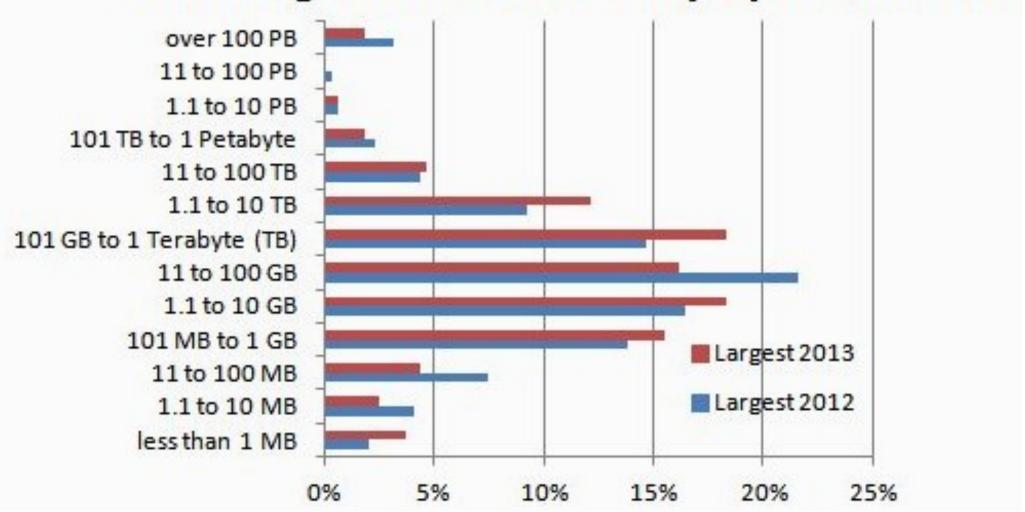


Lecture 10: Data Mining II Handling Large-Scale Data

http://cs.nju.edu.cn/yuy/course_dm14ms.ashx

How large the data can be

2013 Largest Database Analyze/Data Mined



Q: Can we sample a small subset out of the data and analyze the subset?

Why large-scale data matters

Why large-scale data matters

recall from the learning theory:

with probability at least $1 - \delta$

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{m}} (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$

the number of examples

Why matters

Confusion set disambiguation task

He is tallest ____ the students.

A. among

B. between

feature: the set of words in a window of the blank memory-based: the before and the after words

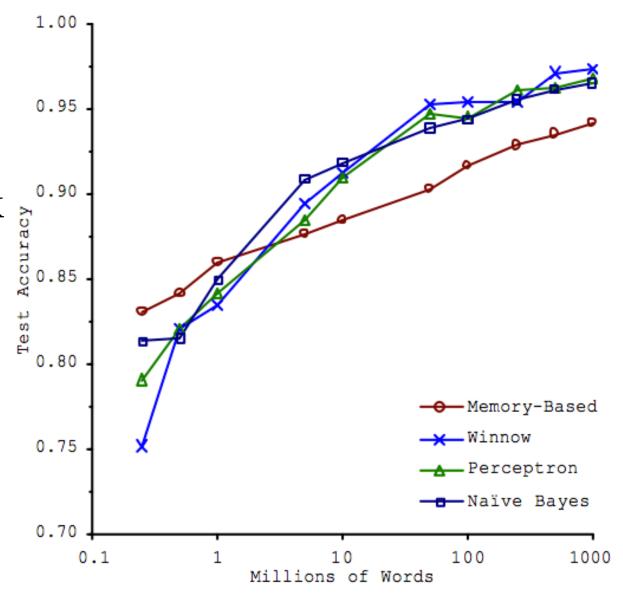


Figure 1. Learning Curves for Confusion Set Disambiguation

[Banko and Brill, ACL01]

Q: Can we sample a small subset out of the data and analyze the subset?

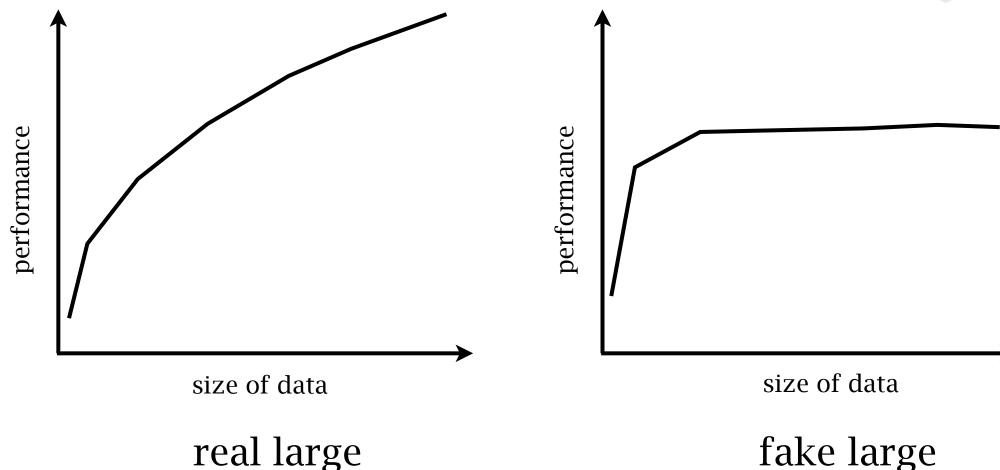
A: No, the data set size strongly related to the analysis quality

Q: Can we sample a small subset out of the data and analyze the subset?

A: No, the data set size strongly related to the analysis quality

Q: Is that always true?

Sampling - check the "largeness"



use a small sample of data is sufficient

Q: Can we sample a small subset out of the data and analyze the subset?

A: No, the data set size strongly related to the analysis quality

Q: Is that always true?

A: No, we should check if the data is really large.

Q: Can we sample a small subset out of the data and analyze the subset?

A: No, the data set size strongly related to the analysis quality

Q: Is that always true?

A: No, we should check if the data is really large.

Q: What's the difficulties in real large data?

Q: Can we sample a small subset out of the data and analyze the subset?

A: No, the data set size strongly related to the analysis quality

Q: Is that always true?

A: No, we should check if the data is really large.

Q: What's the difficulties in real large data?

Time and Space

Alleviate the time difficulty

- Use simple & fast algorithms
- Accelerate algorithms
 - Online/one-pass algorithms
 - Better data structures
 - Randomization and aggregation
- Parallelize algorithms

Using simple algorithms

NANA 1902 UNITED UNITED IN THE PARTY OF THE

Algorithms that run fast

Naive Bayes classifiers

Decision trees

Linear classifiers (without kernel) LibSVM/LibLinear

Online/One-pass algorithms

Batch learning

build a model from a batch of examples

Online learning

examples come as a stream

Naive Bayes Perceptron:

1.
$$w = 0$$

2. for each example if $sign(y\boldsymbol{w}^{\top}\boldsymbol{x}) < 0$ $\boldsymbol{w} = \boldsymbol{w} + \eta y \boldsymbol{x}$

Online/One-pass algorithms

Batch learning

build a model from a batch of examples

Online learning

examples come as a stream

Naive Bayes Perceptron:

1.
$$w = 0$$

2. for each example if
$$sign(y \boldsymbol{w}^{\top} \boldsymbol{x}) < 0$$

$$\boldsymbol{w} = \boldsymbol{w} + \eta y \boldsymbol{x}$$

gradient ascent

$$\frac{\partial y \boldsymbol{w}^{\top} \boldsymbol{x}}{\partial \boldsymbol{w}} = y \boldsymbol{x}$$

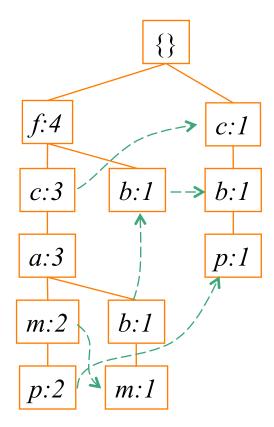
Better data structure

Finding frequent item sets

Apriori

TID	Items
T100	f, a, c, d, g, i, m, p
T200	a, b, c, f, l, m, o
T300	b, f, h, j, o, w
T400	b, c, k, s, p
T500	a, f, c, e, l, p, m, n

FP-Tree



from table jointing to tree structure

Better data structure

Finding nearest neighbors

brute-force: O(n)

kd-tree: $O(\log n)$ on average

cover-tree: $O(\log n)$

[Beygelzimer, et al. ICML'06]

hashing methods for approximate NN search

Locality sensitive hashing

LSH functions:
$$\mathcal{H} = \{h_r\} (r \in \mathbb{B}^n)$$
 where $h_r(x) = \text{sign}(r^\top x)$

$$P(h_{r}(x_1) = h_{r}(x_2)) = 1 - \frac{\theta(x_1, x_2)}{\pi}$$

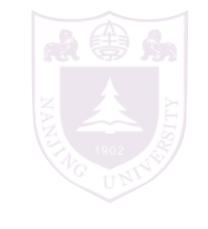
Better data structure

Finding nearest neighbors

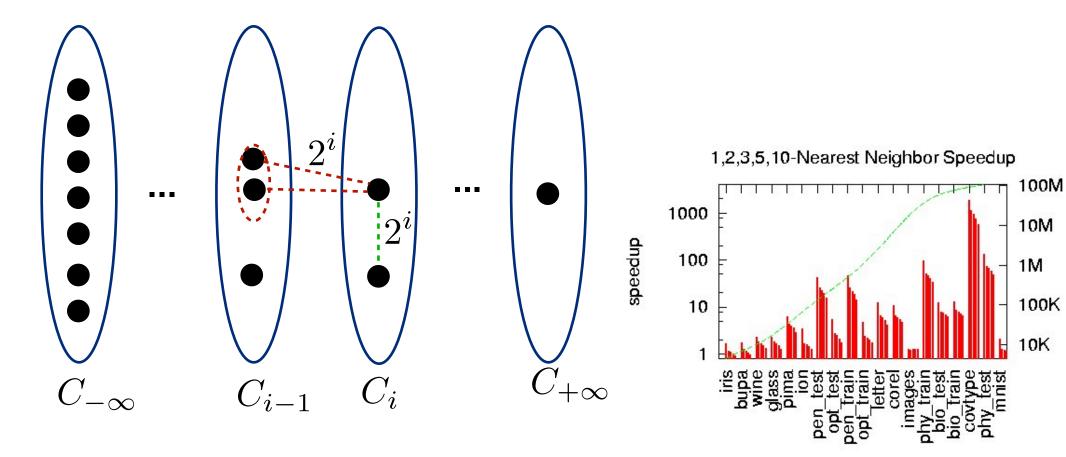
brute-force: O(n)

kd-tree: $O(\log n)$ on average

cover-tree: $O(\log n)$



[Beygelzimer, et al. ICML'06]



gradient decent

calculate gradient over all examples

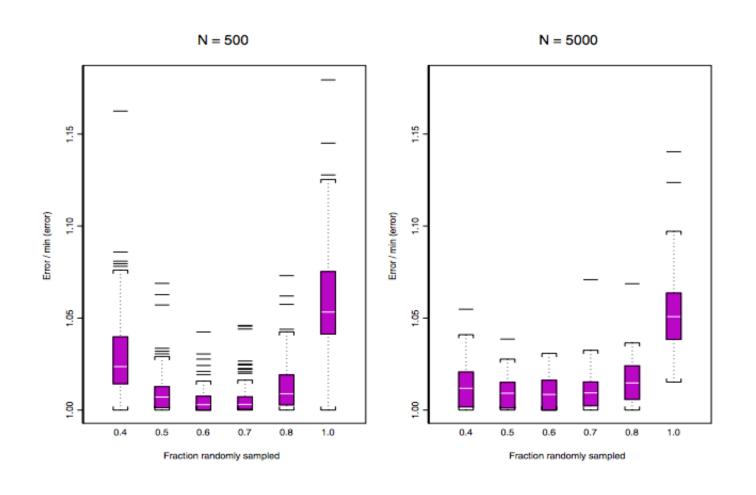
stochastic gradient decent (SGD)

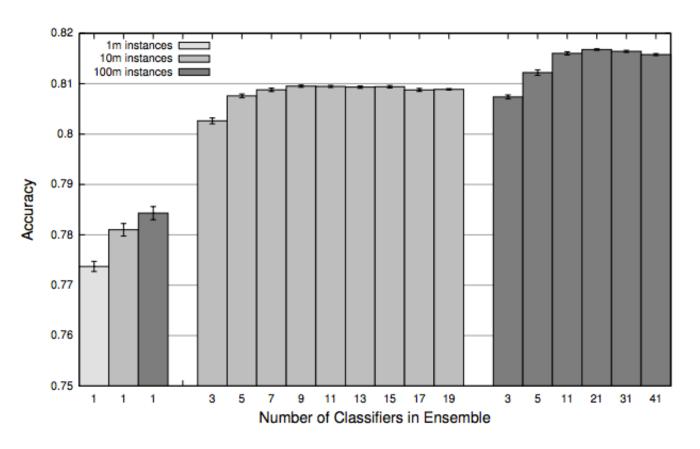
calculate gradient over some examples

average all the intermediate results to reduce variance

optimal model may not necessarily be optimal

stochastic gradient boosting [J. Friedman, JCSDA'02]



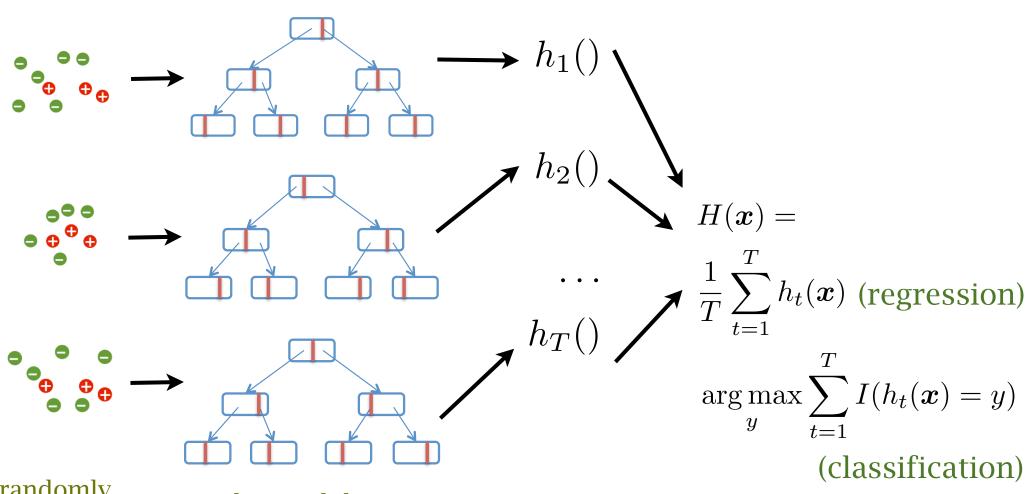


SGD classification

[Lin and Kolcz, SIGMOD'12]

Figure 2: Accuracy of our tweet sentiment polarity classifier on held out test set of 1 million examples. Each bar represents 10 trials of a particular setting, with $\{1, 10, 100\}$ million training examples and varying sizes of ensembles. Error bar denote 95% confidence intervals.

Random forest

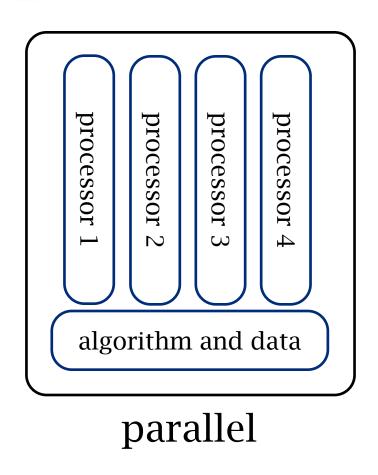


randomly sample data

randomized decision tree

subset fast and parallelizable

Parallelization



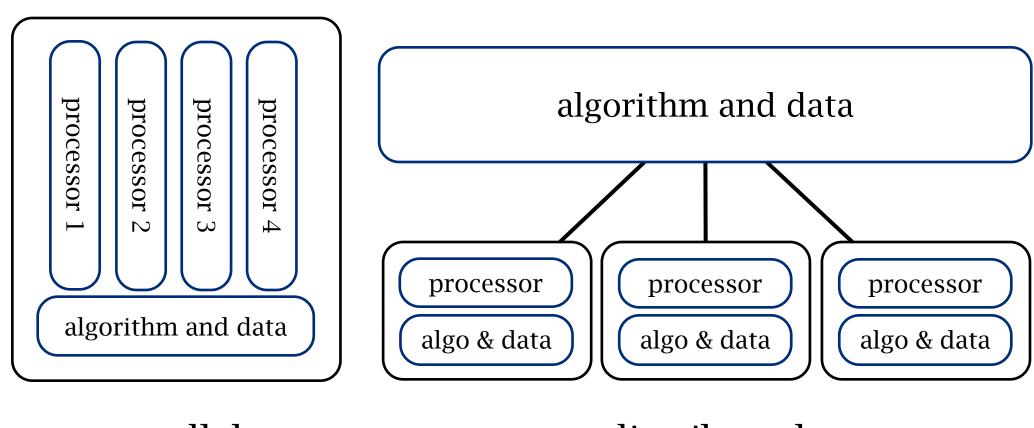
Decision tree: select the best split points in parallel

Parallel ensemble: train base learners in parallel

Alleviate the space difficulty

- Use online/one-pass/incremental algorithms Decision tree: C5.0
- Use distributed computing architectures

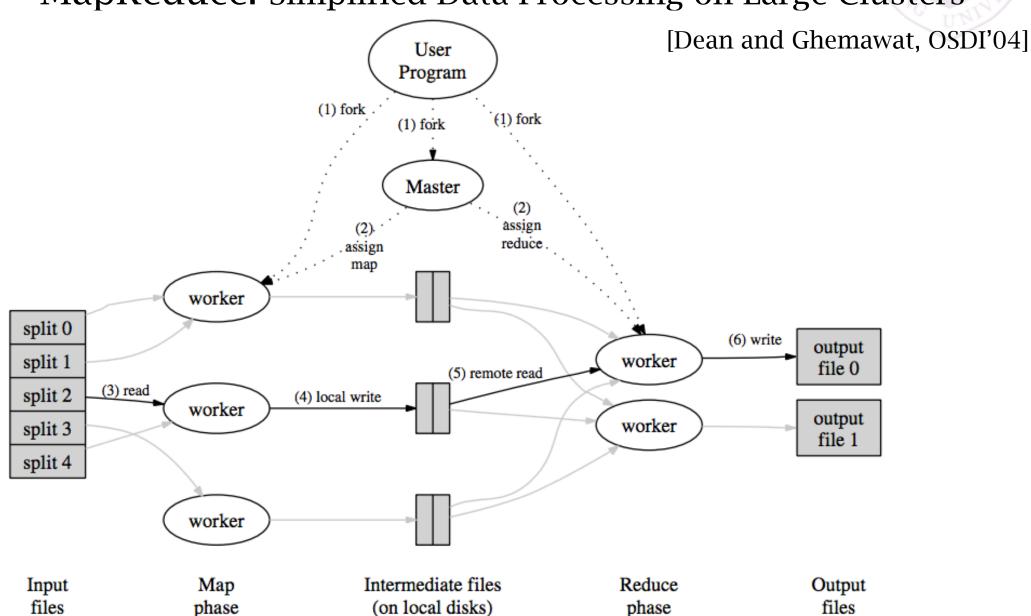
Parallel v.s. distributed computing



parallel

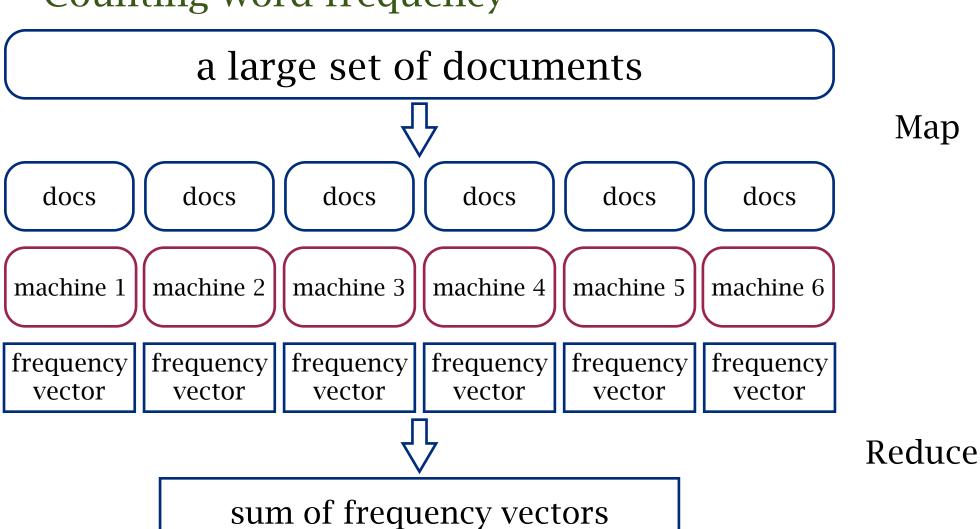
distributed

MapReduce: Simplified Data Processing on Large Clusters



MapReduce

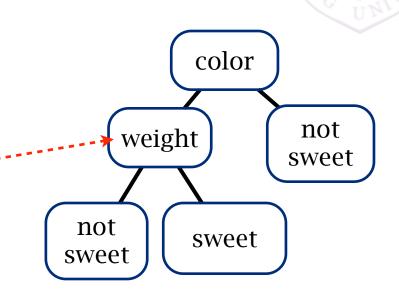
Counting word frequency



MapReduce

Learning decision tree

use MapReduce to find the best split of a node

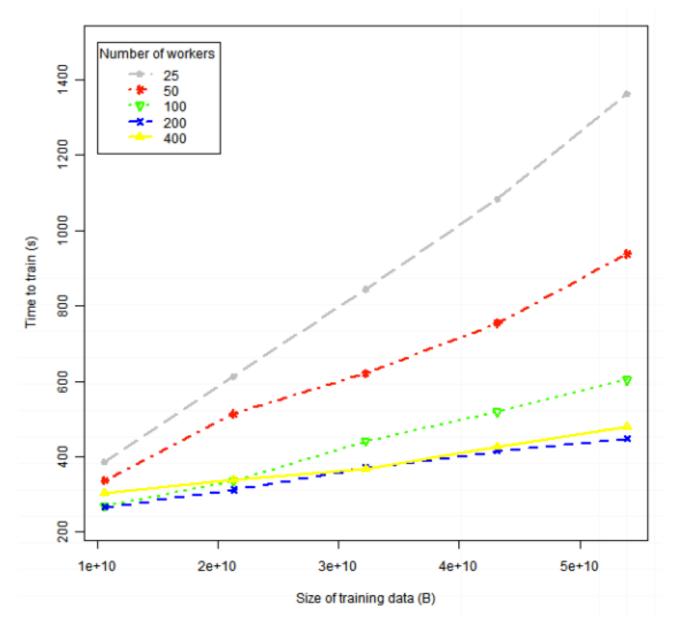


for every possible split point map:

split data to count the instance in each side reduce:

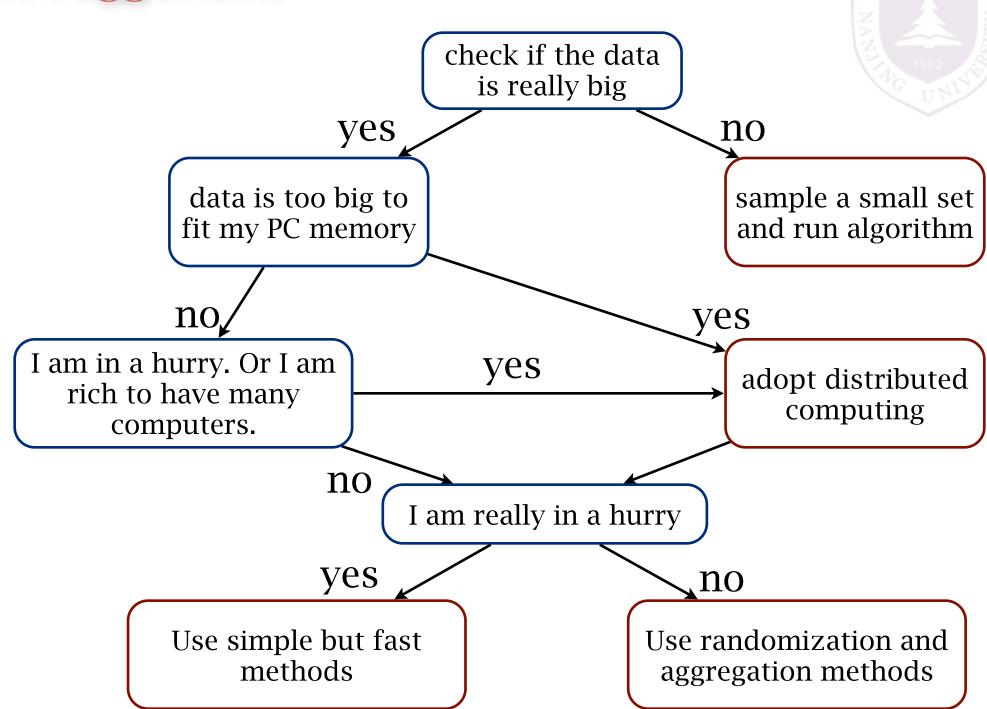
the impurity/IG of the split

MapReduce Learning decision tree



[Panda, et al., VLDB'09]

A suggestion



What is big data?

big data is a collection of data set so large and complex that it becomes difficult to process using on-hand database management tools. [wikipedia]

Is "big data" new

"Data mining is the analysis of (often large) observational data sets to find unsuspected relationships and to summarize the data in novel ways that are both understandable and useful to the data owner."

mining large-scale data is not a new task

The 1st VLDB: 1975

The 1st KDD: 1995

large database large datasets data: GB

CPU 99MHz RAM: 400MB

FT-Tree (KDD'04): 10 million transactions

Why big data is so hot

Journal home > Archive > Editor's Summary

Journal content

- Journal home
- Advance online publication
- Current issue
- Nature News
- Archive
- Supplements
- Web focuses
- **Podcasts**
- Videos
- **News Specials**

Journal information

- About the journal
- For authors
- Online submission
- Nature Awards
- Nature history

Editor's Summary

4 September 2008

Big data: science in the petabyte era

In Nature this week, features and opinion pieces on one of the most daunting challenges facing modern science: how to cope with the flood of data now being generated. A petabyte is a lot of memory, however you say it - a quadrillion, 1015, or tens of thousands of trillions of bytes. But that is the currency of 'big data'. We visited the Sanger Institute's supercomputing centre, and its petabyte of capacity. Wikipedia's success shows how well the 'wiki' concept of open-access editing can work. It could work too as a way of coping with the data flows of modern biology. The world's leading search engine is ten this month. Eleven years ago few would have predicted Google's domination: undaunted we ask scientists and business people to try to predict the next big thing, a Google for the petabyte era. Digital data are easily shared, and just as easily wiped or lost. The problem of keeping on-line data accessible is especially difficult for the smaller lab. In Books & Arts, Felice Frankel and Rosalind Reid champion the cause of data visualization as a way of finding meaning in an otherwise daunting data stream. From the 1700s to the mid 1950s, most 'computers' were human. Best known were the 'Harvard computers', a group of women working from the 1880s until the 1940s, at the Harvard College Observatory. Employed to classify stars captured on millions of photographic plates, some of the 'computers' made significant contributions to science. Online databases are a vital outlet for publishing the data being produced by biological research. But the data need to be properly organized. This is the role of the biocurator, but as a team of authors from 15 of the world's major online research resources explains, biocuration is now sadly neglected. An aspect of the data boom with a political dimension is the environment: how much data to collect, how much money to spend. For 'Big data' online, go to http://www.nature.com/news/specials/bigdata/ and to

- Sign up for e-alerts
- Recommend to your library
- RSS newsfeeds
- Nature in the news (external link)

open innovation challenges

Detecting Isocyanates in Suspended Particles

Deadline: Jan 16 2013 Reward: \$25,000 USD

A detection technology capable of sensitive detection of isocyanates in an aqueous suspension of or...

Topical Methods to **Prevent Yeast Infections**

Deadline: Dec 18 2012 Reward: \$10,000 USD

NPG convices

Why big data is so hot

Companies, products, and technologies included in the Big Data Landscape:

- Splunk, Loggly, Sumo Logic
- Predictive Policing, BloomReach, Atigeo, Myrrix
- Media Science, Bluefin Labs, CollectiveI, Recorded Future, LuckySort, DataXu, RocketFuel, Turn
- Gnip, <u>Datasift</u>, <u>Space Curve</u>, Factual, Windows Azure Marketplace, LexisNexis, Loqate, Kaggle, Knoema, <u>Inrix</u>
- <u>Oracle Hyperion</u>, <u>SAP</u> BusinessObjects, <u>Microsoft Business Intelligence, IBM</u> Cognos, SAS, MicroStrategy, GoodData, Autonomy, QlikView, Chart.io, Domo, Bime, RJMetrics
- <u>Tableau Software</u>, Palantir, <u>MetaMarkets</u>, Teradata Aster, <u>Visual.ly</u>, KarmaSphere, EMC Greenplum, Platfora, <u>ClearStory Data</u>, Dataspora, Centrifuge, Cirro, Ayata, Alteryx, Datameer, Panopticon, SAS, Tibco, Opera, Metalayer, Pentaho
- HortonWorks, Cloudera, MapR, Vertica, MapR, ParAccel, InfoBright, Kognitio, Calpont, Exasol, Datastax, Informatica
- Couchbase, Teradata, 10gen, Hadapt, Terracotta, MarkLogic, VoltDB,
- Amazon Web Services Elastic MapReduce, Infochimps, Microsoft Windows Azure, Google BigQuery
- Oracle, Microsoft SQL Server, MySQL, PostgreSQL, memsql, Sybase, IBM DB2
- Hadoop, MapReduce, Hbase, Cassandra, Mahout

[from Forbes]

Why big data is so hot

Office of Science and Technology Policy **Executive Office of the President** New Executive Office Building Washington, DC 20502

FOR IMMEDIATE RELEASE

March 29, 2012

pressing challenges.

Contact: Rick Weiss 202 456-6037 rweiss@ostp.eop.gov Lisa-Joy Zgorski 703 292-8311 lisajoy@nsf.gov

OBAMA ADMINISTRATION UNVEILS "BIG DATA" INITIATIVE: ANNOUNCES \$200 MILLION IN NEW R&D INVESTMENTS

Aiming to make the most of the fast-g Administration today announced a "Big Data 1000 of the Development initiative."

National Science Foundation: In addition to funding the Big Data solicitation, and

improving our ability to extract knowledge and insights from large and complex collections of digital data, the initiative

US Geological Survey - Big Data for Earth System Science: USGS is announcing

To launch the initiative, six Federal de than \$200 million in new commitment tools and techniques needed to acces volumes of digital data.

National Science Foundation and the National Institutes of Health - Core Techniques and Technologies for Advancing Big Data Science & Engineering

Department of Defense - Data to Decisions: The Department of Defense (DoD) is "placing a big bet on big data" investing approximately \$250 million annually (with \$60 million available for new research projects) across the Military Departments in a series of programs that will:

Department of Energy - Scientific Discovery Through Advanced Computing: The Department of Energy will provide \$25 million in funding to establish the Scalable Data Management, Analysis and Visualization (SDAV) Institute. Led by the Energy

National Institutes of Health - 1000 Genomes Project Data Available on Cloud: