
SUBMITTED TO THE SPECIAL ISSUE ON DEEP REINFORCEMENT LEARNING AND ADAPTIVE DYNAMIC PROGRAMMING 1
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Abstract—Reinforcement learning has shown great success in
helping learning agents accomplish tasks autonomously from
environment interactions. Meanwhile in many real-world appli-
cations, an agent needs not only to accomplish a fixed task, but
instead a range of tasks. For this goal, an agent can learn a
meta-policy over a set of training tasks that are drawn from an
underlying distribution. By maximizing the total reward summed
over all the training tasks, the meta-policy can then be reused
in accomplishing test tasks from the same distribution. However,
in practice we face two major obstacles to train and reuse meta-
policies well. First, how to identify tasks that are unrelated or
even opposite with each other, in order to avoid their mutual
interference in the training. Second, how to characterize task
features, according to which a meta-policy can be reused. In
this work, we propose the MAPLE approach that overcomes
the two difficulties by introducing the shallow trail. It probes
a task by running a roughly trained policy. Using the rewards
of the shallow trail, MAPLE automatically groups similar tasks.
Moreover, when the task parameters are unknown, the rewards
of the shallow trail also serves as task features. Empirical studies
on several controlling tasks verify that MAPLE can train meta-
policies well and receives high reward on test tasks.

Index Terms—reinforcement learning, meta-policy, shallow
trail

I. INTRODUCTION

In reinforcement learning [1], an agent learns from trial-
and-error feedback rewards from its environment, and results
in a policy that maps states to actions to maximize the
long-term total reward as a delayed supervision signal [2].
Reinforcement learning combining with the neural networks
has made great progress recently, including playing Atari
games [3] and beating world champions at the game of Go
[4]. However, in traditional reinforcement learning setting, a
fixed task is considered. The agent learns in a task and will
be applied only in the same task. However in many real-world
applications, it is quite rare that the task is static [5]. Once the
task changes, in the traditional way, the agent has to be re-
trained, which drastically degrades the practical applicability
of reinforcement learning.

Many attempts have been made to address this problem.
Studies mainly focused on transfer reinforcement learning [6]
aiming at generalization across multiple tasks. In the transfer
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reinforcement learning setting, an agent has previously experi-
enced a set of tasks. For learning in an unseen task, instead of
starting from scratch, the agent utilizes its experience to help
the learning [7]–[10]. A special family is multi-task reinforce-
ment learning, which concerns a sequence of reinforcement
learning tasks [11], [12]. The problem of generalization across
multiple tasks, however, has only been partially addressed.
There are still many issues need to be further investigated,
including how to gain qualified experiences and how can
the accumulation of experiences help learning future tasks.
Moreover, the negative transfer problem that decreases the
performance is often observed when transferring between
irrelevant tasks [13], which needs to be avoided carefully.

We notice that, when tasks are well parameterized and the
task parameters are drawn from an underlying distribution, it
is possible to learn a policy over the task distribution [14],
i.e., meta-policy in this paper, and reuse it on test tasks.
However, learning a good meta-policy faces some difficulties.
One major difficulty is that training tasks may be irrelevant or
even have conflicting goals, for which the meta-policy with a
single model may be hard to learn. A better way is to divide
opposite tasks for different models, given that we are able to
know if two tasks are opposite. Another one is that, previous
approaches commonly assume that the task parameters are
known in a priori [14], while it could be hard to obtain such
parameters of real-world tasks.

This paper studies the meta-policy learning problem, at-
tempting to tackle the two difficulties. In order to reveal the
relationship among tasks, the idea is that similar tasks tend to
get similar rewards when executing the same policy, while
opposite tasks may have very different rewards. Thus we
propose the shallow trail trick: we firstly obtain a group of
prototype policies by a rough task-specific learning for just
a few iterations on the training tasks. We then run all the
prototype policies on each task to obtain a reward vector. The
reward vector is used to measure the similarity among tasks.
Besides, the reward vector could also be used as a task feature,
since they can be highly correlated with the tasks. In this way
we can learn a meta-policy even when the task parameters are
unknown.

Combined the shallow trail idea with the policy search
framework, we proposed the MAPLE (MetA-Policy LEarning)
method. It joins the state features with the task parameters
(MAPLE-P) when the task parameters are available, or the
reward vectors (MAPLE-R) when the task parameters are
unavailable, and learns a meta-policy by a policy search
approach. The meta-policy can then be directly reused in
new tasks drawn from the same task distribution. Experiments
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on controlling tasks in the OpenAI Gym environments, with
varying configurations are conducted. In our experiments,
employing TRPO [15] as the base policy search method, the
results show that MAPLE-P and MAPLE-R both perform sig-
nificantly better than the baselines. While MAPLE-R using the
shallow trails is inferior to MAPLE-P using the ground-truth
parameters, MAPLE-R can still achieve a good performance.
As a summary, this paper makes the following contributions:

1) Propose the shallow trail trick to address the issue of
task similarity measurement and the issue of missing task
parameters at the same time;

2) Propose the MAPLE approach based on the shallow trail
trick, and verify its effectiveness in learning from training tasks
and reusing in test tasks;

3) Verify the effectiveness of the reward vectors from the
shallow trails for task representation, and that task grouping
is helpful in learning meta-policies.

We hope that the above contributions can provide useful
reference for further development of reusable reinforcement
learning.

The rest sections sequentially present the background, the
proposed approach, the experiments, and the conclusion.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement learning is commonly studied through the
Markov Decision Process (MDP) framework [1], [16]. An
MDP is a tuple (S,A, T,R, γ) where S is the set of states,
A is the set of action, T (sj |si, a) : S × A × S → R is
the transition probability of reaching state sj after executing
action a on state si, R(s, a) : S × A → R is the immediate
reward after executing action a from state si, and γ is the
discounting factor. We use π to denote a stochastic policy,
i.e., π(s, a) : S × A → [0, 1] is the probability of executing
action a at state s and

∑
a∈A π(s, a) = 1 for any s. The goal

of reinforcement learning is to find a policy π that maximizes
the expected long term reward, or return. we denote J(π) as
the expected value of discounted sum of rewards starting from
an initial state s0

J(π) = Es0,a0,...[
∑∞

t=0
γtR(st, at)],

where at ∼ π(st, ·), st+1 ∼ P (·|st, at), The expected total
reward J is related to the value function

V π(s) = E[
∑∞

t=0
γtR(st, at)|s0 = s, π],

which is the total reward of the policy π starting from state s,
and the state-action value function only depends on the state
s. Besides, the state-action value function is

Qπ(s, a) = E[
∑∞

t=1
γtR(st, at)|s0 = s, a0 = a, π],

which is the total reward starting from state s and action a.
For reinforcement learning, the transition function and the

reward function are not explicitly known, but must be in-
ferred from interaction experiences. Reinforcement learning
approaches can be roughly categorized as model-based and
model-free. Model-based approaches reconstruct the environ-
ment model (the transition function and the reward function)

and then solve the policy from the model, with represen-
tatives as R-MAX [17], and Fitted R-MAX [18]. Model-
free approaches do not explicitly model the environment.
A major branch of model-free approaches estimates value
functions, such as Q-Learning. Value function estimation ap-
proaches, while often converge fast, may suffer from the policy
degradation problem [19]. Moreover, value-based methods are
usually hard to apply to continuous states and actions in
high dimensional spaces. Another branch of the model-free
reinforcement learning, policy search, learns the policy directly
by maximizing the total reward, thus can avoid the policy
degradation problem.

B. Policy Search
Methods in this category search directly in a policy space

to maximize the total reward. They can be implemented by
gradient ascent methods, e.g., [15], [20], [21], and derivative-
free optimization methods, e.g., [22].

In policy search, a policy is often represented as a param-
eterized model πθ using a parameterized potential function
f(·|θ). In deep reinforcement learning, f is a neural network
and θ denotes the weights of the neural network. Gibbs
distribution is commonly used for discrete action space,

πθ(i|s) =
exp(fi(s|θ]))∑
j exp(fi(s|θ]))

,

and Gaussian distribution is used for continuous action space,

πθ(a|s) =
1√

2πσ2
exp(− 1

σ2
(f(s|θ)− a)2).

The goal of policy search is to find the best parameters θ
of a given policy model πθ(s, a). To measure the quality of
a policy π, the direct objective function for a policy search
reinforcement learning is the total reward J , which can be
equivalently rewritten as:

J(θ) =

∫
S

dπθ (s)

∫
A

πθ(a|s)Qπθ (s, a)dsda

where dπθ is the stationary distribution of the process.
Methods optimizing the parameters θ include gradient based

methods and derivative-free methods. Policy gradient searches
for a local maximum by ascending the parameters following
the gradient of the policy with respect to the expected reward.
By the policy gradient theorem [23], the basic policy gradient
method employs the direct gradient of the objective

∇θJ(θ) = E[∇θlogπθ(a|s)Qπθ (s, a)]

and then the parameters θ are updated by θ = θ + η∆θJ(θ).
Meanwhile, derivative-free methods employ derivative-free
optimization approaches such as CMA-ES [24] and RACOS
[22], [25] to approximate the best parameters. These methods
work by sampling parameters θ’s, and learn from the total
reward of each θ, in order to find better samples of the
parameters.

Policy search methods have been shown advantages in
handling sophisticated problems such as tasks with continuous
states and actions. Moreover, policy search can better avoid
the policy degradation issue, and can effectively learn in high
dimensional spaces.
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C. Related Work

Traditional reinforcement learning problem focuses on a
fixed MDP, or a fixed task as called in this paper, while we
often face the problem of a range of tasks in practice. Transfer
reinforcement learning, a combination of transfer learning and
reinforcement learning, addresses the cross-task generalization
problem. Transfer learning is a subfield of machine learning
that reuses the knowledge from related source domains to help
the learning in the target domain [26].

Transfer reinforcement learning reuses the experiences
gained from previous tasks to help the learning in the target
task [6]. The type of knowledge transferred can be low level
knowledge, such as sample instances [7], [27], value functions
[28], and policys [29]. Recently, the researches focus more on
the question that what could be transferred in deep neural
networks [9], [10], [30].

Among various transfer settings, the multi-task reinforce-
ment learning is particularly related, which solves multiple
tasks simultaneously by making use of assumptions that the
tasks share similarity in some components of the problem such
as dynamics, reward structure, or value function. The canonical
multi-task reinforcement learning aims at solving a fixed set
of MDPs simultaneously, and generalizes only within these
tasks [11], [31]. Some of the recent methods try to solve this
problem by introducing the LSTM architecture to adapt to
new tasks automatically [32]. Differently, meta-policy aims at
generalizing over a distribution of tasks, so that unseen tasks
can also be solved without re-training.

There are also some studies under the term of multi-task
reinforcement learning but do consider a task distribution.
The parameterized skills learning [14] proposes to estimate
the connection between the task parameters and the policy
parameters, i.e., the generalization part of the meta-policy
learning. It assumes that optimal policies are in hand for
the training tasks, and thus ignores the nontrivial training
stage that obtains these policies. While our proposed ap-
proach solves both the training and generalization problems
in an integrated procedure. The generalization over a task
distribution is also considered in [33], by using a predefined
task relationship. There are also some methods towards meta-
policy, but they do not consider the possible conflict between
different tasks, and always assume that task parameters are
known [34]. These methods could be limited in applications, as
the task parameters are usually unknown. As a comparison, the
approach proposed in this paper explores the task relationship
and groups similar tasks to avoid performance degradation and
can fit to situations when the task parameters are unknown.

III. META-POLICY LEARNING VIA SHALLOW TRAILS

A. Problem Statement

Assume there is a space of MDPs,M, and a fixed underly-
ing distribution D overM. An agent is given a set of training
tasks D = {M1,M2, ...,Mm} where each M i ∈M is drawn
independently from D. We assume in this paper that tasks
are different only in the reward and the transition function,
but share the same state and action spaces. The agent aims
at deriving a policy π from the training tasks to maximize

the total reward with respect to the distribution D, i.e., to
maximize

J =

∫
D
p(M)JM (π)dM,

where JM (π) is the total reward of policy π on MDP M . The
criterion JM (π) can be defined in various ways, such as the
long-term expected discounted reward,

JM (π) = E{
∑∞

t=1
γt−1rt|M,π},

where rt is the reward at step t, and γ is the discounted factor.
Maximization of J is hard to achieve directly, since it is

infeasible to enumerate all tasks for approximating the integral.
According to the learning theory [35], if a policy achieves
a performance on a set of m training tasks, its performance
of J is upper bounded by the training performance with an
extra term depends on m and the policy model complexity.
While the complexity can be maintained by techniques such
as dropout [36], we focus on maximizing the total reward on
the training tasks,

Jtr(π) =
∑

M∈D
JM (π).

A direct way of maximizing the objective is to employ
the policy search method. Considering the policy gradient
method, the gradient of the objective with respect to the policy
parameters θ can be written as:

∂Jtr(π)

∂θ
=
∑

M∈D

∂JM (π)

∂θ
.

Then the overall gradient of our objective can be written as:

∂Jtr(πθ)

∂θ
=
∑
M∈D

∑
s

dπθM (s)
∑
a

QπθM (s, a)
∂πθ(s, a)

∂θ
, (1)

where dπθM (s) is the stationary distribution of states following
πθ on the task M , QπM (s, a) is the usual state-action value
function on task M . Note that the value of QπθM (s, a) is
unknown, but can be approximated by its unbiased estimation,
or using some function approximation method as in [23].

Once the above gradient can be estimated, we can maximize
the objective by the gradient ascent update rule, θt = θt−1 +
αt · ∂Jtr/θt where αt is the step size. In addition to policy
gradient, other policy search methods can share the similar
idea to maximize the total reward over the task distribution.

However, although Eq.(1) can be used to update the policy
parameters, the performance of the policy is limited if it
cannot distinguish which task a state belongs to. Therefore,
it is necessary to obtain task-related information for learning
a meta-policy.

B. Policy Search with Task Features

We consider parameterized task distributions [8], [14],
where each task has several observable features, i.e., every
MDP M corresponds to a vector τ ∈ T drawn from distribu-
tion D(τ), where the features can essentially capture the MDP.
It is obvious that if the task parameters, such as the target posi-
tions of the GridWorld [1], are known to us, they can be easily
used to represent the task features. Then the policy function
can be conveniently extended to take state, action and task
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features into consideration as πθ(s, a, τ) : S×A×T → [0, 1].
With task features as part of the policy input, the meta-policy
can be learned over a range of tasks. While the policy is
a probability distribution πθ(a|s, τ), it can be parameterized
with a linear or nonlinear model. Considering a continuous
action space, the extended policy model is

πθ(a|s, τ) =
1√

2πσ2
exp(− 1

σ2
((f(s, τ |θ)− a)2)

which allows the policy to perform task-aware actions. Similar
to the fixed task setting, the direct objective for this situation
would be:

J(θ) =

∫
T

p(τ)

∫
S

dπθ (s, τ)

∫
A

πθ(a|s, τ)Qπθ (s, a, τ)dadsdτ

It’s obvious that current off-the-shelf policy search algo-
rithms can be easily adopted to solve this objective function.

C. Shallow Trail

If we simply adopt the policy search framework with
the task features being part of policy input without other
supplement, there would still be some obstacles to achieve
a good performance. In meta-policy learning, we could face
a very large task space. In such a space, there can be tasks
that have very different or even conflicting goals. It is unwise
to build only one policy model for all conflicting tasks,
which may lead to a bad performance. This situation requires
us to automatically discover the similarities and difference
among tasks, and build policies each for a group of similar
tasks. Therefore, it becomes critical to measure the similarities
between the tasks before grouping tasks.

Moreover, meta-policy learning requires task features as
part of the policy input. If we already know the parameters
of these tasks, they can easily be applied to represent the
task features. However, in many real environments, we often
fail to get the parameters. How to adapt meta-policy learning
mechanism in such situations becomes a key issue. If some
task-corresponding variables can distinguish different tasks,
they may be a good choice as task features.

Considering these two problems together, we need to find
useful features to distinguish and represent tasks. Ideally,
the similarities of tasks can be measured by the reward of
executing the optimal policy of one task on the other task [13].
Although it is infeasible to solve the optimal policy of a test
task for obtaining the features, this inspires us a more practical
idea to measure the similarities among tasks: similar tasks
would give similar relative rewards to the same policy, i.e.,
if a task gives policy A a higher total reward than policy
B, a similar task would also prefer A to B, which gives us
more information about these tasks and can help to comprise
task features. Note that A and B are not necessarily optimal
policies.

Therefore, we propose the shallow trail trick. Suppose that
there are m tasks. Firstly, in order to discover the character-
istics of the tasks, we run a policy search method with a very
small number of iterations for each task to obtain prototype
policies {π̃1, π̃2, π̃3, ...π̃m}. The number of iterations is called
the shallow trail depth. Secondly, we assign each task a

episode reward vector, where each element of the vector is
the total reward received by a prototype policy on the task,
i.e., for task i the episode reward vector is

vi = (R(τi|π̃1), R(τi|π̃2), R(τi|π̃3), ...R(τi|π̃m))

We denote this process as shallow trail, as for all tasks
including test tasks, we only collect the rewards from run-
ning these prototype policies, instead of solving the optimal
policies.

D. Task Grouping

Since tasks can be very different or even conflicting in
a large task space, it is necessary to put dissimilar tasks
in different groups. The reward vectors obtained by shallow
trails can serve this purpose well, as they are associated
with rewarding properties of the tasks. We employ the cosine
distance of reward vectors as the similarity between tasks.

With the similarity function, we can group the tasks via
clustering algorithms, e.g., the K-means algorithm [37] and the
K-medoids algorithm [38]. After the grouping, we need also
assign test tasks to groups. Therefore, we build a mapping
from task feature vector to group number by learning a
classifier. Again, we use either task parameters or shallow trail
outcome as task features.

Another question is that how many groups of these tasks
should be clustered into, which could greatly affect the quality
of the meta-policy. To determine the number of clusters. we
employ the Distance-Dependent Chinese Restaurant Process
(dd-CRP) [39], which is described as follows. A customer
comes to a Chinese restaurant and sits down alone at a new
table with a probability proportional to α and sits down with
another customer at his table with a probability proportional
to their similarities. After all customers have sat down, the
number of used tables can be used to approximate the number
of underlying clusters of customers. To apply dd-CRP, we set
the probability that task i sits with task j as

pi,j ∝
{
exp(−||vi − vj ||2/ρ), if j 6= i
α, if j = i

where vi is the normalized reward vector of task i, vj is that
of task j, ρ is a parameter that controls the importance of the
distance, and α controls the chance of sitting on a new table.
With the probability, we then sample the process by scanning
the tasks and determining if two tasks are connected (sit in
the same table), and find the number of tables. The process is
sampled several times to obtain an average number, which is
used as the number of clusters.

The objective is transformed as

J(θ) =

∫
T

p(vτ )

∫
S

dπθ (s, vτ )∫
A

πθ(a, |s, vτ )Qπθ (s, a, vτ )dadsdvτ .

where vτ is the episode reward vector of the task τ obtained
by shallow trail before.
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Algorithm 1 MAPLE-P : Training
Input:
L: A policy search algorithm
D = {τi}mi=1: parameters of the training tasks
Lc: A classification algorithm
T : Number of iterations
N : Shallow trail depth
ρ, α: Parameters of dd-CRP

Output:
πmeta : The meta-policy
Ψ(τ): A classifier

1: ∀i = 1, 2, ...,m : π̃i ← run L on task i with N iterations
2: ∀i = 1, 2, ...,m : vi ← (R(π̃1, τi), ..., R(π̃m, τi)),and
vi ← vi/||vi||2, i.e., normalized reward vector

3: K ← dd-CRP(v, ρ, α)
4: {G1, G2, ..., GK} ← groups by k-means(v,K)
5: Ψ← run Lc on dataset {(τi, k)|τi ∈ Gk}
6: ∀k = 1, 2, ...K : initialize θk0
7: for t← 1 to T do
8: for k ←1 to K do
9: J(θkt ) =

∫
S,T

p(τ)d
π
θkt (s, τ)

∫
A
πθkt (a|s, τ)

·Qπθkt (s, a, τ)dadsdτ
10: θkt+1 = arg max

θ
J(θkt ) by L

11: end for
12: end for
13: return πmeta(s, a, τ) =

∑K
k=1 πθkT (s,a,τ) · IΨ(τ)=k

Algorithm 2 MAPLE-P: Reusing
Input:

τ : The Parameter of the test task
Ψ: The classifier trained in Algorithm 1

Output:
πmeta : The meta-policy

1: Run classifier Ψ on task parameters, i.e., k = Ψ(τ)
2: Run πθkT (s,a,τ)

E. MAPLE

Combining the components above, we proposed the
MAPLE (MetA-Policy LEarning) framework. By MAPLE, an
agent can learn a qualified meta-policy that could be able to
efficiently adapt to a range of tasks instead of a fixed task even
when the task parameters are unknown.

1) MAPLE-P Algorithm: If we assume that task parameters
are known to us, we can directly use these parameters as task
features to learn meta-policy. In this situation, our algorithm
is denoted as MAPLE-P as in Algorithm 1.

MAPLE-P is given a set of training tasks, where we denote
τ as a mixed meaning of the task and task parameters,
and output a meta-policy. The input of MAPLE-P include a
policy search algorithm, a classifier algorithm which can be an
arbitrary state-of-the-art algorithm, the number of iterations T
which can be tens to hundreds depending on the difficulty of
the tasks, the number of iteration N for shallow trail to obtain
prototype policies, ρ and α are the parameters of dd-CRP.

At the beginning, MAPLE-P obtains prototype policies by

Algorithm 3 MAPLE-R: Training
Input:
L: A policy search algorithm
D = {τi}mi=1: Training tasks
Lc: A classification algorithm
T : Number of iterations
N : Shallow trail depth
ρ, α: Parameters of dd-CRP

Output:
πmeta : The meta-policy
Ψ(τ): The classifier
π̃1, π̃2, ...π̃m : m prototype polices

1: ∀i = 1, 2, ...,m : π̃i ← run L on task i with N iterations
2: ∀i = 1, 2, ...,m : vi ← (R(π̃1, τi), ..., R(π̃m, τi)), and
vi ← vi/||vi||2, i.e., normalized reward vector

3: K ← dd-CRP(v, ρ, α)
4: {G1, G2, ..., GK} ← groups by k-means(v,K)
5: Ψ← run Lc on dataset {(vi, k)|vi ∈ Gk}
6: ∀k = 1, 2, ...K : initialize θk0
7: for t← 1 to T do
8: for k ←1 to K do
9: J(θkt ) =

∫
S,T

p(vτ )d
π
θkt (s, vτ )

∫
A
πθkt (a|s, vτ )

·Qπθkt (s, a, vτ )dadsdvτ
10: θkt+1 = arg max

θ
J(θkt ) by running L

11: end for
12: end for
13: return πmeta(s, a, v) =

∑K
k=1 πθkT (s,a,v) · IΨ(v)=k

Algorithm 4 MAPLE-R: Reusing
Input:

τ : The test task
Ψ: The classifier trained in Algorithm 3
π̃1, π̃2, ...π̃m :The prototype policies trained in Algo-
rithm3

Output:
πmeta : The meta-policy

1: v ← (R(π̃1, τ), ..., R(π̃m, τ))and v ← v/||v||2
2: Run classifier Ψ on task features of τ , i.e., k = Ψ(v)
3: Run πθkT (s,a,v) on task τ

a rough training with a small number of iterations of policy
search algorithm on each of the training task (line 1), and
run all of these policies on each training task to obtain the
normalized reward vectors (line 2). Although we have the
ground-truth task parameters as the task features, the distance
function based on task parameters may not really reflect
the similarity. Thus we use the reward vectors for similarity
measurement. We employ dd-CRP for hundreds of times, and
then we can determine the number of groups K (line 3). After
getting K, the K-means algorithm could be employed (for its
efficiency and commonness, but other clustering algorithms are
not excluded) to cluster tasks (line 4). A grouping classifier is
trained (line 5), which will be used in the meta-policy to tell
which group a task belongs.

The policy optimization procedure starts form line 6. It
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initializes the policy parameters at the first iteration and
iterates for T times. We train one sub-policy for one group
by the policy search algorithm L. Note that the Q function in
line 9 can be replaced by the advantage function A = Q− V
for some policy search algorithms. Finally, the meta-policy is
a consensus of the sub-policies (line 13), where Iexpression is
1 if the expression is true and 0 otherwise.

After learning the meta-policy, the process of reusing the
meta-policy for an unseen task is shown in Algorithm 2. First,
the trained Lc determines which group the current task belongs
to. The agent then chooses the sub-policy corresponding to its
group. Finally, the appropriate sub-policy runs for the task.

2) MAPLE-R Algorithm: Under the circumstances where
we do not know the task parameters, we cannot use MAPLE-
P. MAPLE-R is then proposed to uses the episode reward
vectors to replace the task parameters. MAPLE-R is depicted
in Algorithm 3. It is similar to Algorithm 1, but the task
parameters are not needed. Note that the group classifier
trained in Algorithm 3 also uses the reward vectors.

The same as MAPLE-P, MAPLE-R could also be applied
to unseen tasks, which is shown in Algorithm 4. But different
from MAPLE-P, we can not directly determine which group a
new task belongs to, as the tasks parameters are not available.
Therefore, in MAPLE-R, we need to record all the prototype
policies after the learning stage. For an unseen task, we run
each of the prototype policy to obtain the reward vector. Then
the reward vector is used as the feature of the new task for by
the grouping classifier and the meta-policy.

IV. EXPERIMENTS

We empirically evaluate MAPLE, particularly, addressing
the following questions:

Q1 Does MAPLE fit the goal of meta-policy learning that
maximizes the total reward over the task distribution?

Q2 How is the generalization performance of MAPLE on
unseen tasks?

Q3 How do the hyper-parameters effect the MAPLE, in-
cluding the shallow trail depth, task grouping, and the number
of training tasks?

Q4 How if MAPLE serves as the initial policy for further
task-specific training on unseen tasks?

A. Experiment Settings

We employ six environments in the MuJoCo simulator [40]
of OpenAI Gym to evaluate the algorithms, including Swim-
mer, HalfCheetah, Walker2d, Ant, Humanoid and Humanoid
Standup. The state space, actions, and reward function are the
original ones provided in the MuJoCo environments. All the
tasks require to control an agent to move, where the agent
are all composited by legs and joints. To create a set of tasks
from each environment, we vary some parameters, including
the length of legs and the range that legs can cross. The detail
setting is described in the following, where the meaning of
the variables can be found in the MuJoCo simulator.
Swimmer is to train a 3-link swimming robot in a viscous fluid
to swim by actuating the two joints. The task distribution is
created by varying “rot2” in [−129, 80] and “rot3” in [80, 129]
uniformly at random;
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Fig. 1. Performance comparison on training tasks. The x-axis is the number of iterations of policy training.
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HalfCheetah is to train a 2d Cheetah model to run. The
environment distribution is created by varying “bthigh” from
(−1, 1.45) to (0.5, 2.95) uniformly at random;
Walker2d is to train a bipedal model with two legs to
walk forward. The task distribution is created by vary-
ing “thigh left joint” and “leg left joint” in [−150,−135],
“foot left joint” in [−70, 45], and “foot left joint” in
[−45, 70] uniformly at random;
Ant is to train a four-legged creature to walk forward. The task
distribution is created by varying “ankle 2” and “ankle 3” in
[−55,−64] uniformly at random;
Humanoid is to train a three-dimensional bipedal robot to
walk forward. The task distribution is created by varying
“right hip x” from (−29,−20) to (5, 14) uniformly at ran-
dom;
Humanoid Standup is to train a three-dimensional bipedal
robot to stand up. The task distribution is created by varying
“right hip x” from (−29,−20) to (5, 14) uniformly at ran-
dom.

The base reinforcement learning method is TRPO [15],
which has been shown one of the best method for the control-
ling tasks. We will also compare with TRPO alone on each
seen task, denoted as “Single”. Besides, we compare with two
cross-task methods, the “Neighbor” method that, for a test
task, uses the policy from the nearest training task; employing
an LSTM model has recently been shown to be able to adapt
from training tasks to test tasks [41], which is compared and
denoted as LSTM.

For all of the six environments, the discount factor γ is
0.99. Similar as in [42], the policy model is a fully connected
neural networks with two hidden layers each has 64 nodes.
For MAPLE, the parameters of dd-CRP are 0.05 for α and 0.1
for ρ in all environments, the classification learner Lc is the
random forest [43] for its advantage of less parameter tuning.
The default depth of the shallow trails is 2 on each training
task except for the experiments investigating this parameter.

B. Experiment Results

To address Q1, we first compare MAPLE with Single
as well as LSTM on training tasks. 40 training tasks are
sampled for each environment. Figure 1 shows the training
performance, measured by the total reward averaged over all
tasks, along with the training iterations. It can be observed that
the four methods have the consistent rank of performance in all
the environments. Single has the worst performance, as it trains
on each task separately, indicating that information sharing
among tasks can be helpful even at the training stage. MAPLE-
P has the best performance, as it knows the ground-truth
task parameters. MAPLE-R has an inferior performance to
MAPLE-P as it does not use the ground-truth task parameters
but shallow trail vector, while it still performs better than
LSTM, which implies that the shallow trail can provide more
useful task information than LSTM.

To address Q2, we then compare the methods on test tasks,
after training on 40 training tasks. The policies trained by
Single are not able to be used on test tasks directly, thus
Neighbor is used instead which uses the task parameters to

determine the nearest training task of a test task. Figure 2
shows the total reward averaged over all test tasks. The rank
of the performance of the methods is consistent with the rank
on the training tasks. Moreover, we can observe that Neighbor
has a quite bad performance. It almost has no improvement
on the total reward, implying that the policy learned by
Single cannot generalize well to the neighbor tasks in the task
parameter space. We also notice that the test task performance
of MAPLE-P is very similar to its training task performance
on Swimmer, HalfCheetah, Walker2d, and Ant, while the test
task performance drops significantly on the more difficult tasks
Humanoid and Humanoid Standup. But without knowing the
ground-truth task parameters, MAPLE-R and LSTM both have
dropped performance from training tasks to test tasks in all
environments, while MAPLE-R is still significantly better than
LSTM, implying the effectiveness of shallow trails.

To address Q3, we investigate the effect of each parameter.
Figure 3 shows the performance with different shallow trail
depth. It is consistent that deeper trail leads to better informa-
tive vector. Meanwhile, using deep trails increases the training
cost and also raises the risk of overfitting.

We then investigate the usefulness of task grouping. By
“NoGrouping”, the method switched off the grouping process,
and only one policy is trained over all training tasks, while the
suffix ”P” or ”R” indicates that they are based on MAPLE-
P and MAPLE-R respectively. From the results in Figure 4
we can observe that NoGrouping is consistently worse than
MAPLE, implying putting too many tasks under one policy
degrades the performance. Thus grouping is necessary.

We also investigate the effect of the number of training
tasks. We show the results of comparing training tasks from
5 to 40 in Figure 5 for training task performance and Figure
6 for test task performance, where the subscript 100 or 200
indicates the number of training iterations. We firstly observe
that increasing the training tasks is an effective way to improve
the performance for MAPLE and LSTM, as they are improved
on both training and test tasks when the number of training
tasks increases. We also observe that the performance rank is
consistent as the number of training tasks varies.

Finally, to address Q4, on test tasks we continue training the
adapted policy by TRPO. The results are shown in Figure 7,
where “None” denotes using a random policy as initial policy.
We can observe that MAPLE-P and MAPLE-R lead to a better
starting performance and can be further improved, which keep
the best performance.

Moreover, we can observe that the ending points of None,
the trained-from-scratch policies, have worse performance that
the starting points of MAPLE, the adapted policies, on all
environments except Humanoid Standup. This disclose that
the obtained meta-policies can have strong performance even
without test-task-specific training.

V. CONCLUSION

This paper proposes the MAPLE approach with the aim
of learning a meta-policy that can be reused in unseen tasks.
To distinguish the tasks and measure the similarity of two
tasks, we introduce the method of shallow trail that probe
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Fig. 2. Performance comparison on test tasks. The x-axis is the number of policy iterations at the training stage.
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Fig. 3. Performance of different shallow trail depth N of MAPLE.
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Fig. 4. On the effect of task grouping in MAPLE.
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Fig. 5. Performance on training tasks of approaches with different numbers of training tasks.
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Fig. 6. Performance on test tasks of approaches with different numbers of training tasks.
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Fig. 7. Performance of training on test tasks from scratch (None), with initialization by Neighbor, with initialization by LSTM and with initialization by
MAPLE.
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the property of a task by running roughly trained prototype
policies which is obtained through a policy search algorithm
for a few iterations. MAPLE solves the issue of possible
negative transfer when some tasks are irrelevant or opposite
in large task space, by restricting a policy within a group of
similar tasks based on the shallow trails. Besides, when the
task parameters are unknown, the outcome of shallow trails
can be directly used to represent the task features. As a result,
MAPLE can learn meta-policies that can be well reused in
unseen tasks, even if the task parameters are not available.

Experiment results verify that MAPLE evidently has a good
performance on both training and test tasks. Moreover, the
performance of MAPLE improves as the number of training
tasks grows, while no performance degradation is observed for
MAPLE, since it the task similarity is measured and managed
in groups based on the shallow trails.

MAPLE is restricted to be reused in tasks with the same
state and action spaces. In the future, we will study how to
reuse a meta-policy to fit changed state and action spaces,
approaching the goal of learnware [5].
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