIJ, 1997, 97(1-2): 245-271.
I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003, 3: 1157-1182.
Chapter 6 of Introduction to Machine Learning (E. Alpaydin, MIT Press, 2010).
J. B. Tenenbaum, V. de Silva and J. C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290:2319-2322.
Sam T. Roweis and Lawrence K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, 2000, 290:2323–2326.
|
|
12/5: Mining Link Data (Download PDF), Experiment Design and Analysis (Download PDF)
| |
Reading material:
L. Getoor and C. Diehl. Link mining: A survey. SIGKDD Explorations, 7(2):3-12, 2005.
L. Page, et al. The PageRank citation ranking: Bringing order to the web. Technic report, 1997.
|
|
12/12: Discussion of Assignment 3
|
|
|
12/19: Some Applications (Download PDF)
| |
Reading material:
Chapter 14 of the text book (Principles of Data Mining)
M. Mitra, B. Chaudhuri. Information retrieval from documents: A survey. Information Retrieval 2000.
M. Lew, N. Sebe, C. Djeraba, R. Jain. Content-based multimedia information retrieval: State of the art and challenges. TOMCCAP 2006.
D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. IJCV 2004.
P. Viola and M. Jones. Robust Real-time Object Detection, IJCV 2001.
|
|
12/26: Discussion of Assignment 4
|
|
|
12/29: Q & A (In office: 919)
|
|
|