
Lecture	8:	Knowledge	2

Artificial Intelligence, CS, Nanjing University
Spring, 2016, Yang Yu

http://cs.nju.edu.cn/yuy/course_ai16.ashx

Previously...270 Chapter 7. Logical Agents

function HYBRID-WUMPUS-AGENT(percept) returns an action
inputs: percept , a list, [stench,breeze,glitter ,bump,scream]
persistent: KB , a knowledge base, initially the atemporal “wumpus physics”

t , a counter, initially 0, indicating time
plan , an action sequence, initially empty

TELL(KB , MAKE-PERCEPT-SENTENCE(percept , t))
TELL the KB the temporal “physics” sentences for time t
safe ← {[x , y] : ASK(KB ,OK t

x,y) = true}

if ASK(KB ,Glitter t
) = true then

plan ← [Grab] + PLAN-ROUTE(current ,{[1,1]}, safe) + [Climb]
if plan is empty then

unvisited ← {[x , y] : ASK(KB , L
t′
x,y) = false for all t

′ ≤ t}
plan ← PLAN-ROUTE(current ,unvisited ∩ safe , safe)

if plan is empty and ASK(KB ,HaveArrow t
) = true then

possible wumpus ← {[x , y] : ASK(KB ,¬ Wx,y) = false}
plan ← PLAN-SHOT(current ,possible wumpus, safe)

if plan is empty then // no choice but to take a risk
not unsafe ← {[x , y] : ASK(KB ,¬ OK t

x,y) = false}
plan ← PLAN-ROUTE(current ,unvisited ∩not unsafe, safe)

if plan is empty then
plan ← PLAN-ROUTE(current ,{[1, 1]}, safe) + [Climb]

action ← POP(plan)
TELL(KB , MAKE-ACTION-SENTENCE(action , t))
t ← t + 1
return action

function PLAN-ROUTE(current ,goals ,allowed) returns an action sequence
inputs: current , the agent’s current position

goals , a set of squares; try to plan a route to one of them
allowed , a set of squares that can form part of the route

problem ← ROUTE-PROBLEM(current , goals ,allowed)
return A*-GRAPH-SEARCH(problem)

Figure 7.20 A hybrid agent program for the wumpus world. It uses a propositional knowl-
edge base to infer the state of the world, and a combination of problem-solving search and
domain-specific code to decide what actions to take.

by a unique binary number, we would need numbers with log2(2
2n

)= 2n bits to label the
current belief state. That is, exact state estimation may require logical formulas whose size is
exponential in the number of symbols.

One very common and natural scheme for approximate state estimation is to represent
belief states as conjunctions of literals, that is, 1-CNF formulas. To do this, the agent program
simply tries to prove X

t and ¬X
t for each symbol X

t (as well as each atemporal symbol
whose truth value is not yet known), given the belief state at t − 1. The conjunction of

Pros and cons of propositional logic
Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to facts

Propositional logic allows partial/disjunctive/negated information
(unlike most data structures and databases)

Propositional logic is compositional:
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares”

except by writing one sentence for each square

Chapter 8 3

First-order logic

First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . . .

• Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, . . .

• Functions: father of, best friend, third inning of, one more than, end of
. . .

Chapter 8 4

Logics in general

Logics in general

Language Ontological Epistemological
Commitment Commitment

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief
Fuzzy logic facts + degree of truth known interval value

Chapter 8 5

Syntax of FOL: Basic elements
Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB, . . .
Predicates Brother, >, . . .
Functions Sqrt, LeftLegOf, . . .
Variables x, y, a, b, . . .
Connectives ∧ ∨ ¬ ⇒ ⇔
Equality =
Quantifiers ∀ ∃

Chapter 8 6

Atomic sentences

Atomic sentences

Atomic sentence = predicate(term1, . . . , termn)
or term1 = term2

Term = function(term1, . . . , termn)
or constant or variable

E.g., Brother(KingJohn,RichardTheLionheart)
> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Chapter 8 7

Complex sentences

Complex sentences

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJohn,Richard) ⇒ Sibling(Richard,KingJohn)
>(1, 2) ∨ ≤(1, 2)
>(1, 2) ∧ ¬>(1, 2)

Chapter 8 8

Truth in first-order logic

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

An atomic sentence predicate(term1, . . . , termn) is true
iff the objects referred to by term1, . . . , termn

are in the relation referred to by predicate

Chapter 8 9

Models for FOL: Example
Models for FOL: Example

R J$

left leg left leg

on headbrother

brother

person
person
king

crown

Chapter 8 10

Truth example

Consider the interpretation in which
Richard → Richard the Lionheart
John → the evil King John
Brother → the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model

Chapter 8 11

Models for FOL: Lots!

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞
For each k-ary predicate Pk in the vocabulary

For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary

For each choice of referent for C from n objects . . .

Computing entailment by enumerating FOL models is not easy!

Chapter 8 12

Universal quantification

Universal quantification

∀ ⟨variables⟩ ⟨sentence⟩

Everyone at Berkeley is smart:
∀x At(x,Berkeley) ⇒ Smart(x)

∀x P is true in a model m iff P is true with x being
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

(At(KingJohn,Berkeley) ⇒ Smart(KingJohn))
∧ (At(Richard,Berkeley) ⇒ Smart(Richard))
∧ (At(Berkeley,Berkeley) ⇒ Smart(Berkeley))
∧ . . .

Chapter 8 13

A common mistake to avoid A common mistake to avoid

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀:

∀x At(x, Berkeley) ∧ Smart(x)

means “Everyone is at Berkeley and everyone is smart”

Chapter 8 14

Existential quantification Existential quantification

∃ ⟨variables⟩ ⟨sentence⟩

Someone at Stanford is smart:
∃x At(x, Stanford) ∧ Smart(x)

∃x P is true in a model m iff P is true with x being
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

(At(KingJohn, Stanford) ∧ Smart(KingJohn))
∨ (At(Richard, Stanford) ∧ Smart(Richard))
∨ (At(Stanford, Stanford) ∧ Smart(Stanford))
∨ . . .

Chapter 8 15

Another common mistake to avoid

Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective with ∃:

∃x At(x, Stanford) ⇒ Smart(x)

is true if there is anyone who is not at Stanford!

Chapter 8 16

Properties of quantifiers Properties of quantifiers

∀x ∀ y is the same as ∀ y ∀ x (why??)

∃x ∃ y is the same as ∃ y ∃ x (why??)

∃x ∀ y is not the same as ∀ y ∃x

∃x ∀ y Loves(x, y)
“There is a person who loves everyone in the world”

∀ y ∃ x Loves(x, y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀x Likes(x, IceCream) ¬∃x ¬Likes(x, IceCream)

∃x Likes(x,Broccoli) ¬∀ x ¬Likes(x,Broccoli)

Chapter 8 17

Fun with sentences
Fun with sentences

Brothers are siblings

∀x, y Brother(x, y) ⇒ Sibling(x, y).

“Sibling” is symmetric

∀x, y Sibling(x, y) ⇔ Sibling(y, x).

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y)).

A first cousin is a child of a parent’s sibling

∀x, y F irstCousin(x, y) ⇔ ∃ p, ps Parent(p, x) ∧ Sibling(ps, p) ∧
Parent(ps, y)

Chapter 8 22

Equality
Equality

term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same object

E.g., 1 = 2 and ∀x ×(Sqrt(x), Sqrt(x)) = x are satisfiable
2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:
∀x, y Sibling(x, y) ⇔ [¬(x = y) ∧ ∃m, f ¬(m = f) ∧

Parent(m,x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent(f, y)]

Chapter 8 23

Interacting with FOL KBs Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB, Percept([Smell, Breeze, None], 5))
Ask(KB, ∃ a Action(a, 5))

I.e., does KB entail any particular actions at t = 5?

Answer: Y es, {a/Shoot} ← substitution (binding list)

Given a sentence S and a substitution σ,
Sσ denotes the result of plugging σ into S; e.g.,
S = Smarter(x, y)
σ = {x/Hillary, y/Bill}
Sσ = Smarter(Hillary,Bill)

Ask(KB, S) returns some/all σ such that KB |= Sσ

Chapter 8 24

Knowledge base for the wumpus world
Knowledge base for the wumpus world

“Perception”
∀ b, g, t Percept([Smell, b, g], t) ⇒ Smelt(t)
∀ s, b, t Percept([s, b,Glitter], t) ⇒ AtGold(t)

Reflex: ∀ t AtGold(t) ⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?
∀ t AtGold(t) ∧ ¬Holding(Gold, t) ⇒ Action(Grab, t)

Holding(Gold, t) cannot be observed
⇒ keeping track of change is essential

Chapter 8 25

Deducing hidden properties
Deducing hidden properties

Properties of locations:
∀x, t At(Agent, x, t) ∧ Smelt(t) ⇒ Smelly(x)
∀x, t At(Agent, x, t) ∧ Breeze(t) ⇒ Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
∀ y Breezy(y) ⇒ ∃ x Pit(x) ∧ Adjacent(x, y)

Causal rule—infer effect from cause
∀x, y P it(x) ∧ Adjacent(x, y) ⇒ Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
∀ y Breezy(y) ⇔ [∃ x Pit(x) ∧ Adjacent(x, y)]

Chapter 8 26

Keeping track of change Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold,Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold,Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in s

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0
Forward

S1

Chapter 8 27

Describing actions I
Describing actions I

“Effect” axiom—describe changes due to action
∀ s AtGold(s) ⇒ Holding(Gold,Result(Grab, s))

“Frame” axiom—describe non-changes due to action
∀ s HaveArrow(s) ⇒ HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, . . .

Chapter 8 28

Describing actions II

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):

P true afterwards ⇔ [an action made P true

∨ P true already and no action made P false]

For holding the gold:
∀ a, s Holding(Gold,Result(a, s)) ⇔

[(a = Grab ∧ AtGold(s))
∨ (Holding(Gold, s) ∧ a ̸= Release)]

Chapter 8 29

Making plans
Making plans

Initial condition in KB:
At(Agent, [1, 1], S0)
At(Gold, [1, 2], S0)

Query: Ask(KB, ∃ s Holding(Gold, s))
i.e., in what situation will I be holding the gold?

Answer: {s/Result(Grab, Result(Forward, S0))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and that S0

is the only situation described in the KB

Chapter 8 30

Making plans: A better way

Making plans: A better way

Represent plans as action sequences [a1, a2, . . . , an]

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB, ∃ p Holding(Gold, P lanResult(p, S0)))
has the solution {p/[Forward,Grab]}

Definition of PlanResult in terms of Result:
∀ s P lanResult([], s) = s
∀ a, p, s P lanResult([a|p], s) = PlanResult(p, Result(a, s))

Planning systems are special-purpose reasoners designed to do this type of
inference more efficiently than a general-purpose reasoner

Chapter 8 31

Summary

Summary

First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
– conventions for describing actions and change in FOL
– can formulate planning as inference on a situation calculus KB

Chapter 8 32

A brief history of reasoning

A brief history of reasoning

450b.c. Stoics propositional logic, inference (maybe)
322b.c. Aristotle “syllogisms” (inference rules), quantifiers
1565 Cardano probability theory (propositional logic + uncertainty)
1847 Boole propositional logic (again)
1879 Frege first-order logic
1922 Wittgenstein proof by truth tables
1930 Gödel ∃ complete algorithm for FOL
1930 Herbrand complete algorithm for FOL (reduce to propositional)
1931 Gödel ¬∃ complete algorithm for arithmetic
1960 Davis/Putnam “practical” algorithm for propositional logic
1965 Robinson “practical” algorithm for FOL—resolution

Chapter 9 3

Universal instantiation (UI)

Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

∀ v α

Subst({v/g},α)

for any variable v and ground term g

E.g., ∀ x King(x) ∧ Greedy(x) ⇒ Evil(x) yields

King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

...

Chapter 9 4

Existential instantiation (EI)
Existential instantiation (EI)

For any sentence α, variable v, and constant symbol k
that does not appear elsewhere in the knowledge base:

∃ v α

Subst({v/k},α)

E.g., ∃ x Crown(x) ∧ OnHead(x, John) yields

Crown(C1) ∧ OnHead(C1, John)

provided C1 is a new constant symbol, called a Skolem constant

Another example: from ∃ x d(xy)/dy = xy we obtain

d(ey)/dy = ey

provided e is a new constant symbol

Chapter 9 5

Instantiation

Existential instantiation contd.

UI can be applied several times to add new sentences;
the new KB is logically equivalent to the old

EI can be applied once to replace the existential sentence;
the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable

Chapter 9 6

Reduction to propositional inference Reduction to propositional inference

Suppose the KB contains just the following:

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have

King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John),King(Richard) etc.

Chapter 9 7

Reduction to propositional inference
Reduction contd.

Claim: a ground sentence∗ is entailed by new KB iff entailed by original KB

Claim: every FOL KB can be propositionalized so as to preserve entailment

Idea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms,
e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Chapter 9 8

Problems with propositionalization
Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.
E.g., from

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀ y Greedy(y)
Brother(Richard, John)

it seems obvious that Evil(John), but propositionalization produces lots of
facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are p · nk instantiations

With function symbols, it gets nuch much worse!

Chapter 9 9

Unification
Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John, y/John} works

Unify(α,β) = θ if αθ = βθ

p q θ
Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, OJ) {x/OJ, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x, OJ) fail

Standardizing apart eliminates overlap of variables, e.g., Knows(z17, OJ)

Chapter 9 14

Generalized Modus Ponens (GMP)

Generalized Modus Ponens (GMP)

p1
′, p2

′, . . . , pn
′, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

qθ
where pi

′θ = piθ for all i

p1
′ is King(John) p1 is King(x)

p2
′ is Greedy(y) p2 is Greedy(x)

θ is {x/John, y/John} q is Evil(x)
qθ is Evil(John)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified

Chapter 9 15

（前件推理）

Soundness of GMP

Soundness of GMP

Need to show that

p1
′, . . . , pn

′, (p1 ∧ . . . ∧ pn ⇒ q) |= qθ

provided that pi
′θ = piθ for all i

Lemma: For any definite clause p, we have p |= pθ by UI

1. (p1 ∧ . . . ∧ pn ⇒ q) |= (p1 ∧ . . . ∧ pn ⇒ q)θ = (p1θ ∧ . . . ∧ pnθ ⇒ qθ)

2. p1
′, . . . , pn

′ |= p1
′ ∧ . . . ∧ pn

′ |= p1
′θ ∧ . . . ∧ pn

′θ

3. From 1 and 2, qθ follows by ordinary Modus Ponens

Chapter 9 16

Example knowledge base Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles, and
all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

Chapter 9 17

Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(Nono, x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
∀x Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as “hostile”:
Enemy(x, America) ⇒ Hostile(x)

West, who is American . . .
American(West)

The country Nono, an enemy of America . . .
Enemy(Nono, America)

Chapter 9 23

Forward chaining algorithm
Forward chaining algorithm

function FOL-FC-Ask(KB,α) returns a substitution or false

repeat until new is empty
new← { }
for each sentence r in KB do

(p1 ∧ . . . ∧ pn ⇒ q)←Standardize-Apart(r)
for each θ such that (p1 ∧ . . . ∧ pn)θ = (p ′

1 ∧ . . . ∧ p ′
n)θ

for some p ′
1, . . . , p

′
n in KB

q ′←Subst(θ, q)
if q ′ is not a renaming of a sentence already in KB or new then do

add q ′ to new

φ←Unify(q ′,α)
if φ is not fail then return φ

add new to KB

return false

Chapter 9 24

Forward chaining proof

Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Chapter 9 27

Properties of forward chaining

Properties of forward chaining

Sound and complete for first-order definite clauses
(proof similar to propositional proof)

Datalog = first-order definite clauses + no functions (e.g., crime KB)
FC terminates for Datalog in poly iterations: at most p · nk literals

May not terminate in general if α is not entailed

This is unavoidable: entailment with definite clauses is semidecidable

Chapter 9 28

Efficiency of forward chaining

Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k
if a premise wasn’t added on iteration k − 1

⇒ match each rule whose premise contains a newly added literal

Matching itself can be expensive

Database indexing allows O(1) retrieval of known facts
e.g., query Missile(x) retrieves Missile(M1)

Matching conjunctive premises against known facts is NP-hard

Forward chaining is widely used in deductive databases

Chapter 9 29

Hard matching example

Hard matching example

Victoria

WA

NT

SA

Q

NSW

V

T

Diff(wa, nt) ∧ Diff(wa, sa) ∧

Diff(nt, q)Diff(nt, sa) ∧

Diff(q, nsw) ∧ Diff(q, sa) ∧

Diff(nsw, v) ∧ Diff(nsw, sa) ∧

Diff(v, sa) ⇒ Colorable()

Diff(Red, Blue) Diff(Red, Green)

Diff(Green,Red) Diff(Green,Blue)

Diff(Blue,Red) Diff(Blue,Green)

Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard

Chapter 9 30

Backward chaining algorithm
Backward chaining algorithm

function FOL-BC-Ask(KB, goals,θ) returns a set of substitutions
inputs: KB, a knowledge base

goals, a list of conjuncts forming a query (θ already applied)
θ, the current substitution, initially the empty substitution { }

local variables: answers, a set of substitutions, initially empty

if goals is empty then return {θ}
q ′←Subst(θ,First(goals))
for each sentence r in KB

where Standardize-Apart(r) = (p1 ∧ . . . ∧ pn ⇒ q)
and θ′←Unify(q, q ′) succeeds

new goals← [p1, . . . , pn|Rest(goals)]
answers←FOL-BC-Ask(KB,new goals,Compose(θ′,θ)) ∪ answers

return answers

Chapter 9 31

Backward chaining example
Backward chaining example

Criminal(West)

Weapon(y)American(x) Sells(x,y,z) Hostile(z)

{x/West}

Chapter 9 33

Backward chaining example
Backward chaining example

Hostile(Nono)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{ }
Sells(x,y,z) Hostile(z)

{x/West}

Chapter 9 35

Backward chaining example
Backward chaining example

Hostile(Nono)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{ }
Sells(x,y,z) Hostile(z)

 y/M1{ }

{x/West, y/M1}

Chapter 9 36

Backward chaining example
Backward chaining example

Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

 y/M1{ }

{ } z/Nono{ }
Hostile(z)

{x/West, y/M1, z/Nono}

Chapter 9 37

Backward chaining example
Backward chaining example

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

 y/M1{ } { }{ }{ }

{ } z/Nono{ }

{x/West, y/M1, z/Nono}

Chapter 9 38

Properties of backward chaining

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops
⇒ fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
⇒ fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming

Chapter 9 39

Logic programming
Logic programming

Sound bite: computation as inference on logical KBs

Logic programming Ordinary programming
1. Identify problem Identify problem
2. Assemble information Assemble information
3. Tea break Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewY ork, US) than x := x + 2 !

Chapter 9 40

Prolog systems
Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques ⇒ approaching a billion LIPS

Program = set of clauses = head :- literal1, . . . literaln.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption (“negation as failure”)

e.g., given alive(X) :- not dead(X).
alive(joe) succeeds if dead(joe) fails

Chapter 9 41

Prolog examples
Prolog examples

Depth-first search from a start state X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) ?
answers: A=[] B=[1,2]

A=[1] B=[2]
A=[1,2] B=[]

Chapter 9 42

Prolog example

Let’s try

male(di).
male(jianbo).
female(xin).
female(yuan).
female(yuqing).
father(jianbo,di).
father(di,yuqing).
mother(xin,di).
mother(yuan,yuqing).
grandfather(X,Y):-father(X,Z),father(Z,Y).
grandmother(X,Y):-mother(X,Z),father(Z,Y).
daughter(X,Y):-father(X,Y),female(Y).

member(1,[1,2,3,4,5])

query: grandfather(X,yuqing)?

Resolution: brief summary
Resolution: brief summary

Full first-order version:

ℓ1 ∨ · · · ∨ ℓk, m1 ∨ · · · ∨ mn

(ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk ∨ m1 ∨ · · · ∨ mj−1 ∨ mj+1 ∨ · · · ∨ mn)θ

where Unify(ℓi,¬mj) = θ.

For example,

¬Rich(x) ∨ Unhappy(x)
Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

Apply resolution steps to CNF (KB ∧ ¬α); complete for FOL

Chapter 9 43

Conversion to CNF

Conversion to CNF

Everyone who loves all animals is loved by someone:
∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

1. Eliminate biconditionals and implications

∀x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)]

2. Move ¬ inwards: ¬∀x, p ≡ ∃ x ¬p, ¬∃x, p ≡ ∀x ¬p:

∀x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)]
∀x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]
∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]

Chapter 9 44

Conversion to CNF
Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

5. Drop universal quantifiers:

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

6. Distribute ∧ over ∨:

[Animal(F (x)) ∨ Loves(G(x), x)] ∧ [¬Loves(x, F (x)) ∨ Loves(G(x), x)]

Chapter 9 45

Resolution proof: definite clauses
Resolution proof: definite clauses

American(West)

Missile(M1)

Missile(M1)

Owns(Nono,M1)

Enemy(Nono,America) Enemy(Nono,America)

Criminal(x)Hostile(z)LSells(x,y,z)LWeapon(y)LAmerican(x)L > > > >

Weapon(x)Missile(x)L >

Sells(West,x,Nono)Missile(x)L Owns(Nono,x)L> >

Hostile(x)Enemy(x,America)L >

Sells(West,y,z)LWeapon(y)LAmerican(West)L > > Hostile(z)L>

Sells(West,y,z)LWeapon(y)L > Hostile(z)L>

Sells(West,y,z)L> Hostile(z)L>L Missile(y)

Hostile(z)L>L Sells(West,M1,z)
> > L Hostile(Nono)L Owns(Nono,M1)L Missile(M1)

> L Hostile(Nono)L Owns(Nono,M1)

L Hostile(Nono)

Criminal(West)L

Chapter 9 46

¬

