Artificial Intelligence, cs, Nanjing University Spring, 2016, Yang Yu

Lecture 4: Search 3

http://cs.nju.edu.cn/yuy/course_ai16.ashx

Previously...

Path-based search

Uninformed search

Depth-first, breadth first, uniform-cost search

Informed search

Best-first, A* search

Adversarial search

Competitive environments: Game the agents' goals are in conflict

We consider:

* two players
* zero-sum games

Type of games:

* deterministic v.s. chance
* perfect v.s. partially observable information

Example

两人轮流在一有九格方盘上划加字或圆圈，谁先把三个同一记号排成横线，直线，斜线，即是胜者

Definition of a game

- S_{0} : The initial state, which specifies how the game is set up at the start.
- Player (s) : Defines which player has the move in a state.
- Actions (s) : Returns the set of legal moves in a state.
- Result (s, a) : The transition model, which defines the result of a move.
- Terminal-Test (s) : A terminal test, which is true when the game is over and false otherwise. States where the game has ended are called terminal states.
- Utility (s, p) : A utility function (also called an objective function or payoff function),

two players: MAX and MIN

Tic-tac-toe search tree

Optimal decision in games

Perfect play for deterministic, perfect-information games
Idea: choose move to position with highest minimax value $=$ best achievable payoff against best play
E.g., 2-ply game:

$\operatorname{Minimax}(s)=$

$$
\begin{cases}\operatorname{Utility}(s) & \text { if } \operatorname{Terminal-Test}(s) \\ \max _{a \in \operatorname{Actions}(s)} \operatorname{Minimax}(\operatorname{Result}(s, a)) & \text { if } \operatorname{Player}(s)=\max \\ \min _{a \in \operatorname{Actions}(s)} \operatorname{Minimax}(\operatorname{Result}(s, a)) & \text { if } \operatorname{Player}(s)=\min \end{cases}
$$

Minimax algorithm

function Minimax-Decision(state) returns an action
inputs: state, current state in game
return the a in Actions(state) maximizing Min-Value(Result(a, state))
function MAX-VALUE(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
$v \leftarrow-\infty$
for a, s in Successors $($ state $)$ do $v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(s))$
return v
function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
$v \leftarrow \infty$
for a, s in $\operatorname{Successors}($ state $)$ do $v \leftarrow \operatorname{Min}(v, \operatorname{MAX}-\operatorname{Value}(s))$
return v

Properties of Minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)
Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity?? $O\left(b^{m}\right)$
Space complexity?? $O(b m)$ (depth-first exploration)
For chess, $b \approx 35, m \approx 100$ for "reasonable" games
\Rightarrow exact solution completely infeasible

Multiple players

a vector $\left\langle v_{A}, v_{B}, v_{C}\right\rangle$ is used for 3 players

Alpha-Beta pruning

not all branches are needed
(a) $[-\infty,+\infty]$ A
(b)

(c)

(d)

(f)

Alpha-Beta pruning

$\alpha=$ the value of the best (i.e., highest-value) choice we have found so far at any choice point along the path for MAX.
$\beta=$ the value of the best (i.e., lowest-value) choice we have found so far at any choice point along the path for MIN.

Alpha-Beta pruning

function ALPHA-BETA-SEARCH(state) returns an action
$v \leftarrow \operatorname{MAX}-\operatorname{VALUE}($ state $,-\infty,+\infty)$
return the action in ACTIONS(state) with value v
function MAX-VALUE (state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
$v \leftarrow-\infty$
for each a in Actions(state) do
$v \leftarrow \operatorname{MAX}(v, \operatorname{Min}-\operatorname{ValuE}(\operatorname{ResUlt}(s, a), \alpha, \beta))$
if $v \geq \beta$ then return v
$\alpha \leftarrow \operatorname{MAX}(\alpha, v)$
return v
function MIN-VALUE (state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
$v \leftarrow+\infty$
for each a in Actions(state) do
$v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{ValuE}(\operatorname{Result}(s, a), \alpha, \beta))$
if $v \leq \alpha$ then return v
$\beta \leftarrow \operatorname{Min}(\beta, v)$
return v

Properties of alpha-beta

Pruning does not affect final result
Good move ordering improves effectiveness of pruning
With "perfect ordering," time complexity $=O\left(b^{m / 2}\right)$
\Rightarrow doubles solvable depth
A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Unfortunately, 35^{50} is still impossible!

The search order is important

it might be worthwhile to try to examine first the successors that are likely to be best
(e)

(f)

Resource limits

Standard approach:

- Use Cutoff-Test instead of Terminal-Test e.g., depth limit (perhaps add quiescence search)
- Use Eval instead of Utility
i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10^{4} nodes/second $\Rightarrow 10^{6}$ nodes per move $\approx 35^{8 / 2}$
$\Rightarrow \alpha-\beta$ reaches depth $8 \Rightarrow$ pretty good chess program

Evaluation functions

Black to move
White slightly better

White to move
Black winning

For chess, typically linear weighted sum of features

$$
\operatorname{Eval}(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)
$$

e.g., $w_{1}=9$ with
$f_{1}(s)=$ (number of white queens) - (number of black queens), etc.

H-Minimax

$\operatorname{H-Minimax}(s, d)=$
$\begin{cases}\operatorname{Eval}(s) & \text { if } \operatorname{Cutoff-Test}(s, d) \\ \max _{a \in \operatorname{Actions}(s)} \operatorname{H-Minimax}(\operatorname{Result}(s, a), d+1) & \text { if } \operatorname{Player}(s)=\text { max } \\ \min _{a \in \operatorname{Actions}(s)} \operatorname{H-Minimax}(\operatorname{Result}(s, a), d+1) & \text { if } \operatorname{Player}(s)=\text { min. }\end{cases}$

Behaviour is preserved under any monotonic transformation of EvAL
Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of $443,748,401,247$ positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a sixgame match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, $b>300$, so most programs use pattern knowledge bases to suggest plausible moves.

Stochastic games

backgammon:

Expect-minimax

In nondeterministic games, chance introduced by dice, card-shuffling
Simplified example with coin-flipping:

$\operatorname{Expectiminimax}(s)=$

$$
\begin{cases}\operatorname{Utility}(s) & \text { if } \operatorname{Terminal-Test}(s) \\ \max _{a} \operatorname{Expectiminimax}(\operatorname{Result}(s, a)) & \text { if } \operatorname{Player}(s)=\max \\ \min _{a} \operatorname{Expectiminimax}(\operatorname{Result}(s, a)) & \text { if } \operatorname{Player}(s)=\text { min } \\ \sum_{r} P(r) \operatorname{Expectiminimax}(\operatorname{Result}(s, r)) & \text { if } \operatorname{Player}(s)=\operatorname{chance}\end{cases}
$$

Nondeterministic games in practice

Dice rolls increase b : 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

$$
\text { depth } 4=20 \times(21 \times 20)^{3} \approx 1.2 \times 10^{9}
$$

As depth increases, probability of reaching a given node shrinks \Rightarrow value of lookahead is diminished
$\alpha-\beta$ pruning is much less effective
TDGammon uses depth -2 search + very good Eval \approx world-champion level

Games of imperfect information

E.g., card games, where opponent's initial cards are unknown

Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game*
Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals*

Special case: if an action is optimal for all deals, it's optimal.*
GIB, current best bridge program, approximates this idea by

1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Proper analysis

* Intuition that the value of an action is the average of its values in all actual states is WRONG

With partial observability, value of an action depends on the information state or belief state the agent is in

Can generate and search a tree of information states
Leads to rational behaviors such as
\diamond Acting to obtain information
\diamond Signalling to one's partner
\diamond Acting randomly to minimize information disclosure

