Data Mining for M.Sc. students, CS, Nanjing University Fall, 2014, Yang Yu

Lecture 3: Machine Learning I Supervised Learning \& Basic Algorithms

http://cs.nju.edu.cn/yuy/course_dm14ms.ashx

Position

The desire of prediction

The desire of prediction

Predictive modeling

Find a relation between a set of variables (features) to target variables (labels).

Predictive modeling

Find a relation between a set of variables (features) to target variables (labels).

Predictive modeling

Find a relation between a set of variables (features) to target variables (labels).

weather

Predictive modeling

Find a relation between a set of variables (features) to target variables (labels).

weather

Predictive modeling

Find a relation between a set of variables (features) to target variables (labels).

Supervised learning/inductive learning

Find a relation between a set of variables (features) to target variables (labels) from finite examples.

Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ?

$$
\mathcal{X} \quad \rightarrow\{-1,+1\}
$$

ground-truth function f

Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

$$
\begin{aligned}
& \text { (color, weight) } \rightarrow \text { sweet ? } \\
& \mathcal{X} \rightarrow\{-1,+1\} \\
& \text { ground-truth function } f \\
& \text { examples/training data: } \\
& \left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\} \\
& y_{i}=f\left(\boldsymbol{x}_{i}\right)
\end{aligned}
$$

Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ?

$$
\mathcal{X} \quad \rightarrow\{-1,+1\}
$$

ground-truth function f
examples/training data:
$\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}$

$$
y_{i}=f\left(\boldsymbol{x}_{i}\right)
$$

learning: find an f^{\prime} that is close to f

Regression

Features: color, weight Label: price [0,1]

Regression

Features: color, weight Label: price [0,1]

Regression

Features: color, weight Label: price [0,1]

learning: find an f^{\prime} that is close to f

Learning algorithms

Decision tree
Neural networks
Linear classifiers
Bayesian classifiers
Lazy classifiers

Why different classifiers? heuristics
viewpoint
performance

Three basic algorithms

Probabilistic Model: Naive Bayes

Bayes rule

classification using posterior probability
for binary classification

$$
f(x)= \begin{cases}+1, & P(y=+1 \mid \boldsymbol{x})>P(y=-1 \mid \boldsymbol{x}) \\ -1, & P(y=+1 \mid \boldsymbol{x})<P(y=-1 \mid \boldsymbol{x}) \\ \text { random, }, & \text { otherwise }\end{cases}
$$

in general

$$
f(x)=\underset{y}{\arg \max } P(y \mid \boldsymbol{x})
$$

Bayes rule

classification using posterior probability
for binary classification

$$
f(x)= \begin{cases}+1, & P(y=+1 \mid \boldsymbol{x})>P(y=-1 \mid \boldsymbol{x}) \\ -1, & P(y=+1 \mid \boldsymbol{x})<P(y=-1 \mid \boldsymbol{x}) \\ \text { random, }, & \text { otherwise }\end{cases}
$$

in general

$$
\begin{aligned}
f(x) & =\underset{y}{\arg \max } P(y \mid \boldsymbol{x}) \\
& =\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y) / P(\boldsymbol{x}) \\
& =\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)
\end{aligned}
$$

how the probabilities be estimated

Naive Bayes

$f(x)=\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)$
estimation the a priori by frequency:

$$
P(y) \leftarrow \tilde{P}(y)=\frac{1}{m} \sum_{i} I\left(y_{i}=y\right)
$$

Consider a very simple case

color

\longrightarrow taste ?

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

$P($ red \mid sweet $)=1$
$P($ half-red \mid sweet $)=0$
$P($ not-red \mid sweet $)=0$
$P($ sweet $)=4 / 13$
$P($ red \mid not-sweet $)=0$
$P($ half-red \mid not-sweet $)=4 / 9$
$P($ not-red \mid not-sweet $)=5 / 9$
$P($ not-sweet $)=9 / 13$

Consider a very simple case

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the f^{\prime} would be?

$$
f(x)=\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)
$$

Consider a very simple case

Consider a very simple case

Consider a very simple case

perfect
but not realistic

Naive Bayes

$f(x)=\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)$
estimation the a priori by frequency:
$P(y) \leftarrow \tilde{P}(y)=\frac{1}{m} \sum_{i} I\left(y_{i}=y\right)$
assume features are conditional independence given the class (naive assumption):

$$
\begin{aligned}
P(\boldsymbol{x} \mid y) & =P\left(x_{1}, x_{2}, \ldots, x_{n} \mid y\right) \\
& =P\left(x_{1} \mid y\right) \cdot P\left(x_{2} \mid y\right) \cdot \ldots P\left(x_{n} \mid y\right)
\end{aligned}
$$

decision function:

$$
f(x)=\underset{y}{\arg \max } \tilde{P}(y) \prod_{i} \tilde{P}\left(x_{i} \mid y\right)
$$

Naive Bayes

color $=\{0,1,2,3\}$ weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2 \\
& \ldots
\end{aligned}
$$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2 \\
& \ldots
\end{aligned}
$$

$f(y \mid$ color $=3$, weight $=3) \rightarrow$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2
\end{aligned}
$$

$$
f(y \mid \text { color }=3, \text { weight }=3) \rightarrow
$$

$$
P(\text { color }=3 \mid y=y e s) P(\text { weight }=3 \mid y=\text { yes }) P(y=\text { yes })=0.5 \times 0.5 \times 0.4=0.1
$$

$$
P(\text { color }=3 \mid y=n o) P(\text { weight }=3 \mid y=n o) P(y=n o)=0.33 \times 0.33 \times 0.6=0.06
$$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2
\end{aligned}
$$

$f(y \mid$ color $=3$, weight $=3) \rightarrow$

$$
\begin{aligned}
& P(\text { color }=3 \mid y=\text { yes }) P(\text { weight }=3 \mid y=\text { yes }) P(y=y e s)=0.5 \times 0.5 \times 0.4=0.1 \\
& P(\text { color }=3 \mid y=n o) P(\text { weight }=3 \mid y=n o) P(y=\text { no })=0.33 \times 0.33 \times 0.6=0.06
\end{aligned}
$$

$f(y \mid$ color $=0$, weight $=1) \rightarrow$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?	
3	4	yes	$P(y=y e s)=2 / 5$
2	3	yes	$P(y=n o)=3 / 5$
0	3	no	$P($ color $=3 \mid y=$ yes $)=1 / 2$
3	2	no	-"
1	4	no	

$$
\begin{aligned}
& f(y \mid \text { color }=3, \text { weight }=3) \rightarrow \\
& \quad P(\text { color }=3 \mid y=\text { yes }) P(\text { weight }=3 \mid y=\text { yes }) P(y=y e s)=0.5 \times 0.5 \times 0.4=0.1 \\
& \quad P(\text { color }=3 \mid y=n o) P(\text { weight }=3 \mid y=n o) P(y=n o)=0.33 \times 0.33 \times 0.6=0.06
\end{aligned}
$$

$$
f(y \mid \text { color }=0, \text { weight }=1) \rightarrow
$$

$$
P(\text { color }=0 \mid y=y e s) P(\text { weight }=1 \mid y=y e s) P(y=y e s)=0
$$

$$
P(\text { color }=0 \mid y=n o) P(\text { weight }=1 \mid y=n o) P(y=n o)=0
$$

Naive Bayes

color $=\{0,1,2,3\}$ weight $=\{0,1,2,3,4\}$

color	weight	sweet?			
3	4			color	sweet?
2	3	yes		0	yes
0	3	yes			1
3	2	no		yes	
1	4	no		2	yes

smoothed (Laplacian correction) probabilities:

$$
\begin{aligned}
& P(\text { color }=0 \mid y=y e s)=(0+1) /(2+4) \\
& P(y=y e s)=(2+1) /(5+2)
\end{aligned}
$$

for counting frequency, assume every event has happened once.

$$
f(y \mid \text { color }=0, \text { weight }=1) \rightarrow
$$

$$
P(\text { color }=0 \mid y=\text { yes }) P(\text { weight }=1 \mid y=\text { yes }) P(y=\text { yes })=\frac{1}{6} \times \frac{1}{7} \times \frac{3}{7}=0.01
$$

$$
P(\text { color }=0 \mid y=n o) P(\text { weight }=1 \mid y=n o) P(y=n o)=\frac{2}{7} \times \frac{1}{8} \times \frac{4}{7}=0.02
$$

Naive Bayes

advantages:
very fast:
scan the data once, just count: $O(m n)$ store class-conditional probabilities: $O(n)$ test an instance: $O(c n)$ (c the number of classes) good accuracy in many cases
parameter free output a probability naturally handle multi-class
disadvantages:

Naive Bayes

advantages:
very fast:
scan the data once, just count: $O(m n)$ store class-conditional probabilities: $O(n)$ test an instance: $O(c n)$ (c the number of classes) good accuracy in many cases
parameter free output a probability naturally handle multi-class
disadvantages:
the strong assumption may harm the accuracy
does not handle numerical features naturally

Three basic algorithms

Nonparametric Model: Decision Tree

Consider a very simple case

color

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the f^{\prime} would be?

Consider a very simple case

color

\longrightarrow taste ?

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the f^{\prime} would be?

$$
f^{\prime}= \begin{cases}\text { sweet }, & \text { color }=\text { red } \\ \text { not-sweet }, & \text { color } \neq \mathrm{red}\end{cases}
$$

Consider a very simple case

color

\longrightarrow taste ?

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the f^{\prime} would be?

$$
f^{\prime}= \begin{cases}\text { sweet }, & \text { color }=\text { red } \\ \text { not-sweet }, & \text { color } \neq \mathrm{red}\end{cases}
$$

perfect
but not realistic

Consider a very simple case

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	sweet
4	not-red	sweet
5	not-red	not-sweet
6	half-red	sweet
7	red	not-sweet
8	not-red	not-sweet
9	not-red	sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the f^{\prime} would be?

Consider a very simple case

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	sweet
4	not-red	sweet
5	not-red	not-sweet
6	half-red	sweet
7	red	not-sweet
8	not-red	not-sweet
9	not-red	sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the f^{\prime} would be?

$f^{\prime}= \begin{cases}\text { sweet }, & \text { color }=\text { red } \\ \text { sweet }, & \text { color }=\text { half-red } \\ \text { not-sweet, } & \text { color }=\text { not-red }\end{cases}$ not perfect
but how good?

Consider a very simple case

$f^{\prime}= \begin{cases}\text { sweet }, & \text { color }=\text { red } \\ \text { sweet }, & \text { color }=\text { half-red } \\ \text { not-sweet }, & \text { color }=\text { not-red }\end{cases}$

not-red

Consider a very simple case

$f^{\prime}= \begin{cases}\text { sweet }, & \text { color }=\text { red } \\ \text { sweet }, & \text { color }=\text { half-red } \\ \text { not-sweet, } & \text { color }=\text { not-red }\end{cases}$

1

2
$(1+2+2) / 13=0.3846$

Consider a very simple case

$f^{\prime}= \begin{cases}\text { sweet }, & \text { color }=\text { red } \\ \text { sweet, } & \text { color }=\text { half-red } \\ \text { not-sweet, }, & \text { color }=\text { not-red }\end{cases}$

1

2

training error:
$(1+2+2) / 13=0.3846$
information gain: entropy before split: $H(X)=-\sum_{i}$ ratio $\left.^{\text {(class }}\right)_{i} \ln$ ratio $\left(\right.$ class $\left._{i}\right)=0.6902$ entropy after split: $\quad I(X ;$ split $)=\sum_{i} \operatorname{ratio}^{\left(\text {splitit }_{i}\right) H\left(\text { split }_{i}\right)}$ information gain: $\quad=\frac{4}{13} 0.5623+\frac{4}{13} 0.6931+\frac{5}{13} 0.6730=0.6452$

$$
\operatorname{Gain}(X ; \text { split })=H(X)-I(X ; \text { split })=0.045
$$

A little more complex case

id	color	weight	taste
1		110	sweet
2		105	sweet
3		100	sweet
4		93	sweet
5		80	not-sweet
6		98	sweet
7		95	not-sweet
8		102	not-sweet
9		98	sweet
10		108	not-sweet
11		sweet	
12		101	not-sweet
13		89	not-sweet

A little more complex case

for every split point

training error:
$(1+2) / 13=0.2307$
information gain:

$$
\begin{gathered}
H(X)=-\sum_{i}{\operatorname{ratio}\left(\text { class }_{i}\right) \ln \operatorname{ratio}\left(\text { class }_{i}\right)=0.6902}^{I(X ; \text { split })=\sum_{i}{\text { ratio }\left(\text { split }_{i}\right) H\left(\text { split }_{i}\right)}^{=} \frac{5}{13} 0.5004+\frac{8}{13} 0.5623=0.5385} \\
\operatorname{Gain}(X ; \operatorname{split})=H(X)-I(X ; \text { split })=0.1517
\end{gathered}
$$

A little more complex case

for every split point

training error:
$(1+2) / 13=0.2307$
information gain:
entropy before split: $H(X)=-\sum_{i}$ ratio $^{\left(\text {class }_{i}\right) \ln \text { ratio }\left(\text { class }_{i}\right)=0.6902}$
entropy after split: $I(X ;$ split $)=\sum_{i}{ }_{i}$ ratio $\left(\right.$ splitit $\left._{i}\right) H\left(\right.$ splitit $\left._{i}\right)$
information gain:

$$
=\frac{5}{13} 0.5004+\frac{8}{13} 0.5623=0.5385
$$

$$
\operatorname{Gain}(X ; \text { split })=H(X)-I(X ; \text { split })=0.1517
$$

A little more complex case

				color v.s. best split of weight
2	${ }_{\text {red }}$	105	sweet	
${ }^{3}$	nalfred	100	sweet	
	notred	${ }^{93}$		
5	${ }_{\text {n }}^{\substack{\text { notred } \\ \text { hatred }}}$	${ }^{80} 98$	$\underbrace{\text { ater }}_{\substack{\text { notsweet } \\ \text { sweet }}}$	fsweet, \quad color $=$ red
7	red	95	notsweet	$f^{\prime}=\{$ sweet, \quad color $=$ half-r
${ }_{9}^{8}$	notred notred ded	${ }_{98}^{102}$		not-sweet, color = not-re
10	naltred	9	notswet	
${ }_{12}^{11}$	${ }_{\substack{\text { red } \\ \text { nati-red }}}^{\text {red }}$	108 101	${ }_{\text {sex }}^{\substack{\text { sweet } \\ \text { notweet }}}$	sweet, weight > 95
	notred	${ }_{89}$		not-sweet, weight ≤ 95

what the f^{\prime} would be?
the best split among all features

Use multiple features

find a model by find the best feature/best split
but only one feature/split is used

Use multiple features

one feature model: decision stump

Use multiple features

one feature model: decision stump

hierarchical model uses many features: decision tree

Decision tree model

Decision tree model

find a decision tree that matches the data

Top-down induction

function construct-node(data) :

1. feature, value \leftarrow split-criterion (data)
2. if feature is valid
3. subdata[] $\leftarrow \operatorname{split(data,~feature,~value)~}$
4. for each branch i
5. construct-node (subdata[i])
6. else
7. make a leaf
8. return

Decision tree learning algorithms

ID3: information gain

C4.5: gain ratio, handling missing values

Ross Quinlan

CART: gini index

Jerome H. Friedman

Gini index

Gini index (CART):
Gini: $\operatorname{Gini}(X)=1-\sum_{i} p_{i}^{2}$
Gini after split: $\frac{\text { \#left }}{\# \text { all }}$ Gini(left) $+\frac{\text { \#right }}{\text { \#all }}$ Gini(right)

Training error v.s. Information gain

training error is less smooth

Training error v.s. Information gain

training error: 4

training error: 4
training error is less smooth

Training error v.s. Information gain

training error: 4
information gain: $\mathrm{IG}=H(X)-0.5192$

training error: 4
information gain: $\mathrm{IG}=H(X)-0.5514$
training error is less smooth

Non-generalizable feature

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	ralf-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

the system may not know non-generalizable features
$$
\mathrm{IG}=H(X)-0
$$

Non-generalizable feature

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	ralf-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

$$
\begin{aligned}
& \text { the system may not know } \\
& \text { non-generalizable features } \\
& \qquad \mathrm{IG}=H(X)-0
\end{aligned}
$$

Gain ratio as a correction:

$$
\operatorname{Gain} \operatorname{ratio}(X)=\frac{H(X)-I(X ; \text { split })}{I V(\text { split })}
$$

$$
I V(\text { split })=H(\text { split })
$$

A regression case

\longrightarrow price ?

id	color	weight	price
1	red	110	12
2	red	105	10
3	half-red	100	10
4	not-red	93	15
5	not-red	80	5
6	half-red	98	8
7	red	95	8
8	not-red	102	9
9	not-red	98	6
10	half-red	90	7
11	red	108	11
12	half-red	101	12
13	not-red	89	6

what the f^{\prime} would be to minimize:

$$
M S E=\frac{1}{n} \sum_{i}\left(f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right)\right)^{2}
$$

A regression case

id	color	weight	price	for color fe
1	red	110	12	
2	red	105	10	red
3	half-red	100	10	${ }^{12}$
4	not-red	93	15	$\begin{array}{ll}12 & 8\end{array}$
5	not-red	80	5	$\left(\begin{array}{cc}10 & 8 \\ 10 & 11\end{array}\right)$
6	half-red	98	8	half-red not-red
7	red	95	8	hal-red not-red
8	not-red	102	9	10 15
9	not-red	98	6	$\left(\begin{array}{ll}8 & 7\end{array}\right) \quad\left(\begin{array}{lll}5 & 9 & 6\end{array}\right)$
10	half-red	90	7	$(12)\binom{5}{6}$
11	red	108	11	12
12	half-red	101	12	
13	not-red	89	6	

what is the prediction value of each color to minimize the mean square error?
$M S E=\frac{1}{n} \sum_{i}\left(f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right)\right)^{2}$

A regression case

what is the prediction value of each color to minimize the mean square error?
$M S E=\frac{1}{n} \sum_{i}\left(f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right)\right)^{2}$

A regression case

id	color	weight	price	for color feature:	
1	red	110	12		
2	red	105	10	red	
3	half-red	100	10	\sim	
4	not-red	93	15	12 4	
5	not-red	80	5	$(10 \sim 1)$	
6	half-red	98	8	half-red	not-red
7	red	95	8		
8	not-red	102	9	10 10.25	15
9	not-red	98	6	$\left(\begin{array}{ll}8 & 7\end{array}\right)$	$\left(\begin{array}{lll}5 & 9 & 6\end{array}\right)$
10	half-red	90	7	(12)	$\left(\begin{array}{l} \\ 6\end{array}\right)$
11	red	108	11	-	6
12	half-red	101	12	9.25	8.2
13	not-red	89	6		
		$f^{\prime}=$	$\begin{aligned} & 10.25, \\ & 9.25, \\ & 8.2, \end{aligned}$	$\begin{aligned} & \text { color }=\text { red } \\ & \text { color }=\text { half-red } \\ & \text { color }=\text { not-red } \end{aligned}$	

A regression case

for weight feature:
for any split:

choose the split with minimal MSE

Split-criterion: stop

Stop criterion: no feature to use

Classification: examples are pure of class
Regression: MSE small enough

Three basic algorithms

Linear Model: Logistic Regression

Linear model

$$
\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Linear model

$$
\begin{aligned}
& \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \quad w_{1}, w_{2}, \ldots, w_{n} b \\
& w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+\ldots+w_{n} \cdot x_{n}+b
\end{aligned}
$$

Linear model

$$
\begin{aligned}
& \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \boldsymbol{w}=w_{1}, w_{2}, \ldots, w_{n} \quad b \\
& w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+\ldots+w_{n} \cdot x_{n}+b \\
& f(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}+b
\end{aligned}
$$

Linear model

$$
\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$\boldsymbol{w}=w_{1}, w_{2}, \ldots, w_{n} \quad b$

$w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+\ldots+w_{n} \cdot x_{n}+b$
$f(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}+b$

$$
y=a x+b
$$

Linear model

$y=w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+b$

Linear model

$y=w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+b$

is the following a linear model?
$y=w_{1} \cdot x+w_{2} \cdot x^{2}+b$

Linear model

$$
f(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}+b
$$

$$
x_{n}
$$ variable

linear relationship independent parameters
model space: \mathbb{R}^{n+1}
we sometimes omit the bias

$$
f(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}
$$

1. x is with a constant element
2. practically as good as with bias (centered data)

Linear classifier

model space: \mathbb{R}^{n+1}

$$
f(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}+b
$$

for classification $y \in\{-1,+1\}$ we predict an instance by

$$
\begin{aligned}
& \operatorname{sign}\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right) \\
& = \begin{cases}+1, & \boldsymbol{w}^{\top} \boldsymbol{x}+b>0 \\
-1, & \boldsymbol{w}^{\top} \boldsymbol{x}+b<0 \\
\text { random, } & \text { otherwise }\end{cases}
\end{aligned}
$$

for an example (\boldsymbol{x}, y), a correct prediction means

$$
y\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)>0
$$

Prototype

simple, but too restricted

$$
\begin{aligned}
& \overline{\boldsymbol{x}}^{+}=\frac{1}{\sum_{i: y_{i}=+1} 1} \sum_{i: y_{i}=+1} \boldsymbol{x}_{i} \\
& \overline{\boldsymbol{x}}^{-}=\frac{1}{\sum_{i: y_{i}=-1} 1} \sum_{i: y_{i}=-1} \boldsymbol{x}_{i} \\
& \boldsymbol{w}=\overline{\boldsymbol{x}}^{+}-\overline{\boldsymbol{x}}^{-} \\
& b=-\boldsymbol{w}^{\top} \cdot \frac{\overline{\boldsymbol{x}}^{+}+\overline{\boldsymbol{x}}^{-}}{2}
\end{aligned}
$$

Perceptron

feed training examples one by one

1. $\boldsymbol{w}=0$
2. for each example ($\boldsymbol{x}, \boldsymbol{y}$) if $\operatorname{sign}\left(y \boldsymbol{w}^{\top} \boldsymbol{x}\right)<0$

$$
\boldsymbol{w}=\boldsymbol{w}+y \boldsymbol{x}
$$

$$
f(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}+b
$$

Perceptron

feed training examples one by one

1. $\boldsymbol{w}=0$
2. for each example ($\boldsymbol{x}, \boldsymbol{y}$) if $\operatorname{sign}\left(y \boldsymbol{w}^{\top} \boldsymbol{x}\right)<0$

$$
\boldsymbol{w}=\boldsymbol{w}+y \boldsymbol{x}
$$

gradient ascent

$$
\frac{\partial y \boldsymbol{w}^{\top} \boldsymbol{x}}{\partial \boldsymbol{w}}=y \boldsymbol{x}
$$

Logistic regression

assume logit model: for a positive example

$$
\boldsymbol{w}^{\top} \boldsymbol{x}=\log \frac{p(+1 \mid \boldsymbol{x})}{1-p(+1 \mid \boldsymbol{x})}
$$

so that $p(y \mid \boldsymbol{x}, \boldsymbol{w})=\frac{1}{1+e^{-y\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)}}$

Logistic regression

assume logit model: for a positive example

$$
\boldsymbol{w}^{\top} \boldsymbol{x}=\log \frac{p(+1 \mid \boldsymbol{x})}{1-p(+1 \mid \boldsymbol{x})}
$$

so that $p(y \mid \boldsymbol{x}, \boldsymbol{w})=\frac{1}{1+e^{-y\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)}}$

minimize negative log-likelihood:

$$
\begin{aligned}
\underset{\boldsymbol{w}}{\arg \min } & -\log \prod_{i=1}^{m} p\left(y_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{w}\right)=-\sum_{i} \log p\left(y_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{w}\right) \\
& =\sum_{i} \log \left(1+e^{-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}\right)}\right)
\end{aligned}
$$

Optimization

objective function:

$$
\underset{\boldsymbol{w}}{\arg \min } \sum_{i} \log \left(1+e^{-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}\right)}\right)
$$

general optimization: gradient descent

$$
\boldsymbol{w}=\boldsymbol{w}-\eta \frac{\partial \sum_{i} \log \left(1+e^{-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}\right)}\right)}{\partial \boldsymbol{w}}
$$

Optimization

objective function:

$$
\underset{\boldsymbol{w}}{\arg \min } \sum_{i} \log \left(1+e^{-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}\right)}\right)
$$

general optimization: gradient descent

$$
\boldsymbol{w}=\boldsymbol{w}-\eta \frac{\partial \sum_{i} \log \left(1+e^{-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}\right)}\right)}{\partial \boldsymbol{w}}
$$

cheaper optimization: stochastic gradient descent

$$
\boldsymbol{w}=\boldsymbol{w}-\eta \frac{\partial \log \left(1+e^{-y\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)}\right)}{\partial \boldsymbol{w}}
$$

监督学习的目标是否是最小化训练误差？

朴素贝叶斯假设是指数据的属性之间相互独立？

对于分类问题，当训练数据没有冲突时，决策树学习算法是否一定能取得O训练耤误率？（冲突样本：两个完全相同的样本却被标记为不同类别）

决策树学习算法是否需要训练样本规范化 （normalization）？

Logistic regression是用于回归还是分类？

Chapter 5

