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Previously...

Learning

Decision tree learning
Neural networks
Why we can learn
Linear models



Nearest Neighbor Classifier



Nearest neighbor

what looks similar are similar



Nearest neighbor

1-nearest neighbor: k-nearest neighbor:

Predict the label as that of the NN
or the (weighted) majority of the k-NN

for classification:



Nearest neighbor

1-nearest neighbor: k-nearest neighbor:

Predict the label as that of the NN
or the (weighted) average of the k-NN

for regression:



Search for the nearest neighbor

Linear search

...

n times of distance calculations
O(dn ln k)

d is the dimension, n is the number of samples



Nearest neighbor classifier

‣ as classifier, asymptotically less than 2 times of 
the optimal Bayes error 
‣ naturally handle multi-class
‣ no training time
‣ nonlinear decision boundary

‣ slow testing speed for a large training data set
‣ have to store the training data
‣ sensitive to similarity function

nonparametric method



Naive Bayes Classifier



f(x) =

8
><

>:

+1, P (y = +1 | x) > P (y = �1 | x)
�1, P (y = +1 | x) < P (y = �1 | x)
random, otherwise

f(x) = argmax

y
P (y | x)

Bayes rule

classification using posterior probability

for binary classification

in general



f(x) =

8
><

>:

+1, P (y = +1 | x) > P (y = �1 | x)
�1, P (y = +1 | x) < P (y = �1 | x)
random, otherwise

f(x) = argmax
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P (y | x)

Bayes rule

classification using posterior probability

for binary classification

in general

= argmax

y
P (x | y)P (y)/P (x)

= argmax

y
P (x | y)P (y)

how the 
probabilities be 
estimated



f(x) = argmax

y
P (x | y)P (y)

P (y) P̃ (y) =
1

m

X

i

I(yi = y)

Naive Bayes

estimation the a priori by frequency:



P (red | sweet) = 1

P (half-red | sweet) = 0

P (not-red | sweet) = 0

P (sweet) = 4/13

P (red | not-sweet) = 0

P (half-red | not-sweet) = 4/9

P (not-red | not-sweet) = 5/9

P (not-sweet) = 9/13

Consider a very simple case

color taste ?

id color taste
1 red sweet
2 red sweet
3 half-red not-sweet
4 not-red not-sweet
5 not-red not-sweet
6 half-red not-sweet
7 red sweet
8 not-red not-sweet
9 not-red not-sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet



Consider a very simple case

what the fˊ would be?
id color taste
1 red sweet
2 red sweet
3 half-red not-sweet
4 not-red not-sweet
5 not-red not-sweet
6 half-red not-sweet
7 red sweet
8 not-red not-sweet
9 not-red not-sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet

f(x) = argmax

y
P (x | y)P (y)



Consider a very simple case

what the fˊ would be?
id color taste
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f(x) = argmax

y
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P (red | sweet)P (sweet) = 4/13

P (red | not-sweet)P (not-sweet) = 0



Consider a very simple case

what the fˊ would be?
id color taste
1 red sweet
2 red sweet
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6 half-red not-sweet
7 red sweet
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Consider a very simple case

what the fˊ would be?

perfect
but not realistic

id color taste
1 red sweet
2 red sweet
3 half-red not-sweet
4 not-red not-sweet
5 not-red not-sweet
6 half-red not-sweet
7 red sweet
8 not-red not-sweet
9 not-red not-sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet

f(x) = argmax

y
P (x | y)P (y)

P (red | sweet)P (sweet) = 4/13

P (red | not-sweet)P (not-sweet) = 0

P (half-red | sweet)P (sweet) = 0

P (half-red | not-sweet)P (not-sweet) =

4

9

⇥ 9

13

=

4

13



f(x) = argmax

y
P (x | y)P (y)

P (x | y) = P (x1, x2, . . . , xn | y)
= P (x1 | y) · P (x2 | y) · . . . P (xn | y)

P (y) P̃ (y) =
1

m

X

i

I(yi = y)

f(x) = argmax

y

˜

P (y)

Y

i

˜

P (xi | y)

Naive Bayes

estimation the a priori by frequency:

assume features are conditional independence given 
the class (naive assumption):

decision function:



P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...



f(y | color = 3, weight = 3) !

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...



P (color = 3 | y = no)P (weight = 3 | y = no)P (y = no) = 0.33⇥ 0.33⇥ 0.6 = 0.06

P (color = 3 | y = yes)P (weight = 3 | y = yes)P (y = yes) = 0.5⇥ 0.5⇥ 0.4 = 0.1

f(y | color = 3, weight = 3) !

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...



P (color = 3 | y = no)P (weight = 3 | y = no)P (y = no) = 0.33⇥ 0.33⇥ 0.6 = 0.06

P (color = 3 | y = yes)P (weight = 3 | y = yes)P (y = yes) = 0.5⇥ 0.5⇥ 0.4 = 0.1

f(y | color = 3, weight = 3) !

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...

f(y | color = 0, weight = 1) !



P (color = 3 | y = no)P (weight = 3 | y = no)P (y = no) = 0.33⇥ 0.33⇥ 0.6 = 0.06

P (color = 3 | y = yes)P (weight = 3 | y = yes)P (y = yes) = 0.5⇥ 0.5⇥ 0.4 = 0.1

f(y | color = 3, weight = 3) !

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

P (color = 0 | y = yes)P (weight = 1 | y = yes)P (y = yes) = 0

P (color = 0 | y = no)P (weight = 1 | y = no)P (y = no) = 0

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...

f(y | color = 0, weight = 1) !



P (color = 0 | y = yes) = (0 + 1)/(2 + 4)

P (y = yes) = (2 + 1)/(5 + 2)

P (color = 0 | y = no)P (weight = 1 | y = no)P (y = no) =
2

7
⇥ 1

8
⇥ 4

7
= 0.02

P (color = 0 | y = yes)P (weight = 1 | y = yes)P (y = yes) =
1

6
⇥ 1

7
⇥ 3

7
= 0.01

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

+

color sweet?

0 yes

1 yes

2 yes

3 yes

smoothed (Laplacian correction) probabilities:

f(y | color = 0, weight = 1) !

for counting frequency, 
assume every event 
has happened once. 



O(mn)

O(n)

Naive Bayes

advantages:

disadvantages:

very fast: 
    scan the data once, just count:
    store class-conditional probabilities: 
    test an instance:            (c the number of classes) 

good accuracy in many cases
parameter free
output a probability
naturally handle multi-class

O(cn)



O(mn)

O(n)

Naive Bayes

advantages:

disadvantages:

very fast: 
    scan the data once, just count:
    store class-conditional probabilities: 
    test an instance:            (c the number of classes) 

good accuracy in many cases
parameter free
output a probability
naturally handle multi-class

O(cn)

the strong assumption may harm the accuracy
does not handle numerical features naturally


