Artificial Intelligence, cs, Nanjing University Spring, 2016, Yang Yu

Lecture 16: Learning 5

http://cs.nju.edu.cn/yuy/course_ai16.ashx

Previously...

Learning
Decision tree learning
Neural networks
Why we can learn
Linear models

Nearest Neighbor Classifier

Nearest neighbor

what looks similar are similar

Nearest neighbor

for classification:

1-nearest neighbor:

k-nearest neighbor:

Predict the label as that of the NN or the (weighted) majority of the k-NN

Nearest neighbor

for regression:

1-nearest neighbor:

k-nearest neighbor:

Predict the label as that of the NN or the (weighted) average of the k-NN

Search for the nearest neighbor

Linear search

n times of distance calculations
$O(d n \ln k)$
d is the dimension, n is the number of samples

Nearest neighbor classifier

- as classifier, asymptotically less than 2 times of the optimal Bayes error
- naturally handle multi-class
- no training time
- nonlinear decision boundary
- slow testing speed for a large training data set
- have to store the training data
- sensitive to similarity function

Naive Bayes Classifier

Bayes rule

classification using posterior probability
for binary classification

$$
f(x)= \begin{cases}+1, & P(y=+1 \mid \boldsymbol{x})>P(y=-1 \mid \boldsymbol{x}) \\ -1, & P(y=+1 \mid \boldsymbol{x})<P(y=-1 \mid \boldsymbol{x}) \\ \text { random, }, & \text { otherwise }\end{cases}
$$

in general

$$
f(x)=\underset{y}{\arg \max } P(y \mid \boldsymbol{x})
$$

Bayes rule

classification using posterior probability
for binary classification

$$
f(x)= \begin{cases}+1, & P(y=+1 \mid \boldsymbol{x})>P(y=-1 \mid \boldsymbol{x}) \\ -1, & P(y=+1 \mid \boldsymbol{x})<P(y=-1 \mid \boldsymbol{x}) \\ \text { random, }, & \text { otherwise }\end{cases}
$$

in general

$$
\begin{aligned}
f(x) & =\underset{y}{\arg \max } P(y \mid \boldsymbol{x}) \\
& =\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y) / P(\boldsymbol{x}) \\
& =\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)
\end{aligned}
$$

how the probabilities be estimated

Naive Bayes

$f(x)=\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)$
estimation the a priori by frequency:

$$
P(y) \leftarrow \tilde{P}(y)=\frac{1}{m} \sum_{i} I\left(y_{i}=y\right)
$$

Consider a very simple case

color

\longrightarrow taste ?

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

$P($ red \mid sweet $)=1$
$P($ half-red \mid sweet $)=0$
$P($ not-red \mid sweet $)=0$
$P($ sweet $)=4 / 13$
$P($ red \mid not-sweet $)=0$
$P($ half-red \mid not-sweet $)=4 / 9$
$P($ not-red \mid not-sweet $)=5 / 9$
$P($ not-sweet $)=9 / 13$

Consider a very simple case

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the f^{\prime} would be?

$$
f(x)=\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)
$$

Consider a very simple case

Consider a very simple case

Consider a very simple case

perfect
but not realistic

Naive Bayes

$f(x)=\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)$
estimation the a priori by frequency:
$P(y) \leftarrow \tilde{P}(y)=\frac{1}{m} \sum_{i} I\left(y_{i}=y\right)$
assume features are conditional independence given the class (naive assumption):

$$
\begin{aligned}
P(\boldsymbol{x} \mid y) & =P\left(x_{1}, x_{2}, \ldots, x_{n} \mid y\right) \\
& =P\left(x_{1} \mid y\right) \cdot P\left(x_{2} \mid y\right) \cdot \ldots P\left(x_{n} \mid y\right)
\end{aligned}
$$

decision function:

$$
f(x)=\underset{y}{\arg \max } \tilde{P}(y) \prod_{i} \tilde{P}\left(x_{i} \mid y\right)
$$

Naive Bayes

color $=\{0,1,2,3\}$ weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2 \\
& \ldots
\end{aligned}
$$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2 \\
& \ldots
\end{aligned}
$$

$f(y \mid$ color $=3$, weight $=3) \rightarrow$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2
\end{aligned}
$$

$$
f(y \mid \text { color }=3, \text { weight }=3) \rightarrow
$$

$$
P(\text { color }=3 \mid y=y e s) P(\text { weight }=3 \mid y=\text { yes }) P(y=\text { yes })=0.5 \times 0.5 \times 0.4=0.1
$$

$$
P(\text { color }=3 \mid y=n o) P(\text { weight }=3 \mid y=n o) P(y=n o)=0.33 \times 0.33 \times 0.6=0.06
$$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2
\end{aligned}
$$

$f(y \mid$ color $=3$, weight $=3) \rightarrow$

$$
\begin{aligned}
& P(\text { color }=3 \mid y=\text { yes }) P(\text { weight }=3 \mid y=\text { yes }) P(y=y e s)=0.5 \times 0.5 \times 0.4=0.1 \\
& P(\text { color }=3 \mid y=n o) P(\text { weight }=3 \mid y=n o) P(y=\text { no })=0.33 \times 0.33 \times 0.6=0.06
\end{aligned}
$$

$f(y \mid$ color $=0$, weight $=1) \rightarrow$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?	
3	4	yes	$P(y=y e s)=2 / 5$
2	3	yes	$P(y=n o)=3 / 5$
0	3	no	$P($ color $=3 \mid y=$ yes $)=1 / 2$
3	2	no	-"
1	4	no	

$$
\begin{aligned}
& f(y \mid \text { color }=3, \text { weight }=3) \rightarrow \\
& \quad P(\text { color }=3 \mid y=\text { yes }) P(\text { weight }=3 \mid y=\text { yes }) P(y=y e s)=0.5 \times 0.5 \times 0.4=0.1 \\
& \quad P(\text { color }=3 \mid y=n o) P(\text { weight }=3 \mid y=n o) P(y=n o)=0.33 \times 0.33 \times 0.6=0.06
\end{aligned}
$$

$$
f(y \mid \text { color }=0, \text { weight }=1) \rightarrow
$$

$$
P(\text { color }=0 \mid y=y e s) P(\text { weight }=1 \mid y=y e s) P(y=y e s)=0
$$

$$
P(\text { color }=0 \mid y=n o) P(\text { weight }=1 \mid y=n o) P(y=n o)=0
$$

Naive Bayes

color $=\{0,1,2,3\}$ weight $=\{0,1,2,3,4\}$

color	weight	sweet?			
3	4			color	sweet?
2	3	yes		0	yes
0	3	yes			1
3	2	no		yes	
1	4	no		2	yes

smoothed (Laplacian correction) probabilities:

$$
\begin{aligned}
& P(\text { color }=0 \mid y=y e s)=(0+1) /(2+4) \\
& P(y=y e s)=(2+1) /(5+2)
\end{aligned}
$$

for counting frequency, assume every event has happened once.

$$
f(y \mid \text { color }=0, \text { weight }=1) \rightarrow
$$

$$
P(\text { color }=0 \mid y=\text { yes }) P(\text { weight }=1 \mid y=\text { yes }) P(y=\text { yes })=\frac{1}{6} \times \frac{1}{7} \times \frac{3}{7}=0.01
$$

$$
P(\text { color }=0 \mid y=n o) P(\text { weight }=1 \mid y=n o) P(y=n o)=\frac{2}{7} \times \frac{1}{8} \times \frac{4}{7}=0.02
$$

Naive Bayes

advantages:
very fast:
scan the data once, just count: $O(m n)$ store class-conditional probabilities: $O(n)$ test an instance: $O(c n)$ (c the number of classes) good accuracy in many cases
parameter free output a probability naturally handle multi-class
disadvantages:

Naive Bayes

advantages:
very fast:
scan the data once, just count: $O(m n)$ store class-conditional probabilities: $O(n)$ test an instance: $O(c n)$ (c the number of classes) good accuracy in many cases
parameter free output a probability naturally handle multi-class
disadvantages:
the strong assumption may harm the accuracy
does not handle numerical features naturally

