Artificial Intelligence, cs, Nanjing University Spring, 2016, Yang Yu

Lecture 12: Learning 1

http://cs.nju.edu.cn/yuy/course_ai16.ashx

Previously...

Search

Path-based search
 Iterative improvement search

Knowledge
Propositional Logic First Order Logic (FOL)

Uncertainty
Bayesian network

Learning

Learning is essential for unknown environments, i.e., when designer lacks omniscience

Learning is useful as a system construction method, i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent's decision mechanisms to improve performance

Inductive Learning

Simplest form: learn a function from examples (tabula rasa)
f is the target function

An example is a pair $x, f(x)$, e.g., | O | O | X |
| :--- | :--- | :--- |
| X | X | |
| X | | |,+1

Problem: find a(n) hypothesis h
such that $h \approx f$ given a training set of examples
(This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes a deterministic, observable "environment"
- Assumes examples are given
- Assumes that the agent wants to learn f-why?)

Attribute-based representations

Attribute-based representations

Attribute-based representations

weather

Attribute-based representations

weather

Attribute-based representations

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.) E.g., situations where I will/won't wait for a table:

Example	Attributes										Target WillWait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X_{1}	T	F	F	T	Some	\$\$8	F	T	French	0-10	T
X_{2}	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_{3}	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_{4}	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_{5}	T	F	T	F	Full	\$\$\$	F	T	French	> 60	F
X_{6}	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_{7}	F	T	F	F	None	S	T	F	Burger	0-10	F
X_{8}	F	F	F	T	Some	\$ $\$$	T	T	Thai	0-10	T
X_{9}	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

Classification of examples is positive (T) or negative (F)

Learning task: Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ?

$$
\mathcal{X} \quad \rightarrow\{-1,+1\}
$$

ground-truth function f

Learning task: Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ?

$$
\mathcal{X} \quad \rightarrow\{-1,+1\}
$$

ground-truth function f
examples/training data:
$\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}$

$$
y_{i}=f\left(\boldsymbol{x}_{i}\right)
$$

Learning task: Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ?

$$
\mathcal{X} \quad \rightarrow\{-1,+1\}
$$

ground-truth function f
examples/training data:
$\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}$

$$
y_{i}=f\left(\boldsymbol{x}_{i}\right)
$$

learning: find an f^{\prime} that is close to f

Learning task: Regression

Features: color, weight Label: price [0,1]

Learning task: Regression

Features: color, weight Label: price [0,1]

$$
\begin{aligned}
& \text { (color, weight) } \rightarrow \text { price } \\
& \mathcal{X} \quad \rightarrow[0,+1] \\
& \text { ground-truth function } f \\
& \\
& \text { examples/training data: } \\
& \left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\} \\
& \qquad y_{i}=f\left(\boldsymbol{x}_{i}\right)
\end{aligned}
$$

Learning task: Regression

Features: color, weight Label: price [0,1]

(color, weight) \rightarrow price

$$
\mathcal{X} \quad \rightarrow[0,+1]
$$

ground-truth function f
examples/training data:
$\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}$

$$
y_{i}=f\left(\boldsymbol{x}_{i}\right)
$$

learning: find an f^{\prime} that is close to f

Learning task: Regression

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Learning task: Regression

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Learning task: Regression

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Learning task: Regression

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

how to learn? why it can learn?

Learning algorithms

Decision tree
Neural networks
Linear classifiers
Bayesian classifiers
Lazy classifiers

Why different classifiers? heuristics
viewpoint
performance

Decision tree learning

what is a decision tree

One possible representation for hypotheses
E.g., here is the "true" tree for deciding whether to wait:

Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:

A	B	A xor B
F	F	F
F	T	T
T	F	T
T	T	F

Trivially, there is a consistent decision tree for any training set $\mathrm{w} /$ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

Prefer to find more compact decision trees

Hypothesis spaces (all possible trees)

How many distinct decision trees with n Boolean attributes??
$=$ number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$
E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry $\wedge \neg$ Rain)??
Each attribute can be in (positive), in (negative), or out $\Rightarrow 3^{n}$ distinct conjunctive hypotheses

More expressive hypothesis space

- increases chance that target function can be expressed
- increases number of hypotheses consistent w/ training set
\Rightarrow may get worse predictions

Decision tree learning algorithm

Aim: find a small tree consistent with the training examples
Idea: (recursively) choose "most significant" attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the classification else if attributes is empty then return MODE(examples) else
best \leftarrow Choose-Attribute (attributes, examples)
tree \leftarrow a new decision tree with root test best
for each value v_{i} of best do
examples $_{i} \leftarrow$ \{elements of examples with best $\left.=v_{i}\right\}$
subtree $\leftarrow \mathrm{DTL}\left(\right.$ examples $_{i}$, attributes - best, MODE(examples))
add a branch to tree with label v_{i} and subtree subtree
return tree

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice-gives information about the classification

Information

Information answers questions
The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit $=$ answer to Boolean question with prior $\langle 0.5,0.5\rangle$
Information in an answer when prior is $\left\langle P_{1}, \ldots, P_{n}\right\rangle$ is

$$
H\left(\left\langle P_{1}, \ldots, P_{n}\right\rangle\right)=\sum_{i=1}^{n}-P_{i} \log _{2} P_{i}
$$

(also called entropy of the prior)

Information

Suppose we have p positive and n negative examples at the root
$\Rightarrow H(\langle p /(p+n), n /(p+n)\rangle)$ bits needed to classify a new example E.g., for 12 restaurant examples, $p=n=6$ so we need 1 bit

An attribute splits the examples E into subsets E_{i}, each of which (we hope) needs less information to complete the classification

Let E_{i} have p_{i} positive and n_{i} negative examples
$\Rightarrow H\left(\left\langle p_{i} /\left(p_{i}+n_{i}\right), n_{i} /\left(p_{i}+n_{i}\right)\right\rangle\right)$ bits needed to classify a new example
\Rightarrow expected number of bits per example over all branches is

$$
\sum_{i} \frac{p_{i}+n_{i}}{p+n} H\left(\left\langle p_{i} /\left(p_{i}+n_{i}\right), n_{i} /\left(p_{i}+n_{i}\right)\right\rangle\right)
$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit
\Rightarrow choose the attribute that minimizes the remaining information needed

Example

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	sweet
4	not-red	sweet
5	not-red	not-sweet
6	half-red	sweet
7	red	not-sweet
8	not-red	not-sweet
9	not-red	sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

Example

entropy before split: $H(X)=-\sum_{i} \operatorname{ratio}^{\left(\text {class }_{i}\right) \ln \operatorname{ratio}\left(\text { class }_{i}\right)=0.6902, ~}$ entropy after split: $\quad I(X ;$ split $)=\sum_{i}$ ratio $^{i}\left(\right.$ split $\left._{i}\right) H\left(\right.$ split $\left._{i}\right)$
information gain: $\quad=\frac{4}{13} 0.5623+\frac{4}{13} 0.6931+\frac{5}{13} 0.6730=0.6452$
$\operatorname{Gain}(X ; \operatorname{split})=H(X)-I(X ;$ split $)=0.045$

Decision tree learning algorithm

Aim: find a small tree consistent with the training examples
 Idea: (recursively) choose "most significant" attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the classification else if attributes is empty then return MODE (examples) else
best \leftarrow Choose-Attribute (attributes, examples)
tree \leftarrow a new decision tree with root test best
for each value v_{i} of best do
examples $_{i} \leftarrow\left\{\right.$ elements of examples with best $\left.=v_{i}\right\}$
subtree $\leftarrow \mathrm{DTL}\left(\right.$ examples $_{i}$, attributes - best, MODE(examples))
add a branch to tree with label v_{i} and subtree subtree
return tree

Example of learned tree

Decision tree learned from the 12 examples:

Substantially simpler than "true" tree-a more complex hypothesis isn't justified by small amount of data

Continuous attribute

Continuous attribute

for every split point

information gain:

$$
\begin{aligned}
& \left.H(X)=-\sum_{i} \text { ratio }^{H} \text { class }_{i}\right) \ln \text { ratio }^{\left(\text {class }_{i}\right)=0.6902} \\
& I(X ; \text { split })=\sum_{i} \text { ratio }\left(\text { split }_{i}\right) H\left(\text { split }_{i}\right) \\
& =\frac{5}{13} 0.5004+\frac{8}{13} 0.5623=0.5385
\end{aligned}
$$

$\operatorname{Gain}(X ; \operatorname{split})=H(X)-I(X ;$ split $)=0.1517$

Continuous attribute

for every split point

information gain:
entropy before split: $H(X)=-\sum_{i} \operatorname{ratio}\left(\right.$ class $\left._{i}\right) \ln \operatorname{ratio}\left(\right.$ class $\left._{i}\right)=0.6902$
entropy after split: $\quad I(X ;$ split $)=\sum_{i} \operatorname{ratio}^{\left(s p l i t_{i}\right)} H\left(\right.$ split $\left._{i}\right)$
information gain:

$$
=\frac{5}{13} 0.5004+\frac{8}{13} 0.5623=0.5385
$$

$$
\operatorname{Gain}(X ; \text { split })=H(X)-I(X ; \text { split })=0.1517
$$

Non-generalizable feature

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	ralf-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

the system may not know non-generalizable features
$$
\mathrm{IG}=H(X)-0
$$

Non-generalizable feature

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	ralf-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

$$
\begin{aligned}
& \text { the system may not know } \\
& \text { non-generalizable features } \\
& \qquad \mathrm{IG}=H(X)-0
\end{aligned}
$$

Gain ratio as a correction:

$$
\operatorname{Gain} \operatorname{ratio}(X)=\frac{H(X)-I(X ; \text { split })}{I V(\text { split })}
$$

$$
I V(\text { split })=H(\text { split })
$$

Alternative to information: Gini index

Gini index (CART):

Gini: $\operatorname{Gini}(X)=1-\sum_{i} p_{i}^{2}$
Gini after split: $\frac{\text { \#left }}{\# \text { all }} \operatorname{Gini}($ left $)+\frac{\text { \#right }}{\text { \#all }}$ Gini(right)

Training error v.s. Information gain

training error is less smooth

Training error v.s. Information gain

training error: 4

training error: 4
training error is less smooth

Training error v.s. Information gain

training error: 4
information gain: $\mathrm{IG}=H(X)-0.5192$

training error: 4
information gain: $\mathrm{IG}=H(X)-0.5514$
training error is less smooth

Decision tree learning algorithms

ID3: information gain

C4.5: gain ratio, handling missing values

Ross Quinlan

CART: gini index

Jerome H. Friedman

