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learning of convolutional networks, won 11% of games against Pachi23 
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation, 
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30
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Ideally, we would like to know the optimal value function under 
perfect play v*(s); in practice, we instead estimate the value function 

ρv p  for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ, 

⁎( )≈ ( )≈ ( )θ ρv s v s v sp . This neural network has a similar architecture  
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to 
minimize the mean squared error (MSE) between the predicted value 
vθ(s), and the corresponding outcome z
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The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that 
successive positions are strongly correlated, differing by just one stone, 
but the regression target is shared for the entire game. When trained 
on the KGS data set in this way, the value network memorized the 
game outcomes rather than generalizing to new positions, achieving a 
minimum MSE of 0.37 on the test set, compared to 0.19 on the training 
set. To mitigate this problem, we generated a new self-play data set 
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and 
itself until the game terminated. Training on this data set led to MSEs 
of 0.226 and 0.234 on the training and test set respectively, indicating 
minimal overfitting. Figure 2b shows the position evaluation accuracy 
of the value network, compared to Monte Carlo rollouts using the fast 
rollout policy pπ; the value function was consistently more accurate. 
A single evaluation of vθ(s) also approached the accuracy of Monte 
Carlo rollouts using the RL policy network pρ, but using 15,000 times 
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge  

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a), 
and prior probability P(s, a). The tree is traversed by simulation (that 
is, descending the tree in complete games without backup), starting 
from the root state. At each time step t of each simulation, an action at 
is selected from state st
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that is proportional to the prior probability but decays with  
repeated visits to encourage exploration. When the traversal reaches a 
leaf node sL at step L, the leaf node may be expanded. The leaf position 
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,  
( )= ( | )σP s a p a s,  . The leaf node is evaluated in two very different ways: 

first, by the value network vθ(sL); and second, by the outcome zL of a 
random rollout played out until terminal step T using the fast rollout 
policy pπ; these evaluations are combined, using a mixing parameter 
λ, into a leaf evaluation V(sL)

λ λ( )= ( − ) ( )+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all 
traversed edges are updated. Each edge accumulates the visit count and 
mean evaluation of all simulations passing through that edge
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where sL
i  is the leaf node from the ith simulation, and 1(s, a, i) indicates 

whether an edge (s, a) was traversed during the ith simulation. Once 
the search is complete, the algorithm chooses the most visited move 
from the root position.

It is worth noting that the SL policy network pσ performed better in 
AlphaGo than the stronger RL policy network pρ, presumably because 
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function 
( )≈ ( )θ ρv s v sp  derived from the stronger RL policy network performed 

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation 
traverses the tree by selecting the edge with maximum action value Q, 
plus a bonus u(P) that depends on a stored prior probability P for that 
edge. b, The leaf node may be expanded; the new node is processed once 
by the policy network pσ and the output probabilities are stored as prior 
probabilities P for each action. c, At the end of a simulation, the leaf node 

is evaluated in two ways: using the value network vθ; and by running 
a rollout to the end of the game with the fast rollout policy pπ, then 
computing the winner with function r. d, Action values Q are updated to 
track the mean value of all evaluations r(·) and vθ(·) in the subtree below 
that action.
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s
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We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25
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We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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1956  Dartmouth meeting: “Artificial Intelligence” adopted  

John McCarthy 
Marvin Minsky     

Claude Shannon 

Oliver Selfridge 

Herbert A. Simon 

Allen Newell

Turing Award (1971) 

Turing Award (1969) 

the father of information theory 

father of machine perception 

Turing Award (1975), Nobel Prize in Economics (1978) 

Turing Award (1975)



Alan Turing 
1912-1954

[Computing machinery and intelligence. Mind 49: 433-460, 1950.]

Section 1: Imitation game
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Alan Turing 
1912-1954

[Computing machinery and intelligence. Mind 49: 433-460, 1950.]
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“In the process of trying to imitate an adult human mind we
 are bound to think agood deal about the process which has brou
ght it to the state that it is in. We maynotice three components. 

(a) The initial state of the mind, say at birth,  
(b) The education to which it has been subjected,  
(c) Other experience, not to be described as education, to w

hich it has beensubjected.” 
Instead of trying to produce a programme to simulate the a

dult mind, why not rather  try  to produce  one which  simulates  
the child's?

Section 7: Learning machines



History

推理期

知识期
学习期

AI之冬
AI之冬

“解决了神秘的心/身问题，解释了物质构成的系统如何获得心灵的性质。” 
“十年之内，数字计算机将成为国际象棋世界冠军。”  
“二十年内，机器将能完成人能做到的一切工作。” 
“一代之内……创造‘人工智能’的问题将获得实质上的解决。” 
“在三到八年的时间里我们将得到一台具有人类平均智能的机器。”

Allen Newell

Marvin Minsky
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201620061998

90年代
中期

19861957

80年代
初期

60-70
年代

1956

AI

1950



Potted history of AI 

1943 McCulloch & Pitts: Boolean circuit model of brain  
1950 Turing’s “Computing Machinery and Intelligence” 
1952–69 Look, Ma, no hands!  
1950s Early AI programs, including Samuel’s checkers program, Newell & 
Simon’s Logic Theorist, Gelernter’s Geometry Engine 
1956 Dartmouth meeting: “Artificial Intelligence” adopted  
1965 Robinson’s complete algorithm for logical reasoning  
1966–74 AI discovers computational complexity 

Neural network research almost disappears  
1969–79 Early development of knowledge-based systems  
1980–88 Expert systems industry booms  
1988–93 Expert systems industry busts: “AI Winter”  
1985–95 Neural networks return to popularity  
1988– Resurgence of probability; general increase in technical depth 

“Nouvelle AI”: ALife, GAs, soft computing 
1995– Agents, agents, everywhere . . .  
1990– Machine learning quickly develops
2003– Human-level AI back on the agenda
2006– Machine learning industry booms 
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What is intelligence?

The uncertain about intelligence is a 
fundamental problem of AI 



What is AI?

AI is a system that

think like humans think rationally

act like humans act rationally

human or non-human ?
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Thinking humanly: Cognitive Science Thinking humanly: Cognitive Science

1960s “cognitive revolution”: information-processing psychology replaced
prevailing orthodoxy of behaviorism

Requires scientific theories of internal activities of the brain
– What level of abstraction? “Knowledge” or “circuits”?
– How to validate? Requires

1) Predicting and testing behavior of human subjects (top-down)
or 2) Direct identification from neurological data (bottom-up)

Both approaches (roughly, Cognitive Science and Cognitive Neuroscience)
are now distinct from AI

Both share with AI the following characteristic:
the available theories do not explain (or engender)
anything resembling human-level general intelligence

Hence, all three fields share one principal direction!

Chapter 1 5



Acting humanly: The Turing test Acting humanly: The Turing test

Turing (1950) “Computing machinery and intelligence”:
♦ “Can machines think?” −→ “Can machines behave intelligently?”
♦ Operational test for intelligent behavior: the Imitation Game

AI SYSTEM

HUMAN

?        HUMAN
INTERROGATOR

♦ Predicted that by 2000, a machine might have a 30% chance of
fooling a lay person for 5 minutes

♦ Anticipated all major arguments against AI in following 50 years
♦ Suggested major components of AI: knowledge, reasoning, language

understanding, learning

Problem: Turing test is not reproducible, constructive, or
amenable to mathematical analysis

Chapter 1 4



Thinking rationally: Laws of Thought Thinking rationally: Laws of Thought

Normative (or prescriptive) rather than descriptive

Aristotle: what are correct arguments/thought processes?

Several Greek schools developed various forms of logic:
notation and rules of derivation for thoughts;

may or may not have proceeded to the idea of mechanization

Direct line through mathematics and philosophy to modern AI

Problems:
1) Not all intelligent behavior is mediated by logical deliberation
2) What is the purpose of thinking? What thoughts should I have

out of all the thoughts (logical or otherwise) that I could have?

Chapter 1 6



Acting rationally 
Acting rationally

Rational behavior: doing the right thing

The right thing: that which is expected to maximize goal achievement,
given the available information

Doesn’t necessarily involve thinking—e.g., blinking reflex—but
thinking should be in the service of rational action

Aristotle (Nicomachean Ethics):
Every art and every inquiry, and similarly every
action and pursuit, is thought to aim at some good

Chapter 1 7
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AI IS BLOOMING 

HOPE YOU ENJOY 

THANK YOU ALL!


