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Previously...

Learning

Decision tree learning
Neural networks

Question:

why we can learn?



Classification

{(x1, y1), . . . , (xm, ym)} yi = f(xi)
on examples/training data:

what can be observed:

what is expected:

e.g. training error

✏t =
1

m

mX

i=1

I(h(xi) 6= yi)

over the whole distribution: generalization error

✏

g

= E
x

[I(h(x) 6= f(x))]

=

Z

X
p(x)I(h(x) 6= f(x))]dx



✏t =
1

m

mX

i=1

(h(xi)� yi)
2

✏

g

= E
x

(h(x) 6= f(x))2

=

Z

X
p(x)(h(x)� f(x))2dx

Regression

what can be observed:

what is expected:

{(x1, y1), . . . , (xm, ym)} yi = f(xi)
on examples/training data:

e.g. training mean square error/MSE

over the whole distribution: generalization MSE



The version space algorithm
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S: most specific hypothesis

G: most general hypothesis

version space: consistent 
hypotheses [Mitchell, 1997]

an abstract view of learning algorithms
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The version space algorithm
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S: most specific hypothesis

G: most general hypothesis

version space: consistent 
hypotheses [Mitchell, 1997]

an abstract view of learning algorithms

remove the hypothesis that are inconsistent with the 
data, select a hypothesis according to learner’s bias



The version space algorithm

an abstract view of learning algorithms

hypothesis 
space search 

algorithm
scoring 
function

three components of a learning algorithm



Theories

The i.i.d. assumption:
all training examples and future (test) 
examples are drawn independently from 
an identical distribution, the label is 
assigned by a fixed ground-truth function

unknown but fixed 
distribution D
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ED[✏t] = ED

"
1

m

mX

i=1

(h(xi)� yi)
2

#
=

1

m

mX

i=1

ED

⇥
(h(xi)� yi)

2
⇤

ED

⇥
(h(x)� f(x))2

⇤

= ED

⇥
(h(x)�ED[h(x)] + ED[h(x)]� f(x))2

⇤

= ED

⇥
(h(x)� ED[h(x)])2

⇤
+ ED

⇥
(ED[h(x)]� f(x))2

⇤

+ ED [2(h(x)� ED[h(x)])(ED[h(x)]� f(x))]

= ED

⇥
(h(x)� ED[h(x)])2

⇤
+ ED

⇥
(ED[h(x)]� f(x))2

⇤

Bias-variance dilemma

Suppose we have 100 training examples
but there can be different training sets

Start from the expected training MSE:

(assume no noise)

     variance                            bias^2
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hypothesis space

larger hypothesis space
=>
lower bias
but higher variance
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hypothesis space

smaller hypothesis space
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smaller variance
but higher bias
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Overfitting and underfitting

training error v.s. hypothesis space size
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{y = a+ bx | a, b 2 R}

Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space
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y

x

{y = a+ bx | a, b 2 R}

{y = a+ bx+ cx

2 + dx

3 + ex

4 + fx

5 | a, b, c, d, e, f 2 R}

{y = a+ bx+ cx

2 + dx

3 | a, b, c, d 2 R}

Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space

even higher order: no training error, large space

higher polynomials: moderate training error, moderate space
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Overfitting and bias-variance dilemma
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assume i.i.d. examples, and the ground-truth 
hypothesis is a box 

✏g <
1
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with probability at least 1� �

the error of picking a 
consistent hypothesis:
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assume i.i.d. examples, and the ground-truth 
hypothesis is a box 

‣more examples
‣ smaller hypothesis spacesmaller generalization error:

✏g <
1

m
· (ln |H|+ ln

1

�
)

with probability at least 1� �

the error of picking a 
consistent hypothesis:



h is consistent

✏g(h) � ✏

✏g(h) � ✏

Generalization error
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assume h is bad:

for one h
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for one h
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Generalization error

h is consistent with m example:

There are k consistent hypotheses



P  (1� ✏)m

Generalization error

h is consistent with m example:

There are k consistent hypotheses

...

Probability of choosing a bad one:
h1 is chosen and h1 is bad
h2 is chosen and h2 is bad

hk is chosen and hk is bad

P  (1� ✏)m

P  (1� ✏)m

P  (1� ✏)m



∃h: h can be chosen (consistent) but is bad

P  (1� ✏)m

Generalization error

h is consistent with m example:

There are k consistent hypotheses

...

Probability of choosing a bad one:
h1 is chosen and h1 is bad
h2 is chosen and h2 is bad

hk is chosen and hk is bad
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overall:



∃h: h can be chosen (consistent) but is bad

Generalization error
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h1 is chosen and h1 is bad
h2 is chosen and h2 is bad

hk is chosen and hk is bad
...
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overall:

P (A [B)  P (A) + P (B)Union bound:



∃h: h can be chosen (consistent) but is bad

P (9h is consistent but bad)  k · (1� ✏)m  |H| · (1� ✏)m

Generalization error

h1 is chosen and h1 is bad
h2 is chosen and h2 is bad

hk is chosen and hk is bad
...
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overall:

P (A [B)  P (A) + P (B)Union bound:
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P (9h is consistent but bad)  k · (1� ✏)m  |H| · (1� ✏)m

�

P (✏g � ✏)  |H| · (1� ✏)m

✏g <
1

m
· (ln |H|+ ln

1

�
)

Generalization error

with probability at least 1� �
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Inconsistent hypothesis
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What if the ground-truth hypothesis 
is NOT a box: non-zero training error

‣more examples
‣ smaller hypothesis space
‣smaller training error

smaller generalization error:

✏g < ✏t +

r
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m
(ln |H|+ ln
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with probability at least 1� �
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X be an i.i.d. random variable

X1, X2, . . . , Xm be m samples

1

m

mX

i=1

Xi � E[X] di↵erence between sum and expectation

P (

1

m

mX

i=1

Xi � E[X] � ✏)  exp

✓
� 2✏2m

(b� a)2

◆

Xi 2 [a, b]

Hoeffding's inequality



1

m

mX

i=1

Xi ! ✏t(h) E[Xi] ! ✏g(h)

for one h

Xi = I(h(xi) 6= f(xi)) 2 [0, 1]

P (✏t(h)� ✏g(h) � ✏)  exp

�
�2✏2m

�

P (✏t � ✏g � ✏)

 P (9h 2 |H| : ✏t(h)� ✏g(h) � ✏)  |H| exp ��2✏2m
�

Generalization error 
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Xi ! ✏t(h) E[Xi] ! ✏g(h)

for one h

Xi = I(h(xi) 6= f(xi)) 2 [0, 1]

P (✏t(h)� ✏g(h) � ✏)  exp
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�2✏2m

�

P (✏t � ✏g � ✏)

 P (9h 2 |H| : ✏t(h)� ✏g(h) � ✏)  |H| exp ��2✏2m
�

✏g < ✏t +

r
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2m
· (ln |H|+ ln

1

�
)

Generalization error 

�
with probability at least 1� �



Generalization error: Summary

✏g <
1

m
· (ln |H|+ ln

1

�
)

with probability at least 1� �

assume i.i.d. examples
consistent hypothesis case:

inconsistent hypothesis case:

generalization error: 
       number of examples
       training error
       hypothesis space complexity

✏g < ✏t +

r
1

m
(ln |H|+ ln

1

�
)

with probability at least 1� �

m
✏t

ln |H|



PAC-learning
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PAC-learning
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Probably approximately correct (PAC):
with probability at least 1� �

PAC-learnable: [Valiant, 1984]

A concept class    is PAC-learnable if 

exists a learning algorithm A such that 

for all         ,                  and distribution D

using                             examples and 
polynomial time. 

PD(✏g  ✏) � 1� �

C

f 2 C ✏ > 0, � > 0

m = poly(1/✏, 1/�)



PAC-learning

✏g < ✏t +

r
1

2m
· (ln |H|+ ln

1

�
)

Probably approximately correct (PAC):
with probability at least 1� �

PAC-learnable: [Valiant, 1984]

A concept class    is PAC-learnable if 

exists a learning algorithm A such that 

for all         ,                  and distribution D

using                             examples and 
polynomial time. 

PD(✏g  ✏) � 1� �

C

f 2 C ✏ > 0, � > 0

m = poly(1/✏, 1/�)

Leslie Valiant
Turing Award (2010)
EATCS Award (2008)
Knuth Prize (1997)
Nevanlinna Prize (1986)



Learning algorithms revisit

Decision Tree



2d
n!

(n� d)!
> 2d

nn

(n� d)nen

22
d
d�1Y

i=0

(n� i)!

(n� d� i)!

Tree depth and the possibilities

f1

f20

0 1

1 f3

0 1

10

10

features: n
feature type: binary 
depth: d<n

How many different trees?

the possibility of trees grows very fast with d

one-branch:

full-tree:



The overfitting phenomena 

-- the divergence between infinite and 
finite samples 
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Pruning

To make decision tree less complex

Pre-pruning: early stop

Post-pruning: prune full grown DT

‣minimum data in leaf

‣maximum depth

‣maximum accuracy

reduced error pruning



Reduced error pruning

color

weight
not 

sweet

not red red

not 
sweet preservation

<100g >=100g

sweetnot 
sweet

goodbad

1. Grow a decision tree

2. For every node starting from the leaves

3. Try to make the node leaf, if does not increase the error, 
keep as the leaf

could split a validation set out 
from the training set to 
evaluate the error



DT boundary visualization

decision stump max depth=2 max depth=12



Oblique decision tree

choose a linear combination in each node:

axis parallel:
X1>0.5

oblique:
0.2 X1+ 0.7 X2+ 0.1 X3 > 0.5

was hard to train


