

Artificial Intelligence, CS, Nanjing University Spring, 2016, Yang Yu

Lecture 16: Learning 5

http://cs.nju.edu.cn/yuy/course_ai16.ashx

Previously...

ALISA NANI 1902 UNITE

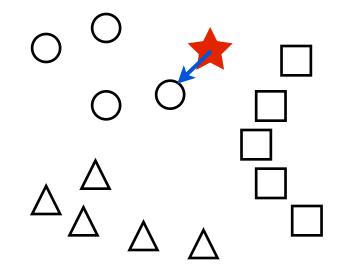
Learning

Decision tree learning Neural networks Why we can learn Linear models

Nearest Neighbor Classifier

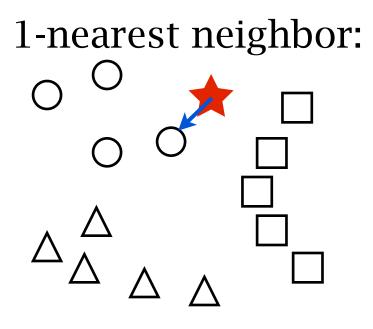
Nearest neighbor

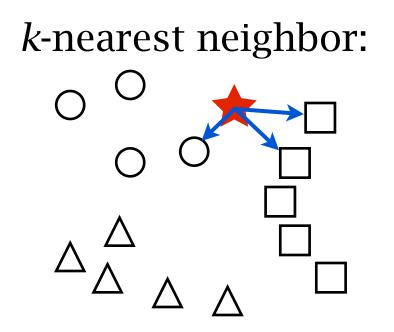
what looks similar are similar



Nearest neighbor

for classification:

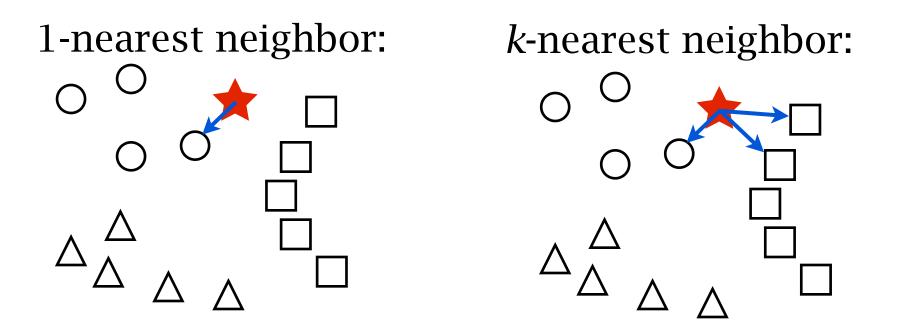




Predict the label as that of the NN or the (weighted) majority of the k-NN

Nearest neighbor

for regression:



Predict the label as that of the NN or the (weighted) *average* of the k-NN

Search for the nearest neighbor

Linear search

---0000000000

n times of distance calculations *O(dn* ln *k) d* is the dimension, *n* is the number of samples

Nearest neighbor classifier

 as classifier, asymptotically less than 2 times of the optimal Bayes error

- naturally handle multi-class
- no training time
- nonlinear decision boundary

slow testing speed for a large training data set

- have to store the training data
- sensitive to similarity function

nonparametric method

Naive Bayes Classifier

classification using posterior probability

for binary classification $f(x) = \begin{cases} +1, & P(y = +1 \mid \boldsymbol{x}) > P(y = -1 \mid \boldsymbol{x}) \\ -1, & P(y = +1 \mid \boldsymbol{x}) < P(y = -1 \mid \boldsymbol{x}) \\ \text{random, otherwise} \end{cases}$

in general $f(x) = \underset{y}{\operatorname{arg\,max}} P(y \mid \boldsymbol{x})$

classification using posterior probability

for binary classification $f(x) = \begin{cases} +1, & P(y = +1 \mid x) > P(y = -1 \mid x) \\ -1, & P(y = +1 \mid x) < P(y = -1 \mid x) \\ random, & otherwise \end{cases}$

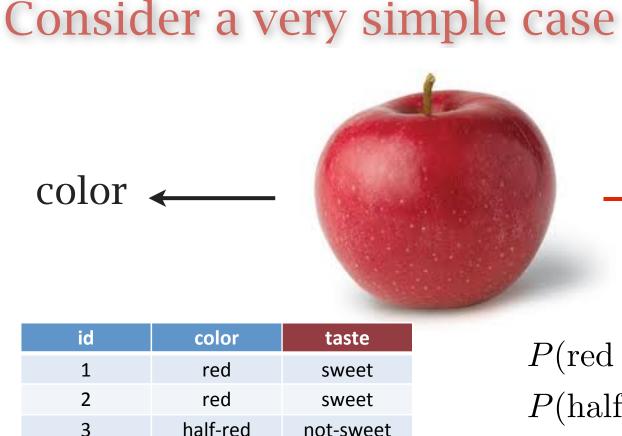
in general $f(x) = \underset{y}{\operatorname{arg max}} P(y \mid \boldsymbol{x})$ $= \underset{y}{\operatorname{arg max}} P(\boldsymbol{x} \mid y) P(y) / P(\boldsymbol{x})$ $= \underset{y}{\operatorname{arg max}} P(\boldsymbol{x} \mid y) P(y)$

how the probabilities be estimated

$$f(x) = \underset{y}{\operatorname{arg\,max}} P(x \mid y) P(y)$$

estimation the a priori by frequency:

$$P(y) \leftarrow \tilde{P}(y) = \frac{1}{m} \sum_{i} I(y_i = y)$$



!
t
t
eet
eet
eet
eet
t
eet
eet
eet
t
eet
eet

color \triangleleft

 $P(\text{red} \mid \text{sweet}) = 1$ $P(\text{half-red} \mid \text{sweet}) = 0$ $P(\text{not-red} \mid \text{sweet}) = 0$ P(sweet) = 4/13 $P(\text{red} \mid \text{not-sweet}) = 0$ $P(\text{half-red} \mid \text{not-sweet}) = 4/9$ $P(\text{not-red} \mid \text{not-sweet}) = 5/9$ P(not-sweet) = 9/13

taste ?

red sweet	
red	sweet
alf-red	not-sweet
ot-red	not-sweet
ot-red	not-sweet
alf-red	not-sweet
red sweet	
not-red not-swee	
ot-red	not-sweet
half-red not-sweet	
red sweet	
half-red not-sweet	
not-red not-sweet	
	red alf-red ot-red ot-red alf-red red ot-red ot-red alf-red red alf-red

what the *f* would be?

 $f(x) = \arg \max P(\boldsymbol{x} \mid y) P(y)$ y

id	color	taste	_
1	red	sweet	
2	red	sweet	\mathbb{Z}
3	half-red	not-sweet	
4	not-red	not-sweet	
5	not-red	not-sweet	
6	half-red	not-sweet	
7	red	sweet	
8	not-red not-		
9	not-red	not-sweet	
10	half-red	not-sweet	
11	red	sweet	
12	half-red	not-sweet	
13	not-red	not-sweet	

what the *f* would be?

 $f(x) = \operatorname*{arg\,max}_{y} P(\boldsymbol{x} \mid y) P(y)$

 $P(\text{red} \mid \text{sweet})P(\text{sweet}) = 4/13$ $P(\text{red} \mid \text{not-sweet})P(\text{not-sweet}) = 0$

ic	d	color	taste
1	L	red	sweet
2)	red	sweet
3	3	half-red	not-sweet
4	ļ	not-red	not-sweet
5	5	not-red	not-sweet
E	5	half-red	not-sweet
7	7	red	sweet
8	3	not-red	not-sweet
g)	not-red	not-sweet
1	0	half-red	not-sweet
1	1	red	sweet
1	2	half-red	not-sweet
1	3	not-red	not-sweet

what the *f* would be?

 $f(x) = \operatorname*{arg\,max}_{y} P(\boldsymbol{x} \mid y) P(y)$

 $P(\text{red} \mid \text{sweet})P(\text{sweet}) = 4/13$ $P(\text{red} \mid \text{not-sweet})P(\text{not-sweet}) = 0$

 $P(\text{half-red} \mid \text{sweet})P(\text{sweet}) = 0$

 $P(\text{half-red} \mid \text{not-sweet})P(\text{not-sweet}) = \frac{4}{9} \times \frac{9}{13} = \frac{4}{13}$

1 red sweet
_
2 red sweet
3 half-red not-sweet
4 not-red not-sweet
5 not-red not-sweet
6 half-red not-sweet
7 red sweet
8 not-red not-sweet
9 not-red not-sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet

what the *f* would be?

 $f(x) = \operatorname*{arg\,max}_{y} P(\boldsymbol{x} \mid y) P(y)$

 $P(\text{red} \mid \text{sweet})P(\text{sweet}) = 4/13$ $P(\text{red} \mid \text{not-sweet})P(\text{not-sweet}) = 0$

 $P(\text{half-red} \mid \text{sweet})P(\text{sweet}) = 0$ $P(\text{half-red} \mid \text{not-sweet})P(\text{not-sweet}) = \frac{4}{9} \times \frac{9}{13} = \frac{4}{13}$

> perfect but not realistic

$$f(x) = \underset{y}{\arg\max} P(\boldsymbol{x} \mid y) P(y)$$

estimation the a priori by frequency:

$$P(y) \leftarrow \tilde{P}(y) = \frac{1}{m} \sum_{i} I(y_i = y)$$

assume features are conditional independence given the class (naive assumption): $P(\boldsymbol{x} \mid y) = P(x_1, x_2, \dots, x_n \mid y)$ $= P(x_1 \mid y) \cdot P(x_2 \mid y) \cdot \dots P(x_n \mid y)$

decision function:

$$f(x) = \arg\max_{y} \tilde{P}(y) \prod_{i} \tilde{P}(x_i \mid y)$$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$P(y = yes) = 2/5$$

$$P(y = no) = 3/5$$

$$P(color = 3 \mid y = yes) = 1/2$$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$P(y = yes) = 2/5$$

$$P(y = no) = 3/5$$

$$P(color = 3 \mid y = yes) = 1/2$$

$$f(y \mid color = 3, weight = 3) \rightarrow$$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$P(y = yes) = 2/5$$

$$P(y = no) = 3/5$$

$$P(color = 3 \mid y = yes) = 1/2$$

$$f(y \mid color = 3, weight = 3) \rightarrow P(color = 3 \mid y = yes)P(weight = 3 \mid y = yes)P(y = yes) = 0.5 \times 0.5 \times 0.4 = 0.1$$
$$P(color = 3 \mid y = no)P(weight = 3 \mid y = no)P(y = no) = 0.33 \times 0.33 \times 0.6 = 0.06$$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$P(y = yes) = 2/5$$

$$P(y = no) = 3/5$$

$$P(color = 3 \mid y = yes) = 1/2$$

$$f(y \mid color = 3, weight = 3) \rightarrow P(color = 3 \mid y = yes)P(weight = 3 \mid y = yes)P(y = yes) = 0.5 \times 0.5 \times 0.4 = 0.1$$
$$P(color = 3 \mid y = no)P(weight = 3 \mid y = no)P(y = no) = 0.33 \times 0.33 \times 0.6 = 0.06$$

$$f(y \mid color = 0, weight = 1) \rightarrow$$

color={0,1,2,3} weight={0,1,2,3,4}

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$P(y = yes) = 2/5$$

$$P(y = no) = 3/5$$

$$P(color = 3 \mid y = yes) = 1/2$$

 $f(y \mid color = 3, weight = 3) \rightarrow P(color = 3 \mid y = yes)P(weight = 3 \mid y = yes)P(y = yes) = 0.5 \times 0.5 \times 0.4 = 0.1$ $P(color = 3 \mid y = no)P(weight = 3 \mid y = no)P(y = no) = 0.33 \times 0.33 \times 0.6 = 0.06$

$$f(y \mid color = 0, weight = 1) \rightarrow$$

$$P(color = 0 \mid y = yes)P(weight = 1 \mid y = yes)P(y = yes) = 0$$

$$P(color = 0 \mid y = no)P(weight = 1 \mid y = no)P(y = no) = 0$$

color={0,1,2,3} weight={0,1,2,3,4}

color	weight	sweet?		
				color
3	4	yes		0
2	3	yes		U
			+	1
0	3	no		2
3	2	no		2
				3
1	4	no		

smoothed (Laplacian correction) probabilities:

$$P(color = 0 \mid y = yes) = (0+1)/(2+4)$$
$$P(y = yes) = (2+1)/(5+2)$$

for counting frequency, assume every event has happened once.

sweet?

yes

yes

yes

yes

$$f(y \mid color = 0, weight = 1) \rightarrow$$

$$P(color = 0 \mid y = yes)P(weight = 1 \mid y = yes)P(y = yes) = \frac{1}{6} \times \frac{1}{7} \times \frac{3}{7} = 0.01$$

$$P(color = 0 \mid y = no)P(weight = 1 \mid y = no)P(y = no) = \frac{2}{7} \times \frac{1}{8} \times \frac{4}{7} = 0.02$$

advantages: very fast: scan the data once, just count: O(mn)store class-conditional probabilities: O(n)test an instance: O(cn) (*c* the number of classes) good accuracy in many cases parameter free output a probability naturally handle multi-class disadvantages:

advantages: very fast: scan the data once, just count: O(mn)store class-conditional probabilities: O(n)test an instance: O(cn) (*c* the number of classes) good accuracy in many cases parameter free output a probability naturally handle multi-class disadvantages: the strong assumption may harm the accuracy

does not handle numerical features naturally