

Data Mining for M.Sc. students, CS, Nanjing University Fall, 2014, Yang Yu

Lecture 3: Machine Learning I Supervised Learning & Basic Algorithms

http://cs.nju.edu.cn/yuy/course_dm14ms.ashx

The desire of prediction

NANA 1902

The desire of prediction

Supervised learning/inductive learning

Find a relation between a set of variables (features) to target variables (labels) *from finite examples*.

tasks

Classification: label is a nominal feature Regression: label is a numerical feature Ranking: label is a ordinal feature

Classification

Features: color, weight **Label**: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ? $\mathcal{X} \rightarrow \{-1, +1\}$

ground-truth function f

Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ? $\mathcal{X} \rightarrow \{-1, +1\}$

ground-truth function f

examples/training data: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}\$ $y_i = f(\boldsymbol{x}_i)$

Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ? $\mathcal{X} \rightarrow \{-1, +1\}$

ground-truth function f

examples/training data: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}\$ $y_i = f(\boldsymbol{x}_i)$

learning: <u>find</u> an f' that is <u>close</u> to f

Features: color, weight **Label**: price [0,1]

Features: color, weight Label: price [0,1]

(color, weight) \rightarrow price $\mathcal{X} \rightarrow [0, +1]$

ground-truth function f

examples/training data: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}\$ $y_i = f(\boldsymbol{x}_i)$

Features: color, weight Label: price [0,1]

learning: <u>find</u> an f' that is <u>close</u> to f

Learning algorithms

Decision tree Neural networks Linear classifiers Bayesian classifiers Lazy classifiers

. . .

Why different classifiers? heuristics viewpoint performance

Three basic algorithms

Probabilistic Model: Naive Bayes

classification using posterior probability

for binary classification $f(x) = \begin{cases} +1, & P(y = +1 \mid x) > P(y = -1 \mid x) \\ -1, & P(y = +1 \mid x) < P(y = -1 \mid x) \\ \text{random, otherwise} \end{cases}$

in general $f(x) = \underset{y}{\operatorname{arg\,max}} P(y \mid \boldsymbol{x})$

classification using posterior probability

for binary classification $f(x) = \begin{cases} +1, & P(y = +1 \mid x) > P(y = -1 \mid x) \\ -1, & P(y = +1 \mid x) < P(y = -1 \mid x) \\ random, & otherwise \end{cases}$

in general $f(x) = \arg \max_{y} P(y \mid \boldsymbol{x})$ $= \arg \max_{y} P(\boldsymbol{x} \mid y) P(y) / P(\boldsymbol{x})$ $= \arg \max_{y} P(\boldsymbol{x} \mid y) P(y)$

how the probabilities be estimated

$$f(x) = \underset{y}{\operatorname{arg\,max}} P(x \mid y) P(y)$$

estimation the a priori by frequency:

$$P(y) \leftarrow \tilde{P}(y) = \frac{1}{m} \sum_{i} I(y_i = y)$$

taste ?

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

color \triangleleft

 $P(\text{red} \mid \text{sweet}) = 1$ $P(\text{half-red} \mid \text{sweet}) = 0$ $P(\text{not-red} \mid \text{sweet}) = 0$ P(sweet) = 4/13 $P(\text{red} \mid \text{not-sweet}) = 0$ $P(\text{half-red} \mid \text{not-sweet}) = 4/9$ $P(\text{not-red} \mid \text{not-sweet}) = 5/9$ P(not-sweet) = 9/13

id	color taste	
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the *f* would be?

 $f(x) = \arg \max P(\boldsymbol{x} \mid y) P(y)$ y

id	color taste		
1	red	sweet	
2	red	sweet	\mathbb{Z}
3	half-red	not-sweet	
4	not-red	not-sweet	
5	not-red	not-sweet	
6	half-red	not-sweet	
7	red	sweet	
8	not-red	not-sweet	
9	not-red	not-sweet	
10	half-red	not-sweet	
11	red	sweet	
12	half-red	not-sweet	
13	not-red	not-sweet	

what the *f* would be?

 $f(x) = \operatorname*{arg\,max}_{y} P(\boldsymbol{x} \mid y) P(y)$

 $P(\text{red} \mid \text{sweet})P(\text{sweet}) = 4/13$ $P(\text{red} \mid \text{not-sweet})P(\text{not-sweet}) = 0$

id	color taste		
1	red	sweet	
2	red	sweet	
3	half-red	not-sweet	
4	not-red	not-sweet	
5	not-red	not-sweet	
6	half-red	not-sweet	
7	red	sweet	
8	not-red	not-sweet	
9	not-red	not-sweet	
10	half-red	not-sweet	
11	red	sweet	
12	half-red	not-sweet	
13	not-red	not-sweet	_

what the *f* would be?

 $f(x) = \operatorname*{arg\,max}_{y} P(\boldsymbol{x} \mid y) P(y)$

 $P(\text{red} \mid \text{sweet})P(\text{sweet}) = 4/13$ $P(\text{red} \mid \text{not-sweet})P(\text{not-sweet}) = 0$

 $P(\text{half-red} \mid \text{sweet})P(\text{sweet}) = 0$

 $P(\text{half-red} \mid \text{not-sweet})P(\text{not-sweet}) = \frac{4}{9} \times \frac{9}{13} = \frac{4}{13}$

id	color taste		
1	red	sweet	
2	red	sweet	
3	half-red	not-sweet	
4	not-red	not-sweet	
5	not-red	not-sweet	
6	half-red	not-sweet	
7	red	sweet	
8	not-red	not-sweet	
9	not-red	not-sweet	
10	half-red	not-sweet	
11	red	sweet	
12	half-red	not-sweet	
13	not-red	not-sweet	_

what the *f* would be?

 $f(x) = \operatorname*{arg\,max}_{y} P(\boldsymbol{x} \mid y) P(y)$

 $P(\text{red} \mid \text{sweet})P(\text{sweet}) = 4/13$ $P(\text{red} \mid \text{not-sweet})P(\text{not-sweet}) = 0$

 $P(\text{half-red} \mid \text{sweet})P(\text{sweet}) = 0$ $P(\text{half-red} \mid \text{not-sweet})P(\text{not-sweet}) = \frac{4}{9} \times \frac{9}{13} = \frac{4}{13}$

> perfect but not realistic

$$f(x) = \underset{y}{\arg\max} P(\boldsymbol{x} \mid y) P(y)$$

estimation the a priori by frequency:

$$P(y) \leftarrow \tilde{P}(y) = \frac{1}{m} \sum_{i} I(y_i = y)$$

assume features are conditional independence given the class (naive assumption): $P(\mathbf{x} \mid y) = P(x_1, x_2, \dots, x_n \mid y)$ $= P(x_1 \mid y) \cdot P(x_2 \mid y) \cdot \dots P(x_n \mid y)$

decision function:

$$f(x) = \arg\max_{y} \tilde{P}(y) \prod_{i} \tilde{P}(x_i \mid y)$$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$P(y = yes) = 2/5$$

$$P(y = no) = 3/5$$

$$P(color = 3 \mid y = yes) = 1/2$$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$P(y = yes) = 2/5$$

$$P(y = no) = 3/5$$

$$P(color = 3 \mid y = yes) = 1/2$$

$$f(y \mid color = 3, weight = 3) \rightarrow$$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$P(y = yes) = 2/5$$

$$P(y = no) = 3/5$$

$$P(color = 3 \mid y = yes) = 1/2$$

$$f(y \mid color = 3, weight = 3) \rightarrow P(color = 3 \mid y = yes)P(weight = 3 \mid y = yes)P(y = yes) = 0.5 \times 0.5 \times 0.4 = 0.1$$
$$P(color = 3 \mid y = no)P(weight = 3 \mid y = no)P(y = no) = 0.33 \times 0.33 \times 0.6 = 0.06$$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$P(y = yes) = 2/5$$

$$P(y = no) = 3/5$$

$$P(color = 3 \mid y = yes) = 1/2$$

$$f(y \mid color = 3, weight = 3) \rightarrow P(color = 3 \mid y = yes)P(weight = 3 \mid y = yes)P(y = yes) = 0.5 \times 0.5 \times 0.4 = 0.1$$
$$P(color = 3 \mid y = no)P(weight = 3 \mid y = no)P(y = no) = 0.33 \times 0.33 \times 0.6 = 0.06$$

$$f(y \mid color = 0, weight = 1) \rightarrow$$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$P(y = yes) = 2/5$$

$$P(y = no) = 3/5$$

$$P(color = 3 \mid y = yes) = 1/2$$

$$f(y \mid color = 3, weight = 3) \rightarrow P(color = 3 \mid y = yes)P(weight = 3 \mid y = yes)P(y = yes) = 0.5 \times 0.5 \times 0.4 = 0.1$$
$$P(color = 3 \mid y = no)P(weight = 3 \mid y = no)P(y = no) = 0.33 \times 0.33 \times 0.6 = 0.06$$

$$f(y \mid color = 0, weight = 1) \rightarrow$$

$$P(color = 0 \mid y = yes)P(weight = 1 \mid y = yes)P(y = yes) = 0$$

$$P(color = 0 \mid y = no)P(weight = 1 \mid y = no)P(y = no) = 0$$

color={0,1,2,3} weight={0,1,2,3,4}

color	weight	sweet?		
	Weißirt	Sweet.		color
3	4	yes		0
2	3	Ves		0
-	5	y es	+	1
0	3	no		n
3	2	no		Z
5	-	110		3
1	4	no		

colorsweet?0yes1yes2yes3yes

smoothed (Laplacian correction) probabilities:

$$P(color = 0 \mid y = yes) = (0+1)/(2+4)$$
$$P(y = yes) = (2+1)/(5+2)$$

for counting frequency, assume every event has happened once.

$$f(y \mid color = 0, weight = 1) \rightarrow$$

$$P(color = 0 \mid y = yes)P(weight = 1 \mid y = yes)P(y = yes) = \frac{1}{6} \times \frac{1}{7} \times \frac{3}{7} = 0.01$$

$$P(color = 0 \mid y = no)P(weight = 1 \mid y = no)P(y = no) = \frac{2}{7} \times \frac{1}{8} \times \frac{4}{7} = 0.02$$

advantages: very fast: scan the data once, just count: O(mn)store class-conditional probabilities: O(n)test an instance: O(cn) (*c* the number of classes) good accuracy in many cases parameter free output a probability naturally handle multi-class disadvantages:

advantages: very fast: scan the data once, just count: O(mn)store class-conditional probabilities: O(n)test an instance: O(cn) (*c* the number of classes) good accuracy in many cases parameter free output a probability naturally handle multi-class disadvantages:

the strong assumption may harm the accuracy does not handle numerical features naturally

Three basic algorithms

Nonparametric Model: Decision Tree

1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

$$f' = \begin{cases} \text{sweet}, & \text{color} = \text{red} \\ \text{not-sweet}, & \text{color} \neq \text{red} \end{cases}$$

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

$$f' = \begin{cases} \text{sweet}, & \text{color} = \text{red} \\ \text{not-sweet}, & \text{color} \neq \text{red} \end{cases}$$

perfect but not realistic

IU	COIOT	laste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

Consider a very simple case

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	sweet
4	not-red	sweet
5	not-red	not-sweet
6	half-red	sweet
7	red	not-sweet
8	not-red	not-sweet
9	not-red	sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

Consider a very simple case

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	sweet
4	not-red	sweet
5	not-red	not-sweet
6	half-red	sweet
7	red	not-sweet
8	not-red	not-sweet
9	not-red	sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the *f* would be?

 $f' = \begin{cases} \text{sweet}, & \text{color} = \text{red} \\ \text{sweet}, & \text{color} = \text{half-red} \\ \text{not-sweet}, & \text{color} = \text{not-red} \end{cases}$

not perfect but how good?

Consider a very simple case $f' = \begin{cases} sweet, & color = red \\ sweet, & color = half-red \\ not-sweet, & color = not-red \end{cases}$

Consider a very simple case half-red not-red red $f' = \begin{cases} \text{sweet}, & \text{color} = \text{red} \\ \text{sweet}, & \text{color} = \text{half-red} \\ \text{not-sweet}, & \text{color} = \text{not-red} \end{cases}$ Ð 0 sweet sweet not-sweet B 63 training error: 2 2

(1+2+2)/13=0.3846

Consider a very simple case half-red not-red red $f' = \begin{cases} \text{sweet}, & \text{color} = \text{red} \\ \text{sweet}, & \text{color} = \text{half-red} \\ \text{not-sweet}, & \text{color} = \text{not-red} \end{cases}$ sweet not-sweet sweet training error:

(1+2+2)/13=0.3846

information gain: entropy before split: $H(X) = -\sum_{i} ratio(class_{i}) \ln ratio(class_{i}) = 0.6902$ entropy after split: $I(X; split) = \sum_{i} ratio(split_{i})H(split_{i})$ information gain: $= \frac{4}{13}0.5623 + \frac{4}{13}0.6931 + \frac{5}{13}0.6730 = 0.6452$ Gain(X; split) = H(X) - I(X; split) = 0.045

A little more complex case

id	color	weight	taste
1		110	sweet
2		105	sweet
3		100	sweet
4		93	sweet
5		80	not-sweet
6		98	sweet
7		95	not-sweet
8		102	not-sweet
9		98	sweet
10		90	not-sweet
11		108	sweet
12		101	not-sweet
13		89	not-sweet

for every split point

training error: (1+2)/13=0.2307

information gain:

$$H(X) = -\sum_{i} ratio(class_{i}) \ln ratio(class_{i}) = 0.6902$$
$$I(X; \text{split}) = \sum_{i} ratio(split_{i})H(split_{i})$$
$$= \frac{5}{13}0.5004 + \frac{8}{13}0.5623 = 0.5385$$

Gain(X; split) = H(X) - I(X; split) = 0.1517

for every split point

training error: (1+2)/13=0.2307

information gain: entropy before split: $H(X) = -\sum_{i} ratio(class_{i}) \ln ratio(class_{i}) = 0.6902$ entropy after split: $I(X; split) = \sum_{i} ratio(split_{i})H(split_{i})$ $= \frac{5}{13}0.5004 + \frac{8}{13}0.5623 = 0.5385$ information gain: Gain(X; split) = H(X) - I(X; split) = 0.1517

A little more complex case

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	half-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

color v.s. best split of weight

$$f' = \begin{cases} \text{sweet}, & \text{color} = \text{red} \\ \text{sweet}, & \text{color} = \text{half-red} \\ \text{not-sweet}, & \text{color} = \text{not-red} \end{cases}$$
$$f' = \begin{cases} \text{sweet}, & \text{weight} > 95 \\ \text{not-sweet}, & \text{weight} \le 95 \end{cases}$$

what the *f* would be? the best split among all features

find a model by find the best feature/best split

but only one feature/split is used

Use multiple features one feature model: decision stump

find a decision tree that matches the data

Top-down induction

function construct-node(data) :

- 1. *feature*, *value* ← **split-criterion** (*data*)
- 2. if feature is valid
- 3. *subdata*[] ← split(*data*, *feature*, *value*)
- 4. for each branch *i*
- 5. **construct-node** (*subdata*[*i*])
- 6. else
- 7. make a leaf
- 8. return

divide and conquer

Decision tree learning algorithms

ID3: information gain

C4.5: gain ratio, handling missing values

Ross Quinlan

CART: gini index

Leo Breiman 1928-2005

Jerome H. Friedman

Gini index

Gini index (CART): Gini: $Gini(X) = 1 - \sum p_i^2$ **Gini after split:** $\frac{\# \text{left}}{\# \text{all}} Gini(\text{left}) + \frac{\# \text{right}}{\# \text{all}} Gini(\text{right})$ IG = H(X) - 0.6132IG = H(X) - 0.5192Gini = 0.4427Gini = 0.3438IG = H(X) - 0.5514

NANIAL DE LA CALLER

Gini = 0.3667

Training error v.s. Information gain

training error is less smooth

Training error v.s. Information gain

training error: 4

training error is less smooth

training error: 4

information gain: IG = H(X) - 0.5192

training error: 4 information gain: IG = H(X) - 0.5514

training error is less smooth

Non-generalizable feature

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	half-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

the system may not know non-generalizable features

$$IG = H(X) - 0$$

Non-generalizable feature

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	half-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

the system may not know non-generalizable features

$$IG = H(X) - 0$$

Gain ratio as a correction: Gain ratio $(X) = \frac{H(X) - I(X; \text{split})}{IV(\text{split})}$ IV(split) = H(split)

id	color	weight	price
1	red	110	12
2	red	105	10
3	half-red	100	10
4	not-red	93	15
5	not-red	80	5
6	half-red	98	8
7	red	95	8
8	not-red	102	9
9	not-red	98	6
10	half-red	90	7
11	red	108	11
12	half-red	101	12
13	not-red	89	6

what the *f* would be to minimize:

$$MSE = \frac{1}{n} \sum_{i} (f(x_i) - f'(x_i))^2$$

id	color	weight	price
1	red	110	12
2	red	105	10
3	half-red	100	10
4	not-red	93	15
5	not-red	80	5
6	half-red	98	8
7	red	95	8
8	not-red	102	9
9	not-red	98	6
10	half-red	90	7
11	red	108	11
12	half-red	101	12
13	not-red	89	6

what is the prediction value of each color to minimize the mean square error?

$$MSE = \frac{1}{n} \sum_{i} (f(x_i) - f'(x_i))^2$$

id	color	weight	price
1	red	110	12
2	red	105	10
3	half-red	100	10
4	not-red	93	15
5	not-red	80	5
6	half-red	98	8
7	red	95	8
8	not-red	102	9
9	not-red	98	6
10	half-red	90	7
11	red	108	11
12	half-red	101	12
13	not-red	89	6

what is the prediction value of each color to minimize the mean square error?

$$MSE = \frac{1}{n} \sum_{i} (f(x_i) - f'(x_i))^2 \qquad \text{mean value}$$

id	color	weight	price
1	red	110	12
2	red	105	10
3	half-red	100	10
4	not-red	93	15
5	not-red	80	5
6	half-red	98	8
7	red	95	8
8	not-red	102	9
9	not-red	98	6
10	half-red	90	7
11	red	108	11
12	half-red	101	12
13	not-red	89	6

$$f' = \begin{cases} 10.25, & \text{color} = \text{red} \\ 9.25, & \text{color} = \text{half-red} \\ 8.2, & \text{color} = \text{not-red} \end{cases}$$

for *weight* feature: **for any split**:

choose the split with minimal MSE

Classification: examples are pure of class

Regression: MSE small enough

Three basic algorithms

Linear Model: Logistic Regression

$$\boldsymbol{x} = (x_1, x_2, \dots, x_n)$$

$$w_1, w_2, \ldots, w_n$$
 b

 $w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n + b$

$$\boldsymbol{x} = (x_1, x_2, \dots, x_n)$$

$$\boldsymbol{w} = w_1, w_2, \ldots, w_n \quad b$$

 $w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n + b$

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x} + b$$

$$\boldsymbol{x} = (x_1, x_2, \dots, x_n)$$

 $\boldsymbol{w} = w_1, w_2, \dots, w_n \quad b$

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x} + b$$

$$y = ax + b$$

 $y = w_1 \cdot x + w_2 \cdot x^2 + b$

model space: \mathbb{R}^{n+1} we sometimes omit the bias

$$f(\boldsymbol{x}) = \boldsymbol{w}^\top \boldsymbol{x}$$

1. *x* is with a constant element

2. practically as good as with bias (centered data)

Linear classifier

model space: \mathbb{R}^{n+1} $f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x} + b$ for classification $y \in \{-1, +1\}$ we predict an instance by $\operatorname{sign}(\boldsymbol{w}^{\top}\boldsymbol{x}+b)$ W $= \begin{cases} +1, & \boldsymbol{w}^{\top}\boldsymbol{x} + b > 0 \\ -1, & \boldsymbol{w}^{\top}\boldsymbol{x} + b < 0 \\ \text{random, otherwise} \end{cases}$ for an example (x, y), a correct prediction means $y(\boldsymbol{w}^{\top}\boldsymbol{x}+b) > 0$

simple, but too restricted

$$ar{x}^+ = rac{1}{\sum_{i:y_i=+1} 1} \sum_{i:y_i=+1} x_i$$
 $ar{x}^- = rac{1}{\sum_{i:y_i=-1} 1} \sum_{i:y_i=-1} x_i$

$$oldsymbol{w} = oldsymbol{ar{x}}^+ - oldsymbol{ar{x}}^ b = -oldsymbol{w}^ op \cdot rac{oldsymbol{ar{x}}^+ + oldsymbol{ar{x}}^-}{2}$$

Perceptron

feed training examples one by one

1. w = 0

2. for each example (\boldsymbol{x}, y) if $\operatorname{sign}(y \boldsymbol{w}^{\top} \boldsymbol{x}) < 0$

$$w = w + yx$$

 $f(\boldsymbol{x}) = \boldsymbol{w}^\top \boldsymbol{x} + b$

Perceptron

feed training examples one by one

1. w = 0

2. for each example (\boldsymbol{x}, y) if $\operatorname{sign}(y \boldsymbol{w}^{\top} \boldsymbol{x}) < 0$

$$w = w + yx$$

 $f(\boldsymbol{x}) = \boldsymbol{w}^\top \boldsymbol{x} + b$

$$\frac{\partial y \boldsymbol{w}^\top \boldsymbol{x}}{\partial \boldsymbol{w}} = y \boldsymbol{x}$$

Logistic regression

assume logit model: for a positive example

$$\boldsymbol{w}^{\top}\boldsymbol{x} = \log \frac{p(+1 \mid \boldsymbol{x})}{1 - p(+1 \mid \boldsymbol{x})}$$

so that $p(y \mid \boldsymbol{x}, \boldsymbol{w}) = \frac{1}{1 + e^{-y(\boldsymbol{w}^{\top}\boldsymbol{x})}}$

Logistic regression

assume logit model: for a positive example

$$\boldsymbol{w}^{\top}\boldsymbol{x} = \log \frac{p(+1 \mid \boldsymbol{x})}{1 - p(+1 \mid \boldsymbol{x})}$$

so that $p(y \mid \boldsymbol{x}, \boldsymbol{w}) = \frac{1}{1 + e^{-y(\boldsymbol{w}^{\top}\boldsymbol{x})}}$
minimize negative log-likelihood:
$$\underset{\boldsymbol{w}}{\operatorname{arg\,min}} - \log \prod_{i=1}^{m} p(y_i \mid \boldsymbol{x}_i, \boldsymbol{w}) = -\sum_{i} \log p(y_i \mid \boldsymbol{x}_i, \boldsymbol{w})$$

2

_0∟ -10

-5

0

convex

5

10

Optimization

objective function:

$$\underset{\boldsymbol{w}}{\operatorname{arg\,min}} \sum_{i} \log \left(1 + e^{-y_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i)} \right)$$

general optimization: gradient descent

$$\boldsymbol{w} = \boldsymbol{w} - \eta \frac{\partial \sum_{i} \log \left(1 + e^{-y_i (\boldsymbol{w}^\top \boldsymbol{x}_i)} \right)}{\partial \boldsymbol{w}}$$

Optimization

objective function:

$$\underset{\boldsymbol{w}}{\operatorname{arg\,min}} \sum_{i} \log \left(1 + e^{-y_i(\boldsymbol{w}^\top \boldsymbol{x}_i)} \right)$$

general optimization: gradient descent

$$\boldsymbol{w} = \boldsymbol{w} - \eta \frac{\partial \sum_{i} \log \left(1 + e^{-y_i (\boldsymbol{w}^\top \boldsymbol{x}_i)} \right)}{\partial \boldsymbol{w}}$$

cheaper optimization: stochastic gradient descent

$$\boldsymbol{w} = \boldsymbol{w} - \eta \frac{\partial \log \left(1 + e^{-y(\boldsymbol{w}^{\top} \boldsymbol{x})}\right)}{\partial \boldsymbol{w}}$$

监督学习的目标是否是最小化训练误差?

朴素贝叶斯假设是指数据的属性之间相互独立?

对于分类问题,当训练数据没有冲突时,决策树学习算法 是否一定能取得O训练错误率? (冲突样本:两个完全相同 的样本却被标记为不同类别)

决策树学习算法是否需要训练样本规范化 (normalization)?

Logistic regression是用于回归还是分类?

Chapter 5