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The Atari games

Deepmind Deep Q-learning on Atari
[Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540): 529-533, 2015]
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The game of Go

Deepmind AlphaGo system
[Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587): 484−489, 2016.]
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Aims

1. what is reinforcement learning (RL)
2. what does RL capable of
3. principles of RL algorithms
4. some directions of RL

in the following 3 hours
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Outline

✦ Introduction
✦ Markov Decision Process
✦ From MDP to Reinforcement Learning
✦ Function Approximation
✦ Policy Search
✦ Deep Reinforcement Learning
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How to train a dog?



CCFADL  俞扬：强化学习前沿 .nju.edu.cn

How to train a dog?

hear “down”

reward

reward

action

dog learns from rewards to adapt to the environment

can computers do similarly?
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Reinforcement learning setting

Agent Environment

action/decision

reward

state

<A, S, R, P>

Action space: A

State space: S

Reward: R : S ⇥A⇥ S ! R
Transition: P : S ⇥A ! S
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Reinforcement learning setting
<A, S, R, P>

Action space: A

State space: S

Reward: R : S ⇥A⇥ S ! R
Transition: P : S ⇥A ! S

Agent Environment

action/decision

reward
state

Agent: 
Policy: ⇡ : S ⇥A ! R,

X
a2A

⇡(a|s) = 1

Policy (deterministic): ⇡ : S ! A

Agent’s view: 

⇡(s0) ⇡(s1) ⇡(s2)

s0, a0, r1, s1, a2, r2, s2, a3, r3, s3, . . .
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Reinforcement learning setting
<A, S, R, P>

Action space: A

State space: S

Reward: R : S ⇥A⇥ S ! R
Transition: P : S ⇥A ! S

Agent Environment

action/decision

reward
state

Agent: Policy: ⇡ : S ⇥A ! R,
X

a2A
⇡(a|s) = 1

Policy (deterministic): ⇡ : S ! A

Agent’s goal:
learn a policy to maximize long-term total reward 

X1

t=1
�trtdiscounted:T-step:

all RL tasks can be defined by maximizing total reward

XT

t=1
rt
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Reward examples

-2

-1

-1

-6

-3
-1

-5

-3
-5

-2s t

• every node is a state, an action is an edge out
• reward function = the negative edge weight
• optimal policy leads to the shortest path

shortest path:

100
0
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Reward examples

general binary space problem

()

solving the optimal policy is NP-hard!

max

x2{0,1}n
f(x)

(0) (1)

(00) (01) (10) (11)

(000) (010)(001) (011) (100) (110)(101) (111)

r=0

r=0

r=f(x)
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Difference between RL and planning?

Planing: find an optimal solution
RL:      find an optimal policy from samples

what if we use planning/search methods to find 
actions that maximize total reward

planning: shortest-path
RL: shortest-path policy 
without knowing the graph
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Difference between RL and SL?

supervised learning

supervised learning also learns a model ...
reinforcement learning

environment

data
(x,y)
(x,y)
(x,y)
...

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

algorithm algorithm

environment

model model

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

learning from labeled data
open loop
passive data

learning from delayed reward
closed loop
explore environment
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Applications

learning robot skills

https://www.youtube.com/watch?v=VCdxqn0fcnE

physical 
world

control actions

reward

state
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More applications

Search
Recommendation system
Stock prediction
...

every decision changes the world
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Markov Decision Process

essential mathematical model for RL
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Markov Process
(finite) state space S, transition matrix P

a process s0,s1,... is Markov if has no memory

P(st+1 | st, ..., s0) = P(st+1 | st)

sunny

rainy

cloudy

0.2

0.1

0.4

0.3

0.3

0.7

0.2

0.5

0.3
0.2 0.7 0.1

0.3 0.3 0.4

0.2 0.5 0.3

sunny

rainy

cloudyP =

st+1 = stP = s0Pt+1

s    c     r

discrete S -> Markov chain 
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Markov Process

stationary distribution: s == sP

horizontal view

sunny

s

c

r

s

c

r

s

c

r

...

t =     0             1            2            3   

0.2
0.7

0.1

sampling from a Markov process:
s, c, c, r ...
s, c, s, c ... 
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Markov Reward Process
introduce reward function R

sunny

rainy

cloudy

0.2/2

0.1/-1

0.4/-1

0.3/1

0.3/2

0.7/1

0.2/2

0.5/1

0.3/-1

how to calculate the long-term total reward?

V (sunny) = E[
X1

t=1
�trt|s0 = sunny]

value function
V (sunny) = E[

XT

t=1
rt|s0 = sunny]
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Markov Reward Process

horizontal view: consider T steps

sunny

s

c

r

s

c

r

s

c

r

...

0.2
0.7

0.1

t =     0             1            2       ...                 T-1          T

V (sunny) =P (s|s)[R(s) + V (s)]
+ P (c|s)[R(c) + V (c)]
+ P (r|s)[R(r) + V (r)]

recursive definition:
=

X

s

P (s|sunny)
�
R(s) + V (s)

�



CCFADL  俞扬：强化学习前沿 .nju.edu.cn

Markov Reward Process

horizontal view: consider T steps

sunny

s

c

r

s

c

r

s

c

r

...

0.2
0.7

0.1

t =     0             1            2       ...                 T-1          T

backward
calculation V (s) = 0

V (s) =
X

s0

P (s0|s)
�
R(s0) + V (s0)

�
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Markov Reward Process

horizontal view: consider discounted infinite steps

sunny

s

c

r

s

c

r

s

c

r

...

0.2
0.7

0.1

t =     0             1            2       ...               

backward
calculation V (s) = 0

...

V (s) =
X

s0

P (s0|s)
�
R(s0) + �V (s0)

�

repeat until converges
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Markov Decision Process
introduce (finite) actions A

sunny

rainy

cloudy

0.9/2

0.01/-1

0.09/1

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.45/2
0.45/-1

0.1/1

0.1/-1
0.2/2

0.7/1
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Markov Decision Process

horizontal view

sunny

s

c

r

s

c

r

s

c

r

...
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Markov Decision Process

horizontal view of the game of Go
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Markov Decision Process

goal-directed

t

stationary distribution
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Markov Decision Process

sunny

rainy

cloudy

0.9/2

0.01/-1

0.09/1

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.45/2
0.45/-1

0.1/1

0.1/-1
0.2/2

0.7/1MDP <S,A,R,P> (often with 𝛾)

essential model for RL
but not all of RL

policy

⇡(a|s) = P (a|s)

⇡(s) = argmax

a
P (a|s)

stochastic

deterministic

tabular representation

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

⇡ =

|A||S| deterministic policies
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Expected return

how to calculate the expected total reward of a policy?

sunny

rainy

cloudy

0.9/2

0.01/-1

0.09/1

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.45/2
0.45/-1

0.1/1

0.1/-1
0.2/2

0.7/1

similar with the Markov Reward Process

V (s) =
X

s0

P (s0|s)
�
R(s0) + V (s0)

�
MRP:

MDP:
V ⇡(s) =

X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

expectation over actions
with respect to the policy
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Q-function

state value function

state-action value function

V ⇡(s) =
X

a

⇡(a|s)Q(s, a)

V ⇡(s) = E[
XT

t=1
rt|s]

Q⇡(s, a) = E[
XT

t=1
rt|s, a] =

X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

consequently,

Q-function => policy
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Optimality

there exists an optimal policy ⇡⇤

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

8⇡, 8s, V ⇡⇤
(s) � V ⇡(s)

optimal value function

8s, V ⇤(s) = V ⇡⇤
(s)

8s, 8a,Q⇤(s, a) = Q⇡⇤
(s, a)
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Bellman optimality equations

V ⇤
(s) = max

a
Q⇤

(s, a)

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

from the relation between V and Q
Q⇤(s, a) =

X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇤(s0)

�

we have

the unique fixed point is the optimal value function

Q⇤
(s, a) =

X

s0

P (s0|s, a)
�
R(s, a, s0) + �max

a
Q⇤

(s0, a)
�

V ⇤
(s) = max

a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇤

(s0)
�
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Solve optimal policy in MDP

idea:
how is the current policy
improve the current policy

policy evaluation
policy improvement

policy evaluation: backward calculation

V ⇡(s) =
X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇡(s0)

�

policy improvement:

V (s) max

a
Q⇡

(s, a)

from the Bellman optimality equation
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Solve optimal policy in MDP

policy improvement:

V (s) max

a
Q⇡

(s, a)

from the Bellman optimality equation

let ⇡0
be derived from this update

V ⇡(s)  Q⇡(s,⇡0(s))

=
X

s0
P (s0|s,⇡0(s))(R(s,⇡0(s), s0) + �V ⇡(s0))


X

s0
P (s0|s,⇡0(s))(R(s,⇡0(s), s0) + �Q⇡(s0,⇡0(s)))

= . . .

= V ⇡0

so the policy is improved
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Solve optimal policy in MDP

Policy iteration algorithm:
loop until converges
policy evaluation: calculate V
policy improvement: choose the action greedily

converges: V ⇡t+1(s) = V ⇡t(s)

⇡t+1(s) = argmax

a
Q⇡t

(s, a)

recall the optimal value function about Q

Q⇡t+1
(s, a) =

X

s0

P (s0|s, a)
�
R(s, a, s0) + �max

a
Q⇡t

(s0, a)
�
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Solve optimal policy in MDP

Value iteration algorithm:

V0 = 0 
for t=0, 1, ... 

for all s 

end for 
break if ||Vt+1 -Vt ||∞ is small enough 

end for 

Vt+1(s) = max

a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �Vt(s)

�

embed the policy improvement in evaluation

recall the optimal value function about V

<- synchronous v.s. asynchronous
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Solve optimal policy in MDP

Dynamic programming R. E. Bellman
1920-1984

sunny

s

c

r

s

c

r

s

c

r

...

[O. Madani. Polynomial Value Iteration Algorithms for Deterministic MDPs. UAI’02]

Complexity
needs               iterations to converge on deterministic MDP⇥(|S| · |A|)

curse of dimensionality:  Go board 19x19, |S|=2.08x10170

[https://github.com/tromp/golegal]

Q⇡t+1
(s, a) =

X

s0

P (s0|s, a)
�
R(s, a, s0) + �max

a
Q⇡t

(s0, a)
�

Vt+1(s) = max

a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �Vt(s

0
)

�
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from MDP to reinforcement learning

MDP <S,A,R,P>
R and P are unknown
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Methods

A: learn R and P,  
   then solve the MDP

B: learn policy without R or P

model-based

model-free

MDP is the model
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Model-based RL

environment

agent
model policy

issues:
how to learn the model efficiently?
how to update the policy efficiently?
how to combine model learning and policy learning?
...

basic idea:
1. explore the environment randomly, 
2. build the model from observations, 
3. find the policy by VI or PI
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learn an MDP model
random walk, and record the transition and the reward.
more efficiently, visit unexplored states
RMax algorithm:

initialize R(s)=Rmax, P = self-trainsition 
loop 

choose action a, observe state s’ and reward r 
update transition count and reward count for s,a,s’ 
if count of s,a >= m 

update reward and transition from estimations  
s = s’

sample complexity Õ(|S|2|A|V 3

max

/(✏(1� �))3)
[Strehl, et al. Reinforcement learning in finite MDPs: PAC analysis. JMLR’09]

[Bertsekas, Tsitsiklis. R-Max---A general polynomial time algorithm 
for near-optimal reinforcement learning. JMLR’02]
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Model-free RL

explore the environment and learn policy at the 
same time

Monte-Carlo method

Temporal difference method
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Monte Carlo RL - evaluation

expected total reward

expectation of trajectory-wise rewards

sunny

s

c

r

s

c

r

s

c

r

...

Q⇡(s, a) = E[
XT

t=1
rt|s, a]

sample trajectory m times, 
approximate the expectation by average

⌧i is sample by following   after s,a⇡Q⇡(s, a) =
1

m

mX

i=1

R(⌧i)

Q, not V
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Monte Carlo RL - evaluation+improvement

Q0 = 0 
for i=0, 1, ..., m 

generate trajectory <s0, a0, r1, s1, ..., sT> 
for t=0, 1, ..., T-1 

R = sum of rewards from t to T 
Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1) 
c(st,at)++ 

end for 
update policy  

end for 
⇡(s) = argmax

a
Q(s, a)

improvement ?
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Monte Carlo RL

problem: what if the policy takes only one path?

cannot improve the policy 
no exploration of the environment

sunny

s

c

r

s

c

r

s

c

r

needs exploration !
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Exploration methods

one state MDP:  
a.k.a. bandit model

r ⇠ D1

r ⇠ D2

maximize the long-term total reward

• exploration only policy: try every action in turn

• exploitation only policy: try each action once, 
follow the best action forever

waste many trials

risk of pick a bad action
balance between exploration and exploitation
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Exploration methods

ϵ-greedy:
follow the best action with probability 1-ϵ 
choose action randomly with probability ϵ

ϵ should decrease along time
softmax:

probability according to action quality

P (k) = eQ(k)/✓/
XK

i=1
eQ(i)/✓

upper confidence bound (UCB):
choose by action quality + confidence

Q(k) +
p
2 lnn/nk
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Action-level exploration

ϵ-greedy policy:

given a policy ⇡

⇡✏(s) =

(
⇡(s),with prob. 1� ✏

randomly chosen action,with prob. ✏

ensure probability of visiting every state > 0

exploration can also be in other levels
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Monte Carlo RL

Q0 = 0 
for i=0, 1, ..., m 

generate trajectory <s0, a0, r1, s1, ..., sT> by 
for t=0, 1, ..., T-1 

R = sum of rewards from t to T 
Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1) 
c(st,at)++ 

end for 
update policy  

end for 
⇡(s) = argmax

a
Q(s, a)

⇡✏
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Monte Carlo RL - on/off-policy

⇡✏this algorithm evaluates     !   on-policy 

what if we want to evaluate    ?   off-policy ⇡

importance sampling:

E[f ] =

Z

x

p(x)f(x)dx =

Z

x

q(x)
p(x)

q(x)
f(x)dx

1

m

mX

i=1

f(x)
1

m

mX

i=1

p(x)

q(x)
f(x)

sample from p sample from q
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Monte Carlo RL

Q0 = 0 
for i=0, 1, ..., m 

generate trajectory <s0, a0, r1, s1, ..., sT> by 
for t=0, 1, ..., T-1 

R = sum of rewards from t to T 
Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1)  
c(st,at)++ 

end for 
update policy  

end for 
⇡(s) = argmax

a
Q(s, a)

⇡✏

pi =

(
1� ✏+ ✏/|A|, ai = ⇡(si),

✏/|A|, ai 6= ⇡(si)

⇥
YT�1

i=t+1

⇡(xi, ai)

pi

-- off-policy
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Monte Carlo RL

summary

Monte Carlo evaluation:  
approximate expectation by sample average

action-level exploration

on-policy, off-policy: importance sampling

Monte Carlo RL:  
evaluation + action-level exploration + policy improvement (on/off-policy)
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Incremental mean

In general, 

Monte-Carlo update:

µt = µt�1 + ↵(xt � µt�1)

MC error

Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1)

µt =
1

t

tX

i=1

xi =
1

t

(xt +
t�1X

i=1

xi) =
1

t

(xt + (t� 1)µt�1)

= µt�1 +
1

t

(xt � µt�1)

Q(st, at) ( Q(st, at) + ↵(R�Q(st, at))
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Temporal-Difference Learning - evaluation

learn as you goupdate policy online

Monte-Carlo update:

TD update:

TD error

MC error

TD Evaluation

Q(st, at) ( Q(st, at) + ↵(R�Q(st, at))

Q(st, at)

( Q(st, at) + ↵(rt+1 + �Q(st+1, at+1)�Q(st, at))
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Temporal-Difference Learning - example

leaving office 
reach car, raining 
exit highway 
behind truck 
home street 
arrive home 

0          30                  30 
5          35                  40
20         15                  35
30         10                  40
40          3                  43
43          0                  43

state
elapsed 
time

predicted 
total time

predicted 
remaining 
time

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Driving Home Example

Driving Home Example: MC vs. TD

Changes recommended by 
Monte Carlo methods (!=1)!

Changes recommended!
by TD methods (!=1)!

M
C 

er
ro

r

TD
 e

rr
or

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Driving Home Example

Driving Home Example: MC vs. TD

Changes recommended by 
Monte Carlo methods (!=1)!

Changes recommended!
by TD methods (!=1)!
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sunny

s

c

r

s

c

r

s

c

r

s

c

r

Temporal-Difference Learning - backups

MC backup

TD backup

DP backup
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SARSA
On-policy TD control

Q0 = 0, initial state  
for i=0, 1, ... 

a =  
s’, r = do action a 
a’ = 

s = s’ 
end for 

⇡(s) = argmax

a
Q(s, a)

Q(s, a)+= ↵(r + �Q(s0, a0)�Q(s, a))
⇡✏(s

0)

⇡✏(s)
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Q-learning
Off-policy TD control

Q0 = 0, initial state  
for i=0, 1, ... 

a =  
s’, r = do action a 
a’ = 

s = s’ 
end for 

⇡(s) = argmax

a
Q(s, a)

⇡(s0)
Q(s, a)+= ↵(r + �Q(s0, a0)�Q(s, a))

⇡✏(s)
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SARSA v.s. Q-learning

Lecture 5: Model-Free Control

O↵-Policy Learning

Q-Learning

Cli↵ Walking Example
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λ-return

in between TD and MC: n-step prediction

TD(1-step)

n-step return
rt+1 + �Q(st+1, at+1)R(1) =

TD(2-step) rt+1 + �rt+2 + �2Q(st+2, at+2)R(2) =

TD(n-step)
nX

i=1

�i�1rt+i + �nQ(st+n, at+n)R(n) =

MC
TX

i=1

�i�1rt+iR(max) =
Q(st, at) = Q(st, at) + ↵(R(k) �Q(st, at))
k-step TD:
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λ-return

averaging k-step returns, parameter λ

TD(1-step)

TD(2-step)

TD(n-step)

MC

weight

λ-return:

1� �

(1� �)�

(1� �)�n�1

(1� �)�max�1

R� = (1� �)
1X

k=1

�k�1Rk

Q(st, at) = Q(st, at) + ↵(R� �Q(st, at))TD(λ):
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Implementation: eligibility traces

Maintain an extra memory E(s)

s s s     s s      s

E(s)
TD(λ)

�t = rt+1 + �Q(st+1, at+1)�Q(st, at)
TD error:

Update:

E0(s, a) = 0

Et(s, a) = ��Et�1(s, a) + I(st = s, at = a)

Q(s, a) ( Q(s, a) + ↵�tEt(s, a)
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SARSA(λ)
Q0 = 0, initial state  
for i=0, 1, ... 

s’, r = do action from policy 
a’ = 

for all s, a 

end for 
s = s’, a = a’, 

end for 

⇡✏
⇡✏(s

0)

⇡(s) = argmax

a
Q(s, a)

� = r + �Q(s0, a0)�Q(s, a)
E(s, a) + +

E(s, a) = �E(s, a)

Q(s, a) = Q(s, a) + ↵�Et(s, a)
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RL in continuous state space

MDP <S,A,R,P>
S (and A) is in

we can do RL now! ... in (small) discrete state space

Rn
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Value function approximation

tabular representation

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

⇡ =

modern RL

linear function approx.

very powerful representation
can be all possible policies !

� is a feature mapping
w is the parameter vector

may not represent all policies !

V̂ (s) = w>�(s)

Q̂(s, a) = w>�(s, a)

Q̂(s, ai) = w>
i �(s)
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Value function approximation

to approximate Q and V value function
least square approximation

J(w) = Es⇠⇡[
�
Q⇡(s, a)� Q̂(s, a)

�2
]

Recall the errors:
MC update:
TD update:

target

Q(st, at)+ = ↵(R�Q(st, at))

Q(st, at)+ = ↵(rt+1 + �Q(st+1, at+1)�Q(st, at))

model

replace

online environment: stochastic gradient on single sample
�wt = ✓(Q⇡(st, at)� Q̂(st, at))rwQ̂(st, at)
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Value function approximation

MC update:

TD update:

�wt = ✓(R� Q̂(st, at))rwQ̂(st, at)

�wt = ✓(rt+1 + �Q̂(st+1, at+1)� Q̂(st, at))rwQ̂(st, at)

eligibility traces

Et = ��Et�1 +rwQ̂(st, at)
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Q-learning with function approximation

w = 0, initial state  
for i=0, 1, ... 

a =  
s’, r = do action a  
a’ = 

s = s’ 
end for 

⇡(s0)
w+ = ✓(r + �Q̂(s, a)� Q̂(s, a))rwQ̂(st, at)

⇡(s) = argmax

a
ˆQ(s, a)

⇡✏(s)



CCFADL  俞扬：强化学习前沿 .nju.edu.cn

Approximation model

Linear approximation Q̂(s, a) = w>�(s, a)

coarse coding: raw features

discretization: tide with indicator features

kernelization:

Q̂(s, a) =
mX

i=1

wiK((s, a), (si, ai))

(si,ai) can be randomly sampled

rwQ̂(s, a) = �(s, a)
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Approximation model

Nonlinear model approximation

neural network: differentiable model

Q̂(s, a) = f(s, a)

�wt = ✓(rt+1 + �Q̂(st+1, at+1)� Q̂(st, at))rwQ̂(st, at)

follow the BP rule to 
pass the gradient

recall the TD update:
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Batch RL methods
gradient on single sample introduces large variance

Batch mode evaluation:
collect trajectory and history data

solve batch least square objective

J(w) = ED[
�
V ⇡ � V̂ (s)

�2
]

linear function: closed form
neural networks: batch update/repeated stochastic update

LSMC, LSTD, LSTD(λ)

D = {(s1, V ⇡
1 ), (s2, V

⇡
2 ), . . . , (sm, V ⇡

m)}
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Batch RL methods
gradient on single sample introduces large variance

Batch mode policy iteration: LSPI

Q0 = 0, initial state  
for i=0, 1, ... 

collect data D 

end for 

w = argmin
w

X

(s,a)2D

(r + �Q̂(s,⇡(s))� Q̂(s, a))�(s, a)

8s,⇡(s) = argmax

a
Q(s, a)
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policy degradation in value function based methods

1 2

1/3 2/3
2/31/3

2/32/3
1/3

1/3

r(1)=0 r(2)=1
ɸ(1)=2 ɸ(2)=1

optimal policy: red
V*(2) > V*(1) > 0

as value function based method minimizes kV̂ � V ⇤k
results in w > 0

sub-optimal policy,  better value ≠ better policy

Policy Search

let V̂ (s) = w�(s), to ensure V̂ (2) > V̂ (1), w < 0

[Bartlett. An Introduction to Reinforcement Learning Theory: Value Function Methods.  Advanced Lectures on Machine Learning, LNAI 2600]
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Parameterized policy

Gibbs policy (logistic regression)

Gaussian policy (continuous !)

⇡✓(i|s) =
exp(✓>i �(s))P
j exp(✓

>
j �(s))

⇡✓(a|s) =
1p
2⇡�2

exp

✓
� (✓>s� a)2

�2

◆

⇡(a|s) = P (a|s, ✓)
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Policy search v.s. value function based

Policy search advantages:

effective in high-dimensional and continuous action space
learn stochastic policies directly
avoid policy degradation

disadvantages:
converge only to a local optimum
high variance
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Example: Aliased gridworld

Lecture 7: Policy Gradient

Introduction

Aliased Gridworld Example

Example: Aliased Gridworld (1)

The agent cannot di↵erentiate the grey states
Consider features of the following form (for all N, E, S, W)

�(s, a) = 1(wall to N, a = move E)

Compare value-based RL, using an approximate value function

Q✓(s, a) = f (�(s, a), ✓)

To policy-based RL, using a parametrised policy

⇡✓(s, a) = g(�(s, a), ✓)

PO POstate PO cannot be distinguished 
=> same action distribution

deterministic policy: stuck at one side

stochastic policy: either direction with prob. 0.5

value function based policy is mostly 
deterministic

policy search derives stochastic policies
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Direct objective functions

episodic environments: trajectory-wise total reward

where

is the probability of generating the trajectory

J(✓) =

Z

Tra
p✓(⌧)R(⌧) d⌧

p✓(⌧) = p(s0)
TY

i=1

p(si|ai, si�1)⇡✓(ai|si�1)

continuing environments: one-step MDPs

d⇡✓ is the stationary distribution of the process

J(✓) =

Z

S
d⇡✓ (s)

Z

A
⇡✓(a|s)R(s, a) ds da
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Optimization by sampling

finite difference

simple, noisy, converges slowly
works for non-differentiable objectives

uk is a dimension indicator, increase the parameter in one dimension 
a bit, evaluate the progress, choose the best dimension to proceed

@J(✓)

@✓
⇡ J(✓ + ✏uk)� J(✓)

✏
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Analytical optimization: REINFORCE
J(✓) =

Z

Tra
p✓(⌧)R(⌧) d⌧

logarithm trick r✓p✓ = p✓r✓ log p✓

p✓(⌧) = p(s0)
TY

i=1

p(si|ai, si�1)⇡✓(ai|si�1)as

r✓ log p✓(⌧) =
TX

i=1

r✓ log ⇡✓(ai|si�1) + const

use samples to estimate the gradient (unbiased estimation) 

gradient: r✓J(✓) =

Z

Tra
p✓(⌧)r✓ log p✓(⌧)R(⌧) d⌧

= E[

TX

i=1

r✓ log ⇡✓(ai|si)R(si, ai)]
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Analytical optimization: REINFORCE

Gibbs policy ⇡✓(i|s) =
exp(✓>i �(s))P
j exp(✓

>
j �(s))

r✓j log ⇡✓(ai|si) =
(
�(si, ai)(1� ⇡✓(ai|si)), i = j

��(si, ai)⇡✓(ai|si) i 6= j

Gaussian policy ⇡✓(a|s) =
1p
2⇡�2

exp

✓
� (✓>�(s)� a)2

�2

◆

r✓j log ⇡✓(ai|si) = �2

(✓>�(s)� a)�(s)

�2
+ const
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Analytical optimization: One-step MDPs

logarithm trick r✓⇡✓ = ⇡✓r✓ log ⇡✓

J(✓) =

Z

S
d⇡✓ (s)

Z

A
⇡✓(a|s)R(s, a) ds da

use samples to estimate the gradient (unbiased estimation) 

E[

TX

i=1

r✓ log ⇡✓(ai|si)R(si, ai)]equivalent to

r✓J(✓) =

Z

S
d⇡✓

(s)

Z

A
⇡✓(a|s)r✓ log ⇡✓(a|s)R(s, a) ds da

= E[r✓ log ⇡✓(a|s)R(s, a)]
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Reduce variance by critic: Actor-Critic

Maintain another parameter vector w
Qw(s, a) = w>�(s, a) ⇡ Q⇡(s, a)

value-based function approximated methods to update Qw

MC, TD, TD(λ), LSPI

Multi-step MDPs:J(✓) =
Z

S
d⇡✓ (s)

Z

A
⇡✓(a|s)Q⇡✓ (s, a) ds da

Learn policy (actor) and Q-value (critic) simultaneously

r✓J(✓) ⇡ E[r✓ log ⇡✓(a|s)Qw(s, a)]

if w is a minimizer of E[(Q⇡✓
(s, a)�Qw(s, a))

2
]

Policy Gradient Theorem
equivalent gradient for all objectives

r✓J(✓) = E[r✓ log ⇡✓(a|s)Q⇡✓
(s, a)]

[Sutton et al. Policy gradient methods for reinforcement 
learning with function approximation. NIPS’00]
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Example

initial state s  
for i=0, 1, ... 

s’, r = do action a 
a’ = 

s = s’, a = a’ 
end for 

a = ⇡✏(s)

� = r + �Qw(s
0, a0)�Qw(s, a)

✓ = ✓ +r✓ log ⇡✓(a|s)Qw(s, a)

w = w + ↵��(s, a)

⇡✏(s
0)
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Control variance by introducing a bias term

Z

S
d⇡✓ (s)r✓

Z

A
⇡✓(a|s)⇡✓(a|s)b(s) dsda = 0

for any bias term b(s)

obtain the bias by minimizing variance
obtain the bias by V(s)

gradient with a bias term
r✓J(✓) = E[r✓ log ⇡✓(a|s)(Q⇡

(s, a)� b(s))]

A⇡(s, a) = Q⇡(s, a)� V ⇡(s)advantage function:

r✓J(✓) = E[r✓ log ⇡✓(a|s)A⇡
(s, a)]

learn policy, Q and V simultaneously
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Other gradients

nature policy gradient

functional policy gradient

parameter-level exploration

[Kakade. A Natural Policy Gradient. NIPS'01]

[Yu et al. Boosting nonparametric policies. AAMAS'16]

[Sehnke et al.  Parameter-exploring policy gradients. Neural Networks’10]
✓ ⇠ N

In NPPG, A policy ⇡(s, a) is represented as g( (s, a))
with some potential function  . For discrete action spaces, g
can be the Gibbs Sampling function (i.e., the logistic regres-

sion function), ⇡
 

(a|s) = exp( (s,a))P
a0 exp( (s,a

0
))

, and for continu-

ous action spaces, g can be the Gaussian function with pa-

rameter �, ⇡
 

(a|s) = 1p
2⇡�

2
exp

⇣
� ( (s)�a)

2

�

2

⌘
. The poten-

tial function  is an additive model  =
P

T

t=1

h
t

, where the
component function h

t

is to be trained iteratively. NPPG
employs the gradient of Eq.(2) directly, except that the gra-
dient is with respect to the potential function,

r
 

⇢(⇡
 

)=

Z

X
d⇡ (s)

X

a2A

Q⇡ (s, a)r
 

⇡
 

(a|s)ds.

Given the current potential function  
t

=
P

t

i=1

h
t

, the
function can be updated as

 
t+1

=  
t

+ ⌘
t

r
 

⇢(⇡
 t).

However, di↵erent with the gradient of linear vectors, the
gradient in a function space r

 

⇢(⇡
 t) is also a function

but can not be explicitly expressed. We can only know the
gradient value on the samples. Then the point-wise esti-
mation [12] is used to approximate the gradient function
via regression learning algorithms. Given a set of state-
action samples (which can be extract from the trajectories),
the gradient value on each sample (state s and action a) is
calculated as grad(s, a) = Q⇡(s, a)r

 (s,a)

⇡
 

(a|s). It then
constructs a set of examples with features (s, a) and label
grad(s, a), and derives a model h

t

by regression learning
from this set. Now the update rule is by

 
t+1

=  
t

+ ⌘
t

h
t

.

Note this step is a standard supervised regression task, and
thus many well-established learning algorithms with strong
generalization ability can be used here, which results an
adaptively nonlinear model.

3. POLICYBOOST

3.1 Functional Gradient
Following REINFORCE [38], on a sample of m trajecto-

ries S, the unbiased gradient of the expected total reward is
r⇢

S

(⇡) = 1

m

P
m

i=1

r log p⇡(⌧
i

)R(⌧
i

). Considering the same
action functions of NPPG, a policy is formed from a poten-
tial function  . For a state-action pair (s, a) in a trajectory
⌧ with the next state s0, the functional gradient with respect
to  (s, a) is

r
 (s,a)

⇢(⇡
 

) =
1
m

R(⌧ )r
 (s,a)

log p⇡ (⌧ )

=
1
m

p(s0|s, a)
p⇡ (s0|s)R(⌧ )r

 (s,a)

⇡
 

(a | s)

=
1
m

p(s0|s, a)P
n

t=1

p(s0|s, a
t

)⇡(s, a
t

)
R(⌧ )r

 (s,a)

⇡
 

(a | s).

Then for discrete action space, we have

r
 (s,a)

⇡(a | s) = ⇡
 

(a | s)(1� ⇡
 

(a | s)) (3)

and for continuous action space,

r
 (s,a)

⇡(a | s) = 2⇡
 

(a | s)(a� (s))/�2. (4)

Since the functional gradient results in a function, of which
the value can only be calculated on observed state-action
pairs, we need to train a least square model h

t

to fit the gra-
dient value on the samples, and update the potential func-
tion as  

t+1

=  
t

+ ⌘
t

h
t

with a small positive constant ⌘.
This results in the update of the policy.

3.2 On-Sample Convergence
To disclose how the functional gradient leads the policy,

we consider discrete actions, i.e., ⇡
 

(a|s) = exp( (s,a))P
a0 exp( (s,a

0
))

,

and study its convergence on the training samples.
Let  

0

be a constant function (e.g. always outputs 0),
and recall  

t+1

=  
t

+ ⌘r
 

⇢
S

(⇡
 

). For simplicity, when
the state s is clear, we make some notations: let  

t,k

be
 

t

(s, a
k

), let ↵t

k

= ⇡
 t(ak

|s) for the action a
k

, �
kj

=
p(s

j

|s, a
k

), �
j

= p⇡ (s
j

|s) and c
kj

=
P

m

i=1

1
(sj2⌧i)

�
kj

R(⌧
i

)
where 1

expression

is the indicator function that is 1 when
expression is true and 0 otherwise. Denote k⇤ the index
of the observed best action of the state s, such that 8k 6=
k⇤ 8j : c

k

⇤
j

� c
kj

.
The functional gradient of total reward on S at a state-

action pair (s, a
k

) can be rewritten as

r
 t,k⇢S(⇡ )

=
1
m

mX

i=1

lX

j=1

1
(sj2⌧i)

p(s
j

|s, a
k

)
p⇡ (s

j

|s) R(⌧
i

)r
 t,k⇡ (ak

|s)

=
1
m

mX

i=1

lX

j=1

1
(sj2⌧i)

�
kj

R(⌧
i

)
�
j

↵
k

(1� ↵
k

)

=
1
m

↵
k

(1� ↵
k

)
lX

j=1

mX

i=1

1(s
j

2 ⌧

i

)
�
kj

R(⌧
i

)
�
j

=
1
m

↵
k

(1� ↵
k

)
lX

j=1

c
kj

�
j

We prove below that functional gradient converges to the
observed best action. Denote � = min

k 6=k

⇤
P

l

j=1

c
k

⇤
j

� c
kj

be the reward margin, which will e↵ect the convergence rate.

Lemma 1
For an observed state s, let a

k

⇤
be the observed best action,

it holds that

r
 t,k⇤ ⇢S(⇡ t)�r

 t,k⇢S(⇡ t) �
1
m

↵t

k

⇤(1� ↵t

k

⇤)�.

Proof. We first need to prove ↵t

k

⇤ � ↵t

k

for all t and k 6= k⇤.
The proof is by induction. When t = 0, since  

0,ak is a
constant for all k, ↵0

k

⇤ = ↵0

k

for all k.
Then inductively assume that ↵t

k

⇤ � ↵t

k

for all k 6= k⇤.
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In NPPG, A policy ⇡(s, a) is represented as g( (s, a))
with some potential function  . For discrete action spaces, g
can be the Gibbs Sampling function (i.e., the logistic regres-

sion function), ⇡
 

(a|s) = exp( (s,a))P
a0 exp( (s,a

0
))

, and for continu-

ous action spaces, g can be the Gaussian function with pa-

rameter �, ⇡
 

(a|s) = 1p
2⇡�

2
exp

⇣
� ( (s)�a)

2

�

2

⌘
. The poten-

tial function  is an additive model  =
P

T

t=1

h
t

, where the
component function h

t

is to be trained iteratively. NPPG
employs the gradient of Eq.(2) directly, except that the gra-
dient is with respect to the potential function,

r
 

⇢(⇡
 

)=

Z

X
d⇡ (s)

X

a2A

Q⇡ (s, a)r
 

⇡
 

(a|s)ds.

Given the current potential function  
t

=
P

t

i=1

h
t

, the
function can be updated as

 
t+1

=  
t

+ ⌘
t

r
 

⇢(⇡
 t).

However, di↵erent with the gradient of linear vectors, the
gradient in a function space r

 

⇢(⇡
 t) is also a function

but can not be explicitly expressed. We can only know the
gradient value on the samples. Then the point-wise esti-
mation [12] is used to approximate the gradient function
via regression learning algorithms. Given a set of state-
action samples (which can be extract from the trajectories),
the gradient value on each sample (state s and action a) is
calculated as grad(s, a) = Q⇡(s, a)r

 (s,a)

⇡
 

(a|s). It then
constructs a set of examples with features (s, a) and label
grad(s, a), and derives a model h

t

by regression learning
from this set. Now the update rule is by

 
t+1

=  
t

+ ⌘
t

h
t

.

Note this step is a standard supervised regression task, and
thus many well-established learning algorithms with strong
generalization ability can be used here, which results an
adaptively nonlinear model.

3. POLICYBOOST

3.1 Functional Gradient
Following REINFORCE [38], on a sample of m trajecto-

ries S, the unbiased gradient of the expected total reward is
r⇢

S

(⇡) = 1

m

P
m

i=1

r log p⇡(⌧
i

)R(⌧
i

). Considering the same
action functions of NPPG, a policy is formed from a poten-
tial function  . For a state-action pair (s, a) in a trajectory
⌧ with the next state s0, the functional gradient with respect
to  (s, a) is

r
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Then for discrete action space, we have

r
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(a | s)) (3)

and for continuous action space,

r
 (s,a)

⇡(a | s) = 2⇡
 

(a | s)(a� (s))/�2. (4)

Since the functional gradient results in a function, of which
the value can only be calculated on observed state-action
pairs, we need to train a least square model h

t

to fit the gra-
dient value on the samples, and update the potential func-
tion as  

t+1

=  
t

+ ⌘
t

h
t

with a small positive constant ⌘.
This results in the update of the policy.

3.2 On-Sample Convergence
To disclose how the functional gradient leads the policy,

we consider discrete actions, i.e., ⇡
 

(a|s) = exp( (s,a))P
a0 exp( (s,a

0
))

,

and study its convergence on the training samples.
Let  
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We prove below that functional gradient converges to the
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be the reward margin, which will e↵ect the convergence rate.
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Lecture 7: Policy Gradient

Actor-Critic Policy Gradient

Natural Policy Gradient

Natural Policy Gradient

The natural policy gradient is parametrisation independent

It finds ascent direction that is closest to vanilla gradient,
when changing policy by a small, fixed amount

rnat
✓ ⇡✓(s, a) = G

�1
✓ r✓⇡✓(s, a)

where G✓ is the Fisher information matrix

G✓ = E⇡✓

h
r✓ log ⇡✓(s, a)r✓ log ⇡✓(s, a)

T
i



CCFADL  俞扬：强化学习前沿 .nju.edu.cn

Derivative-free optimization

For optimization problems arg min
x2X

f(x)

can only access the function value f(x) for optimization

ht

Tt = {(x1, y1), . . . , (xm, ym)}

Model

sampling

learning

Sample

Many derivative-free optimization methods are model-based
• CMA-ES
• Estimation of distribution algo. 
• Cross-entropy
• ...

suitable for complex optimization problems
• not guided by gradient
• non-convex, many local optima, non-differentiable, non-continuous

J(✓) =

Z

Tra
p✓(⌧)R(⌧) d⌧
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Derivative-free optimization
Intuition: sampling can disclose the optimization function

f

X

• Optimistic optimization
• Bayesian optimization
• Classification-based optimization

Recent development
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Deterministic optimization
http://lamda.nju.edu.cn

http://lamda.nju.edu.cn/qianh/

3. DOO: experiment

25

http://lamda.nju.edu.cn

http://lamda.nju.edu.cn/qianh/

3. DOO: general setting

11

[Munos. From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning. 
Foundations and Trends in Machine Learning ’14]
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Bayesian optimization

[Munos. From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning. 
Foundations and Trends in Machine Learning ’14]

http://lamda.nju.edu.cn

http://lamda.nju.edu.cn/qianh/

3. Gaussian Process (GP)

12

A GP is a distribution over 
functions, completely 
specified by its mean function 
and covariance function
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Classification-based optimization

positive negative negativenegative negative

[Yu et al. Derivative-free optimization via classification. AAAI’16]
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Classification-based optimization

[Yu et al. Derivative-free optimization via classification. AAAI’16]
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Direct policy search

derivative-free 
optimization policy model cumulated 

reward

converges slowly
usually good policy for complex tasks
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Deep Reinforcement Learning

function approximation by 
deep neural networks
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Convolutional neural networks

a powerful neural network architecture for image analysis
differentiable
require a lot of samples to train
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Deep Q-Network

DQN
• using ϵ-greedy policy
• store 1million recent history (s,a,r,s’) in replay memory D
• sample a mini-batch (32) from D
• calculate Q-learning target
• update CNN by minimizing the Bellman error (delayed update)

Q̃

X
(r + �max

a0
˜Q(s0, a0)�Qw(s, a))

2

DQN on Atari
learn to play from pixels

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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Deep Q-Network
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Deep Q-Network

Extended Data Table 3 | The effects of replay and separating the target Q-network

DQN agents were trained for 10 million frames using standard hyperparameters for all possible combinations of turning replay on or off, using or not using a separate target Q-network, and three different learning
rates. Each agent was evaluated every 250,000 training frames for 135,000 validation frames and the highest average episode score is reported. Note that these evaluation episodes were not truncated at 5 min
leading to higher scores on Enduro than the ones reported in Extended Data Table 2. Note also that the number of training frames was shorter (10 million frames) as compared to the main results presented in
Extended Data Table 2 (50million frames).
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A combination of tree search, deep neural 
networks and reinforcement learning
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learning of convolutional networks, won 11% of games against Pachi23 
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation, 
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E( )= | = ∼…v s z s s a p[ , ]p
t t t T

Ideally, we would like to know the optimal value function under 
perfect play v*(s); in practice, we instead estimate the value function 

ρv p  for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ, 

⁎( )≈ ( )≈ ( )θ ρv s v s v sp . This neural network has a similar architecture  
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to 
minimize the mean squared error (MSE) between the predicted value 
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ( )
∂
( − ( ))θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that 
successive positions are strongly correlated, differing by just one stone, 
but the regression target is shared for the entire game. When trained 
on the KGS data set in this way, the value network memorized the 
game outcomes rather than generalizing to new positions, achieving a 
minimum MSE of 0.37 on the test set, compared to 0.19 on the training 
set. To mitigate this problem, we generated a new self-play data set 
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and 
itself until the game terminated. Training on this data set led to MSEs 
of 0.226 and 0.234 on the training and test set respectively, indicating 
minimal overfitting. Figure 2b shows the position evaluation accuracy 
of the value network, compared to Monte Carlo rollouts using the fast 
rollout policy pπ; the value function was consistently more accurate. 
A single evaluation of vθ(s) also approached the accuracy of Monte 
Carlo rollouts using the RL policy network pρ, but using 15,000 times 
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge  

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a), 
and prior probability P(s, a). The tree is traversed by simulation (that 
is, descending the tree in complete games without backup), starting 
from the root state. At each time step t of each simulation, an action at 
is selected from state st

= ( ( )+ ( ))a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

( )∝
( )
+ ( )

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with  
repeated visits to encourage exploration. When the traversal reaches a 
leaf node sL at step L, the leaf node may be expanded. The leaf position 
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,  
( )= ( | )σP s a p a s,  . The leaf node is evaluated in two very different ways: 

first, by the value network vθ(sL); and second, by the outcome zL of a 
random rollout played out until terminal step T using the fast rollout 
policy pπ; these evaluations are combined, using a mixing parameter 
λ, into a leaf evaluation V(sL)

λ λ( )= ( − ) ( )+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all 
traversed edges are updated. Each edge accumulates the visit count and 
mean evaluation of all simulations passing through that edge

∑

∑

( )= ( )

( )=
( )

( ) ( )

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i  is the leaf node from the ith simulation, and 1(s, a, i) indicates 

whether an edge (s, a) was traversed during the ith simulation. Once 
the search is complete, the algorithm chooses the most visited move 
from the root position.

It is worth noting that the SL policy network pσ performed better in 
AlphaGo than the stronger RL policy network pρ, presumably because 
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function 
( )≈ ( )θ ρv s v sp  derived from the stronger RL policy network performed 

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation 
traverses the tree by selecting the edge with maximum action value Q, 
plus a bonus u(P) that depends on a stored prior probability P for that 
edge. b, The leaf node may be expanded; the new node is processed once 
by the policy network pσ and the output probabilities are stored as prior 
probabilities P for each action. c, At the end of a simulation, the leaf node 

is evaluated in two ways: using the value network vθ; and by running 
a rollout to the end of the game with the fast rollout policy pπ, then 
computing the winner with function r. d, Action values Q are updated to 
track the mean value of all evaluations r(·) and vθ(·) in the subtree below 
that action.
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AlphaGo

fast roll-out policy:
supervised learning from human v.s. human data

ARTICLERESEARCH

Extended Data Table 4 | Input features for rollout and tree policy

Features used by the rollout policy (first set) and tree policy (first and second set). Patterns are based on stone colour (black/white/empty) and liberties (1, 2, ≥3)  
at each intersection of the pattern.

© 2016 Macmillan Publishers Limited. All rights reserved
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AlphaGo

policy network: a CNN output π(s,a)

ARTICLERESEARCH

Extended Data Table 2 | Input features for neural networks

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty
Ones 1 A constant plane filled with 1
Turns since 8 How many turns since a move was played
Liberties 8 Number of liberties (empty adjacent points)
Capture size 8 How many opponent stones would be captured
Self-atari size 8 How many of own stones would be captured
Liberties after move 8 Number of liberties after this move is played
Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness 1 Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color 1 Whether current player is black
Feature planes used by the policy network (all but last feature) and value network (all features).

© 2016 Macmillan Publishers Limited. All rights reserved
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ ( | )

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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AlphaGo

policy network: initialization
supervised learning from human v.s. human data ARTICLE RESEARCH

Extended Data Table 3 | Supervised learning results for the policy network

Architecture Evaluation

Filters Symmetries Features Test accu-
racy %

Train accu-
racy %

Raw net
wins %

AlphaGo
wins %

Forward
time (ms)

128 1 48 54.6 57.0 36 53 2.8
192 1 48 55.4 58.0 50 50 4.8
256 1 48 55.9 59.1 67 55 7.1

256 2 48 56.5 59.8 67 38 13.9
256 4 48 56.9 60.2 69 14 27.6
256 8 48 57.0 60.4 69 5 55.3

192 1 4 47.6 51.4 25 15 4.8
192 1 12 54.7 57.1 30 34 4.8
192 1 20 54.7 57.2 38 40 4.8

192 8 4 49.2 53.2 24 2 36.8
192 8 12 55.7 58.3 32 3 36.8
192 8 20 55.8 58.4 42 3 36.8

The policy network architecture consists of 128, 192 or 256 filters in convolutional layers; an explicit symmetry ensemble over 2, 4 or 8 symmetries; using only the first 4, 12 or 
20 input feature planes listed in Extended Data Table 1. The results consist of the test and train accuracy on the KGS data set; and the percentage of games won by given policy 
network against AlphaGo’s policy network (highlighted row 2): using the policy networks to select moves directly (raw wins); or using AlphaGo’s search to select moves (AlphaGo 
wins); and finally the computation time for a single evaluation of the policy network.

© 2016 Macmillan Publishers Limited. All rights reserved
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ ( | )

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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better in AlphaGo than a value function ( )≈ ( )θ σv s v sp  derived from the 
SL policy network.

Evaluating policy and value networks requires several orders of 
magnitude more computation than traditional search heuristics. To 
efficiently combine MCTS with deep neural networks, AlphaGo uses 
an asynchronous multi-threaded search that executes simulations on 
CPUs, and computes policy and value networks in parallel on GPUs. 
The final version of AlphaGo used 40 search threads, 48 CPUs, and 
8 GPUs. We also implemented a distributed version of AlphaGo that 

exploited multiple machines, 40 search threads, 1,202 CPUs and  
176 GPUs. The Methods section provides full details of asynchronous 
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants 
of AlphaGo and several other Go programs, including the strongest 
commercial programs Crazy Stone13 and Zen, and the strongest open 
source programs Pachi14 and Fuego15. All of these programs are based 

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a  
tournament between different Go programs (see Extended Data Tables 
6–11). Each program used approximately 5 s computation time per move.  
To provide a greater challenge to AlphaGo, some programs (pale upper 
bars) were given four handicap stones (that is, free moves at the start of 
every game) against all opponents. Programs were evaluated on an  
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,  
which roughly corresponds to one amateur dan rank advantage on  
KGS38; an approximate correspondence to human ranks is also shown, 

horizontal lines show KGS ranks achieved online by that program. Games 
against the human European champion Fan Hui were also included;  
these games used longer time controls. 95% confidence intervals are 
shown. b, Performance of AlphaGo, on a single machine, for different 
combinations of components. The version solely using the policy network 
does not perform any search. c, Scalability study of MCTS in AlphaGo 
with search threads and GPUs, using asynchronous search (light blue) or 
distributed search (dark blue), for 2 s per move.

3,500

3,000

2,500

2,000

1,500

1,000

500

0

c

1 2 4 8 16 32

1 2 4 8

12

64

24

112

40

176

64

280

40

Single machine Distributed

a

Rollouts

Value network

Policy network

3,500

3,000

2,500

2,000

1,500

1,000

500

0

b

40

8

Threads

GPUs

3,500

3,000

2,500

2,000

1,500

1,000

500

0

El
o 

R
at

in
g

G
nuG

o

Fuego

P
achi

=HQ

C
razy S

tone

Fan H
ui

A
lphaG

o

A
lphaG

o
distributed

P
rofessional
 dan (p)

A
m

ateur
dan (d)

B
eginner
kyu (k)

9p
7p
5p
3p
1p

9d

7d

5d

3d

1d
1k

3k

5k

7k

Figure 5 | How AlphaGo (black, to play) selected its move in an 
informal game against Fan Hui. For each of the following statistics,  
the location of the maximum value is indicated by an orange circle.  
a, Evaluation of all successors s′ of the root position s, using the value 
network vθ(s′); estimated winning percentages are shown for the top 
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from 
root position s; averaged over value network evaluations only (λ = 0).  
c, Action values Q(s, a), averaged over rollout evaluations only (λ = 1).  

d, Move probabilities directly from the SL policy network, ( | )σp a s ; 
reported as a percentage (if above 0.1%). e, Percentage frequency with 
which actions were selected from the root during simulations. f, The 
principal variation (path with maximum visit count) from AlphaGo’s 
search tree. The moves are presented in a numbered sequence. AlphaGo 
selected the move indicated by the red circle; Fan Hui responded with the 
move indicated by the white square; in his post-game commentary he 
preferred the move (labelled 1) predicted by AlphaGo.
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ ( | )

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.

Re
gr

es
si

on

C
la

ss
ifi

ca
tio

nC
lassification

Self Play

Policy gradient

a b

Human expert positions Self-play positions

N
eural netw

ork
D

ata

Rollout policy

pS pV pV�U (a⎪s) QT (s′)pU QT

SL policy network RL policy network Value network Policy network Value network

s s′
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the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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better in AlphaGo than a value function ( )≈ ( )θ σv s v sp  derived from the 
SL policy network.

Evaluating policy and value networks requires several orders of 
magnitude more computation than traditional search heuristics. To 
efficiently combine MCTS with deep neural networks, AlphaGo uses 
an asynchronous multi-threaded search that executes simulations on 
CPUs, and computes policy and value networks in parallel on GPUs. 
The final version of AlphaGo used 40 search threads, 48 CPUs, and 
8 GPUs. We also implemented a distributed version of AlphaGo that 

exploited multiple machines, 40 search threads, 1,202 CPUs and  
176 GPUs. The Methods section provides full details of asynchronous 
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants 
of AlphaGo and several other Go programs, including the strongest 
commercial programs Crazy Stone13 and Zen, and the strongest open 
source programs Pachi14 and Fuego15. All of these programs are based 

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a  
tournament between different Go programs (see Extended Data Tables 
6–11). Each program used approximately 5 s computation time per move.  
To provide a greater challenge to AlphaGo, some programs (pale upper 
bars) were given four handicap stones (that is, free moves at the start of 
every game) against all opponents. Programs were evaluated on an  
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,  
which roughly corresponds to one amateur dan rank advantage on  
KGS38; an approximate correspondence to human ranks is also shown, 

horizontal lines show KGS ranks achieved online by that program. Games 
against the human European champion Fan Hui were also included;  
these games used longer time controls. 95% confidence intervals are 
shown. b, Performance of AlphaGo, on a single machine, for different 
combinations of components. The version solely using the policy network 
does not perform any search. c, Scalability study of MCTS in AlphaGo 
with search threads and GPUs, using asynchronous search (light blue) or 
distributed search (dark blue), for 2 s per move.
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Figure 5 | How AlphaGo (black, to play) selected its move in an 
informal game against Fan Hui. For each of the following statistics,  
the location of the maximum value is indicated by an orange circle.  
a, Evaluation of all successors s′ of the root position s, using the value 
network vθ(s′); estimated winning percentages are shown for the top 
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from 
root position s; averaged over value network evaluations only (λ = 0).  
c, Action values Q(s, a), averaged over rollout evaluations only (λ = 1).  

d, Move probabilities directly from the SL policy network, ( | )σp a s ; 
reported as a percentage (if above 0.1%). e, Percentage frequency with 
which actions were selected from the root during simulations. f, The 
principal variation (path with maximum visit count) from AlphaGo’s 
search tree. The moves are presented in a numbered sequence. AlphaGo 
selected the move indicated by the red circle; Fan Hui responded with the 
move indicated by the white square; in his post-game commentary he 
preferred the move (labelled 1) predicted by AlphaGo.
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s
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We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25
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We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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Other directions

• Partial-observable and other semi-MDP
• Learning from demonstrations
• Transfer learning in reinforcement learning
• ...
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The Program Committee of the Twenty-sixth International 
Joint Conference on Artificial Intelligence (IJCAI-17) 
invites the submission of technical papers for the main 
technical track of the conference which will be held in 
Melbourne, Australia, from August 19th to August 25th, 
2017. Submissions are invited on significant, original, 
and previously unpublished research on all aspects of 
artificial intelligence. All papers will receive mindful and 
rigorous reviews. For nearly a half-century, IJCAI has  
remained the premier conference bringing together the 
international AI community in communicating the advances 
and celebrating the achievements of artificial intelligence 
research and practice. With the current explosive interest 
in AI and its applications, this 26th edition of the conference 
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and hear about cutting-edge research in AI.

SPECIAL TRACK ON AI & AUTONOMY
A special theme of IJCAI-17 is Autonomy. While autonomy 
has been a focus of interest in the research community 
for many years, recent developments in the adoption of 
artificial intelligence and other technologies across many 
different areas of endeavour have brought new challenges 
or have made real those that until now had been largely 
abstract and theoretical. The increasing number of major 
corporations developing autonomous cars, the use of 
autonomous vehicles in the sea and in the air, the  
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military ones, and the availability of personal assistants  
via the desktop or smartphone are just some examples  
of the ways in which these challenges are facing us in 
everyday life. In recognition of this trend, and in support  
of addressing some of these challenges, this Special 
Track seeks to foster discussion and debate around the 
issues brought forward by this new generation of tech-
nologies and applications. We seek papers that address 
or consider the challenges across multiple different 
dimensions: Technical, Philosophical, Legal, and Social.
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Exhibitions, a Doctoral consortium, and will host  
different software, video, and robotics competitions.
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awards for its architecture and interior design. Con-
veniently located on the banks of the Yarra River the 
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options suitable for all budgets. The workshops and 
tutorials will be held at close by RMIT University, one of 
the largest universities in Australia. There is a free tram 
that runs between RMIT and a block away from the 
convention centre.
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