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The importance of features

color

shape

weight

place of origin

assortment

transport

preservation

growing period

weather

taste ?



The importance of features

features determine the instance distribution
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good features lead to better learning results



Feature processing

feature selection 

feature extraction

a good feature set is more important 
than a good classifier



Feature selection

To select a set of good features from 
a given feature set

Improve learning performance 
reduce classification error

Reduce the time/space complexity of learning

Improve the interpretability 

Better data visualization 

Saving the cost of observing features



Feature selection

original features

selected features

evaluation criterionsearch method



Evaluation criteria

classifier independent

classifier dependent

dependency based criteria 

information based criteria 

distance based criteria 

classifier internal weighting

< x,f(x) >

f ’< x,f(x) > algorithm



Dependency based criteria

How a feature set is related with the class

color

shape

weight

place of origin

assortment

transport

preservation

growing period

weather
taste ?

high co
rre

latio
n

high correlation

low correlation

correlation between a feature and the class 
correlation between two features 
search: select high correlated low redundant features



I(X; split) =
X

j

#partition j

#all
H(partition j)

Information based criteria

How much a feature set provides 
information about the class

Information gain:

H(X) = �
X

i

pi ln(pi)Entropy:

Entropy after split:

Information gain: H(X)-I(X;split)



1: F = original feature sets, C is the class label
2: S = ;
3: loop
4: a = the best correlated/informative feature in F
5: v = the correlation/IG of a
6: if v < ✓ then
7: break
8: end if
9: F = F/{a}

10: S = S [ {a}
11: end loop
12: return S

A simple forward search

sequentially add the next best feature



1: F = original feature sets, C is the class label
2: S = ;
3: loop
4: a = the best correlated/informative feature in F
5: v = the correlation/IG of a
6: if v < ✓ then
7: break
8: end if
9: F = F/{a}

10: S = S [ {a}
11: for a0 2 F do
12: v0 = the correlation/IG of a0 to a
13: if v0 > ↵ · v then F = F/{a0}
14: end if
15: end for
16: end loop
17: return S

A simple forward search

remove 
redundant 
features



Distance based criteria

Examples in the same class should be near 
Examples in different classes should be far
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within class distant

cross-class distant

select features to optimize the distance 



w = 0

x

u

v

Distance based criteria

Relief: feature weighting based on distance
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1. random select an instance x 

2. find the nearest same-class 
instance u (according to w) 

3. find the nearest diff-class 
instance v (according w) 

4.  

5. goto 1 for m times

w = w � |x� u|+ |x� v|

select the features whose weights are above a threshold



Feature weighting from classifiers

Many classification algorithms perform 
feature selection and weighting internally

decision tree: select a set of features by recursive IG 

random forest: weight features by the frequency of 
using a feature 

linear model: a natural feature weighting

select features from these models’ internal feature 
weighting

note the difference to FS for classification



Classifier dependent feature selection

f ’< x,f(x) > algorithm

select features to maximize the performance of 
the following learning task

slow in speed 
hard to search 
hard to generalize the selection results 

more accurate learning result



F = original feature set
S = ;
perf-so-far = the worst performance value
loop

for a 2 F do
v(a) = the performance given features S [ {a}

end for
ma = the best feature
mv = v(ma)
if mv is worse than perf-so-far then

break
end if
S = S [ma
perf-so-far = mv

end loop
return S

Classifier dependent feature selection

Sequential forward search:  
add features one-by-one



F = original feature set
perf-so-far = the performance given features F
loop

for a 2 F do
v(a) = the performance given features F/{a}

end for
ma = the best feature to remove
mv = v(ma)
if mv is worse than perf-so-far then

break
end if
F = F/{ma}
perf-so-far = mv

end loop
return S

Classifier dependent feature selection

Sequential backward search: 
remove features one-by-one



Classifier dependent feature selection

empty

1 32

2,1 2,3

2,3,1

1,2,3

1,2 2,3 1,3

2 3

forward backward

faster more accurate



Classifier dependent feature selection

1,2,3

1,2 2,3 1,3

2,3,6 2,3,7

combined forward-backward search

random init

backward

forward 2,3,5

backward 2,3 3,6 2,6

...



Feature extraction

disclosure the inner structure of the data 
to support a better learning performance

feature extraction construct new features

commonly followed by a feature selection

usually used for low-level features

digits bitmap:



Linear methods

Principal components analysis (PCA)

rotate the data to align the directions of 
the variance



Linear methods

Principal components analysis (PCA)

the first dimension = the largest variance direction

6.3 Principal Components Analysis 113

6.3 Principal Components Analysis

In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis
it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ∥w1∥ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 − α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we
have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
w2

wT
2Σw2 − α(wT

2w2 − 1) − β(wT
2w1 − 0)(6.7)
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6.3 Principal Components Analysis

In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis
it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ∥w1∥ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 − α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we
have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
w2

wT
2Σw2 − α(wT

2w2 − 1) − β(wT
2w1 − 0)(6.7)

find a unit w to maximize the 
variance
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6.3 Principal Components Analysis

In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis
it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ∥w1∥ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have
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have
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which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
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The second principal component, w2, should also maximize variance,
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6.3 Principal Components Analysis

In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis
it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ∥w1∥ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 − α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we
have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
w2

wT
2Σw2 − α(wT

2w2 − 1) − β(wT
2w1 − 0)(6.7)

w is the eigenvector with the largest eigenvalue



Linear methods

Principal components analysis (PCA)

the second dimension = the largest variance 
direction orthogonal to the first dimension

w’s are the eigenvectors sorted by the eigenvalues
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In projection methods, we are interested in finding a mapping from the
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space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components
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it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ∥w1∥ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 − α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we
have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
w2

wT
2Σw2 − α(wT

2w2 − 1) − β(wT
2w1 − 0)(6.7)

114 6 Dimensionality Reduction

Taking the derivative with respect to w2 and setting it equal to 0, we
have

2Σw2 − 2αw2 − βw1 = 0(6.8)

Premultiply by wT
1 and we get

2wT1Σw2 − 2αwT
1w2 − βwT

1w1 = 0

Note that wT1w2 = 0. wT
1Σw2 is a scalar, equal to its transpose wT

2Σw1

where, because w1 is the leading eigenvector of Σ, Σw1 = λ1w1. There-
fore

wT1Σw2 = wT2Σw1 = λ1w
T
2w1 = 0

Then β = 0 and equation 6.8 reduces to

Σw2 = αw2

which implies that w2 should be the eigenvector of Σ with the second
largest eigenvalue, λ2 = α. Similarly, we can show that the other dimen-
sions are given by the eigenvectors with decreasing eigenvalues.

Because Σ is symmetric, for two different eigenvalues, the eigenvectors
are orthogonal. If Σ is positive definite (xTΣx > 0, for all nonnull x), then
all its eigenvalues are positive. If Σ is singular, then its rank, the effective
dimensionality, is k with k < d and λi , i = k+ 1, . . . , d are 0 (λi are sorted
in descending order). The k eigenvectors with nonzero eigenvalues are
the dimensions of the reduced space. The first eigenvector (the one with
the largest eigenvalue), w1, namely, the principal component, explains
the largest part of the variance; the second explains the second largest;
and so on.

We define

z =WT (x −m)(6.9)

where the k columns of W are the k leading eigenvectors of S, the esti-
mator to Σ. We subtract the sample mean m from x before projection
to center the data on the origin. After this linear transformation, we get
to a k-dimensional space whose dimensions are the eigenvectors, and the
variances over these new dimensions are equal to the eigenvalues (see
figure 6.1). To normalize variances, we can divide by the square roots of
the eigenvalues.
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Linear methods

from [Intro. ML]



Linear methods
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Figure 6.2 (a) Scree graph. (b) Proportion of variance explained is given for the
Optdigits dataset from the UCI Repository. This is a handwritten digit dataset
with ten classes and sixty-four dimensional inputs. The first twenty eigenvectors
explain 90 percent of the variance.

use the eigenvectors of the correlation matrix, R, instead of the covari-
ance matrix, S, for the correlations to be effective and not the individual
variances.

PCA explains variance and is sensitive to outliers: A few points distant
from the center would have a large effect on the variances and thus the
eigenvectors. Robust estimation methods allow calculating parameters in
the presence of outliers. A simple method is to calculate the Mahalanobis
distance of the data points, discarding the isolated data points that are
far away.

If the first two principal components explain a large percentage of the
variance, we can do visual analysis: We can plot the data in this two di-

from [Intro. ML]



argmin
W

X

i,j

(kx>
i W � x>

j Wk � kxi � xjk)2

Linear methods

Multidimensional Scaling (MDS)

keep the distance into a lower dimensional space

for linear transformation, 
W is an n*k matrix



Linear methods

126 6 Dimensionality Reduction
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Figure 6.6 Map of Europe drawn by MDS. Pairwise road travel distances be-
tween these cities are given as input, and MDS places them in two dimensions
such that these distances are preserved as well as possible.

two points r and s, the squared Euclidean distance between them is

d2
rs = ∥xr − xs∥2 =

d
∑

j=1

(xrj − xsj)2 =
d
∑

j=1

(xrj)
2 − 2

d
∑

j=1

xrjx
s
j +

d
∑

j=1

(xsj)
2

= brr + bss − 2brs(6.24)

where brs is defined as

brs =
d
∑

j=1

xrjx
s
j(6.25)

To constrain the solution, we center the data at the origin and assume

N
∑

t=1

xtj = 0,∀j = 1, . . . , d

from [Intro. ML]



Linear methods

Linear Discriminant Analysis (LDA)

find a direction such that the 
two classes are well separated
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6.3 Principal Components Analysis

In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis
it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ∥w1∥ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 − α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we
have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
w2

wT
2Σw2 − α(wT

2w2 − 1) − β(wT
2w1 − 0)(6.7)

m be the mean of a class 
s2 be the variance of a class
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Figure 6.7 Two-dimensional, two-class data projected on w.

m1 and m1 are the means of samples from C1 before and after projec-
tion, respectively. Note thatm1 ∈ ℜd andm1 ∈ ℜ. We are given a sample
X = {xt , r t} such that r t = 1 if xt ∈ C1 and r t = 0 if xt ∈ C2.

m1 =
∑

t w
Txtr t

∑

t r t
= wTm1

m2 =
∑

t w
Txt(1−r t )

∑

t(1−r t )
= wTm2(6.31)

The scatter of samples from C1 and C2 after projection arescatter

s2
1 =

∑

t

(wTxt −m1)
2r t

s2
2 =

∑

t

(wTxt −m2)
2(1−r t)(6.32)

After projection, for the two classes to be well separated, we would like
the means to be as far apart as possible and the examples of classes be
scattered in as small a region as possible. So we want |m1 −m2| to be
large and s2

1 + s2
2 to be small (see figure 6.7). Fisher’s linear discriminantFisher’s linear

discriminant is w that maximizes

J(w) = (m1 −m2)2

s2
1 + s2

2

(6.33)

maximize the criterion
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130 6 Dimensionality Reduction

Rewriting the numerator, we get

(m1 −m2)
2 = (wTm1 −wTm2)

2

= wT (m1 −m2)(m1 −m2)
Tw

= wTSBw(6.34)

where SB = (m1−m2)(m1−m2)
T is the between-class scatter matrix. Thebetween-class

scatter matrix denominator is the sum of scatter of examples of classes around their
means after projection and can be rewritten as

s2
1 =

∑

t

(wTxt −m1)
2r t

=
∑

t

wT (xt −m1)(x
t −m1)

Twr t

= wTS1w(6.35)

where

S1 =
∑

t

r t (xt −m1)(x
t −m1)

T(6.36)

is the within-class scatter matrix for C1. S1/
∑

t r
t is the estimator of Σ1.within-class

scatter matrix Similarly, s2
2 = wTS2w with S2 =

∑

t (1 − rt )(xt −m2)(xt −m2)T , and we
get

s2
1 + s2

2 = wTSWw

where SW = S1 + S2 is the total within-class scatter. Note that s2
1 + s2

2

divided by the total number of samples is the variance of the pooled
data. Equation 6.33 can be rewritten as

J(w) = wTSBw

wTSWw
= |w

T (m1 −m2)|2
wTSWw

(6.37)

Taking the derivative of J with respect to w and setting it equal to 0, we
get

wT (m1 −m2)

wTSWw

(

2(m1 −m2)−
wT (m1 −m2)

wTSWw
SWw

)

= 0

Given that wT (m1 −m2)/w
TSWw is a constant, we have

w = cS−1
W (m1 −m2)(6.38)

where c is some constant. Because it is the direction that is important for
us and not the magnitude, we can just take c = 1 and find w.
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Figure 6.7 Two-dimensional, two-class data projected on w.

m1 and m1 are the means of samples from C1 before and after projec-
tion, respectively. Note thatm1 ∈ ℜd andm1 ∈ ℜ. We are given a sample
X = {xt , r t} such that r t = 1 if xt ∈ C1 and r t = 0 if xt ∈ C2.

m1 =
∑

t w
Txtr t

∑

t r t
= wTm1

m2 =
∑

t w
Txt(1−r t )

∑

t(1−r t )
= wTm2(6.31)

The scatter of samples from C1 and C2 after projection arescatter

s2
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(wTxt −m1)
2r t

s2
2 =
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t

(wTxt −m2)
2(1−r t)(6.32)

After projection, for the two classes to be well separated, we would like
the means to be as far apart as possible and the examples of classes be
scattered in as small a region as possible. So we want |m1 −m2| to be
large and s2

1 + s2
2 to be small (see figure 6.7). Fisher’s linear discriminantFisher’s linear

discriminant is w that maximizes

J(w) = (m1 −m2)2

s2
1 + s2

2

(6.33)

130 6 Dimensionality Reduction

Rewriting the numerator, we get

(m1 −m2)
2 = (wTm1 −wTm2)

2

= wT (m1 −m2)(m1 −m2)
Tw

= wTSBw(6.34)

where SB = (m1−m2)(m1−m2)
T is the between-class scatter matrix. Thebetween-class

scatter matrix denominator is the sum of scatter of examples of classes around their
means after projection and can be rewritten as

s2
1 =

∑

t

(wTxt −m1)
2r t

=
∑

t

wT (xt −m1)(x
t −m1)

Twr t

= wTS1w(6.35)

where

S1 =
∑

t

r t (xt −m1)(x
t −m1)

T(6.36)

is the within-class scatter matrix for C1. S1/
∑

t r
t is the estimator of Σ1.within-class

scatter matrix Similarly, s2
2 = wTS2w with S2 =

∑

t (1 − rt )(xt −m2)(xt −m2)T , and we
get

s2
1 + s2

2 = wTSWw

where SW = S1 + S2 is the total within-class scatter. Note that s2
1 + s2

2

divided by the total number of samples is the variance of the pooled
data. Equation 6.33 can be rewritten as

J(w) = wTSBw

wTSWw
= |w

T (m1 −m2)|2
wTSWw

(6.37)

Taking the derivative of J with respect to w and setting it equal to 0, we
get

wT (m1 −m2)

wTSWw

(

2(m1 −m2)−
wT (m1 −m2)

wTSWw
SWw

)

= 0

Given that wT (m1 −m2)/w
TSWw is a constant, we have

w = cS−1
W (m1 −m2)(6.38)

where c is some constant. Because it is the direction that is important for
us and not the magnitude, we can just take c = 1 and find w.

The objective becomes:
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After projection, for the two classes to be well separated, we would like
the means to be as far apart as possible and the examples of classes be
scattered in as small a region as possible. So we want |m1 −m2| to be
large and s2

1 + s2
2 to be small (see figure 6.7). Fisher’s linear discriminantFisher’s linear

discriminant is w that maximizes

J(w) = (m1 −m2)2

s2
1 + s2

2

(6.33)
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where c is some constant. Because it is the direction that is important for
us and not the magnitude, we can just take c = 1 and find w.

The objective becomes:
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Example: Face recognition

[image from http://commons.wikimedia.org/wiki/File:Fisherface_eigenface_laplacianface.GIF]

Basis of eigenface (PCA):

Basis of Fisherface (LDA):

PCA and LDA are commonly used to extract features 
for face recognition.

http://commons.wikimedia.org/wiki/File:Fisherface_eigenface_laplacianface.GIF


Manifold learning



Manifold learning

A low intrinsic dimensional data embedded in a 
high dimensional space

cause a bad distance measure



Manifold learning

ISOMAP

1. construct a neighborhood 
graph (kNN and 𝜀-NN) 

2. calculate distance matrix 
as the shortest path on the 
graph 

3. apply MDS on the distance 
matrix



Manifold learning
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1. find neighbors for each instance 

2. calculate a linear reconstruction for an instance 

3. find low dimensional instances preserving the 
reconstruction

Manifold learning

Local Linear Embedding (LLE)：

6.8 Locally Linear Embedding 135

to the dataset and the whole algorithm needs to be run once more using
N + 1 instances.

6.8 Locally Linear Embedding

Locally linear embedding (LLE) recovers global nonlinear structure fromlocally linear

embedding locally linear fits (Roweis and Saul 2000). The idea is that each local
patch of the manifold can be approximated linearly and given enough
data, each point can be written as a linear, weighted sum of its neighbors
(again either defined using a given number of neighbors, n, or distance
threshold, ϵ). Given xr and its neighbors xs(r) in the original space, one
can find the reconstruction weights Wrs that minimize the error function

Ew(W|X) =
∑

r

∥xr −
∑

s

Wrsx
s
(r)∥2(6.45)

using least squares subject to Wrr = 0,∀r and
∑

s Wrs = 1.
The idea in LLE is that the reconstruction weights Wrs reflect the in-

trinsic geometric properties of the data that we expect to be also valid
for local patches of the manifold, that is, the new space we are mapping
the instances to (see figure 6.10). The second step of LLE is hence to now
keep the weights Wrs fixed and let the new coordinates zr take what-
ever values they need respecting the interpoint constraints given by the
weights:

Ez(Z|W) =
∑

r

∥zr −
∑

s

Wrsz
s∥2(6.46)

Nearby points in the original, d-dimensional space should remain nearby
and similarly colocated with respect to one another in the new, k-dimensional
space. Equation 6.46 can be rewritten as

Ez(Z|W) =
∑

r ,s

Mrs(z
r )Tzs(6.47)

where

Mrs = δrs − Wrs − Wsr +
∑

i

WirWis(6.48)

M is sparse (only a small percentage of data points are neighbors of a
data point: n ≪ N), symmetric, and positive semidefinite. As in other
dimensionality reduction methods, we require that the data be centered
at the origin, E[z] = 0, and that the new coordinates be uncorrelated
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to the dataset and the whole algorithm needs to be run once more using
N + 1 instances.

6.8 Locally Linear Embedding

Locally linear embedding (LLE) recovers global nonlinear structure fromlocally linear

embedding locally linear fits (Roweis and Saul 2000). The idea is that each local
patch of the manifold can be approximated linearly and given enough
data, each point can be written as a linear, weighted sum of its neighbors
(again either defined using a given number of neighbors, n, or distance
threshold, ϵ). Given xr and its neighbors xs(r) in the original space, one
can find the reconstruction weights Wrs that minimize the error function

Ew(W|X) =
∑

r

∥xr −
∑

s

Wrsx
s
(r)∥2(6.45)

using least squares subject to Wrr = 0,∀r and
∑

s Wrs = 1.
The idea in LLE is that the reconstruction weights Wrs reflect the in-

trinsic geometric properties of the data that we expect to be also valid
for local patches of the manifold, that is, the new space we are mapping
the instances to (see figure 6.10). The second step of LLE is hence to now
keep the weights Wrs fixed and let the new coordinates zr take what-
ever values they need respecting the interpoint constraints given by the
weights:

Ez(Z|W) =
∑

r

∥zr −
∑

s

Wrsz
s∥2(6.46)

Nearby points in the original, d-dimensional space should remain nearby
and similarly colocated with respect to one another in the new, k-dimensional
space. Equation 6.46 can be rewritten as

Ez(Z|W) =
∑

r ,s

Mrs(z
r )Tzs(6.47)

where

Mrs = δrs − Wrs − Wsr +
∑

i

WirWis(6.48)

M is sparse (only a small percentage of data points are neighbors of a
data point: n ≪ N), symmetric, and positive semidefinite. As in other
dimensionality reduction methods, we require that the data be centered
at the origin, E[z] = 0, and that the new coordinates be uncorrelated



Manifold learning
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Manifold learning

more manifold learning examples



Manifold learning

more manifold learning examples



Features from neural networks

Neural network can learn some 
presentation of the data

supervised learning NN:  
intermediate layer as features

unsupervised learning NN:  
bottleneck layer as features



CNN

Convolutional Neural Networks (CNN/LeNet)

[image from http://deeplearning.net/tutorial/lenet.html]

for general image feature extraction

http://deeplearning.net/tutorial/lenet.html


CNN

Convolution layer

[image from http://deeplearning.net/tutorial/lenet.html]

sparse connectivity shared weights

http://deeplearning.net/tutorial/lenet.html


CNN

Subsampling layer

[image from http://deeplearning.net/tutorial/lenet.html]

http://deeplearning.net/tutorial/lenet.html


CNN

Convolutional Neural Networks (CNN/LeNet)

[image from http://deeplearning.net/tutorial/lenet.html]

for general image feature extraction

http://deeplearning.net/tutorial/lenet.html


Activation functions (con’t)

And many more …



CNN
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CONV
ReLU

CONV
ReLU

POOLCONV
ReLU

CONV
ReLU

POOL CONV
ReLU

CONV
ReLU

POOL FC
(Fully-connected)



Autoencoder

autoencoder

[image from [G. E. Hinton and R. R. Salakhutdinov, Science 2006]]

restricted Boltzmann machine 
a type of associative memory network

stacked autoencoder



Autoencoder

autoencoder

[image from [G. E. Hinton and R. R. Salakhutdinov, Science 2006]]

PCA autoencoder



A summary of approaches

from [Intro. ML]

feature processing

feature selection feature extraction

filter wrapper

correlation
search 

methods

information

distance

classifier

PCA

MDS

LDA

Manifold
unsupervised

Autoencoder

CNN


