[:uﬂ j] z J,\ ;jji Data I\/Iining for M.Sc. students, CS, Nanjing University
et NANJING UNIVERSITY Fa”, 2012, Yang Yu

Mini Lecture:
Experiment Design and Analysis

http://cs.nju.edu.cn/yuy/course_dml2.ashx

A2




A common mining system structure
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In experiment stage, we
don’t have the future data

How do we evaluate our algorithms and models?



A wrong way!
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Never use the training data to evaluate your algorithm
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A right way

split the training data into non-overlap parts
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In other words, you should simulate the real situation



A right way

split the training data into non-overlap parts
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Randomness!

Use many different splits of the training data

and report the average performance



A right way

k-fold cross-validation

Obsprved |Data
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1st fold: leave the 1st block as the test data
2nd fold: leave the 2nd block as the test data

ig-st fold: leave the k-st block as the test data

n-times k-fold cross-validation

hold-one-out

=n-fold cross-validation

(n is the number of training instances)
m-times hold-k%-out

sampling k% data as the test data



Performance comparison

“my algorithm has error 11%. It is perfect!”



Performance comparison

@orithm has er@
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“my algorithm has error 11%. It is perfect!”

Comparison with baselines is necessary in
order to show your superior.



Performance comparison

“their stupid algorithm has error 10%, my
cleaver algorithm has error 9%. Mine is better!”



Performance comparison

“their stupid algorithm has error 10%, my
cleaver algorithm has error 9%. Mine is better!”

statistical hypothesis test:
how large is the probability my algorithm is better?

A' 4 A s 7 ~ ra ~
3 Observed| | Observed + Observed Observed| | Observed + Observed Observed| _  |Observed + Observed
ata Sp ]_t Data - Data 1 Data 2 Data - Data 1 Data 2 Data - Data 1 Data 2
7 \ v \ \ i \ .
f \ ( ) (: A r \ ( N —
Observed | J™~ Observed |~ | Observed |~
Data 1 (H L Agorithe .J Datal )‘— { Algorithe .J Data 1 ’“— I\ Agorithe ,]
L ) \ / \ J
my.
y:
7 ~ P . 7 ~\ P . p ~ p i
”{’;ﬁ‘;“’ . \NWIJ - Outpat O:’):‘;;‘:,‘d | Model B Outpat ”:’:;:‘:,‘d | Model B Outpat
\ J Y
= S p N s N p N I3 \ J——
Observed | ™~ Observed |~ | Observed |~
Datal [~ | Algorithm Jl Datal [~ Algorithm J Datal [~ L Algorithm ,]
n
their:
{ ) 7 - 8 A p . s "\ P .
Observed Observed Observed
Data2 |1 | Model ] ? Output Data2 |1 | Model ] : Output Data2 | o | Model | : Outpat
e -~ e J -~




Performance comparison

pair-wise t-test: Gaussian distribution
robability
my: 0091 0.089 0.088 0.090 0.8 P
Y threshold:
their: 0.100 0.088 0.092  0.089  0.095 0.05

(Excel: ttest function)
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(Matlab: ttest function)




