Data Mining for M.Sc. students, CS, Nanjing University Fall, 2014, Yang Yu

Lecture 4: Machine Learning II Principle of Learning

http://cs.nju.edu.cn/yuy/course_dm14ms.ashx

The core of all the problems

infinite samples

V.S.
finite samples

Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ?

$$
\mathcal{X} \quad \rightarrow\{-1,+1\}
$$

ground-truth function f
examples/training data:
$\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}$

$$
y_{i}=f\left(\boldsymbol{x}_{i}\right)
$$

learning: find an f^{\prime} that is close to f

Classification

what can be observed:
on examples/training data:
$\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\} \quad y_{i}=f\left(\boldsymbol{x}_{i}\right)$
e.g. training error
$\epsilon_{t}=\frac{1}{m} \sum_{i=1}^{m} I\left(h\left(\boldsymbol{x}_{i}\right) \neq y_{i}\right)$
what is expected:
over the whole distribution: generalization error

$$
\begin{aligned}
& \epsilon_{g}=\mathbb{E}_{x}[I(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))] \\
& \left.=\int_{\mathcal{X}} p(x) I(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))\right] \mathrm{d} x
\end{aligned}
$$

Regression

Features: color, weight Label: price [0,1]

learning: find an f^{\prime} that is close to f

Regression

what can be observed:
on examples/training data:
$\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\} \quad y_{i}=f\left(\boldsymbol{x}_{i}\right)$
e.g. training mean square error/MSE

$$
\epsilon_{t}=\frac{1}{m} \sum_{i=1}^{m}\left(h\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}
$$

what is expected:
over the whole distribution: generalization MSE

$$
\begin{aligned}
& \epsilon_{g}=\mathbb{E}_{x}(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))^{2} \\
& =\int_{\mathcal{X}} p(x)(h(\boldsymbol{x})-f(\boldsymbol{x}))^{2} \mathrm{~d} x
\end{aligned}
$$

The version space algorithm

 an abstract view of learning algorithms

The version space algorithm

 an abstract view of learning algorithms

The version space algorithm

 an abstract view of learning algorithms

The version space algorithm

an abstract view of learning algorithms

selection a hypothesis according to learner's bias the conflict boxes
2. find S in remaining boxes
3. find G in remaining boxes
4. output the mean of S and G

The version space algorithm

 an abstract view of learning algorithmsthree components of a learning algorithm

Theories

The i.i.d. assumption: all training examples and future (test) examples are drawn independently from an identical distribution

bias-variance dilemma (regression)
generalization bound (classification)

Bias-variance dilemma

Suppose we have 100 training examples but there can be different training sets

Start from the expected training MSE:
$E_{D}\left[\epsilon_{t}\right]=E_{D}\left[\frac{1}{m} \sum_{i=1}^{m}\left(h\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}\right]=\frac{1}{m} \sum_{i=1}^{m} E_{D}\left[\left(h\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}\right]$
(assume no noise)

$$
\begin{aligned}
& E_{D}\left[(h(\boldsymbol{x})-f(\boldsymbol{x}))^{2}\right] \\
& =E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]+E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
& =E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right]+E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
& \quad+E_{D}\left[2\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)\right] \\
& =E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right]+E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right]
\end{aligned}
$$

Bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

larger hypothesis space =>
lower bias but higher variance

hypothesis space

Bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

larger hypothesis space =>
lower bias but higher variance

hypothesis space

Bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

smaller hypothesis space
=>
smaller variance
but higher bias

Bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

smaller hypothesis space
=>
smaller variance
but higher bias

Bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

Overfitting and underfitting

training error v.s. hypothesis space size

Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space
$\{y=a+b x \mid a, b \in \mathbb{R}\}$

Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space
$\{y=a+b x \mid a, b \in \mathbb{R}\}$
higher polynomials: moderate training error, moderate space $\left\{y=a+b x+c x^{2}+d x^{3} \mid a, b, c, d \in \mathbb{R}\right\}$

Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space

$$
\{y=a+b x \mid a, b \in \mathbb{R}\}
$$

higher polynomials: moderate training error, moderate space $\left\{y=a+b x+c x^{2}+d x^{3} \mid a, b, c, d \in \mathbb{R}\right\}$
even higher order: no training error, large space $\left\{y=a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5} \mid a, b, c, d, e, f \in \mathbb{R}\right\}$

Overfitting and bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

Overfitting and bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

Overfitting and bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

Overfitting and bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

Overfitting and bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

Overfitting and bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

Generalization error

assume i.i.d. examples, and the ground-truth hypothesis is a box

Generalization error

assume i.i.d. examples, and the ground-truth hypothesis is a box

the error of picking a consistent hypothesis:
with probability at least $1-\delta$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

Generalization error

assume i.i.d. examples, and the ground-truth hypothesis is a box

the error of picking a consistent hypothesis:
with probability at least $1-\delta$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

- more examples
- smaller hypothesis space

Generalization error

for one h
What h is consistent
What is the probability of

$$
\epsilon_{g}(h) \geq \epsilon
$$

assume h is bad: $\epsilon_{g}(h) \geq \epsilon$

Generalization error

for one h
h is consistent
What is the probability of

$$
\epsilon_{g}(h) \geq \epsilon
$$

assume h is bad: $\epsilon_{g}(h) \geq \epsilon$
h is consistent with 1 example:

Generalization error

for one h
h is consistent
What is the probability of

$$
\epsilon_{g}(h) \geq \epsilon
$$

assume h is bad: $\epsilon_{g}(h) \geq \epsilon$
h is consistent with 1 example:

$$
P \leq 1-\epsilon
$$

Generalization error

for one h
h is consistent
What is the probability of

$$
\epsilon_{g}(h) \geq \epsilon
$$

assume h is bad: $\epsilon_{g}(h) \geq \epsilon$
h is consistent with 1 example:

$$
P \leq 1-\epsilon
$$

h is consistent with \boldsymbol{m} example:

Generalization error

for one h
What h is consistent
What is the probability of

$$
\epsilon_{g}(h) \geq \epsilon
$$

assume h is bad: $\epsilon_{g}(h) \geq \epsilon$
h is consistent with 1 example:

$$
P \leq 1-\epsilon
$$

h is consistent with \boldsymbol{m} example:

$$
P \leq(1-\epsilon)^{m}
$$

Generalization error

h is consistent with \boldsymbol{m} example:

$$
P \leq(1-\epsilon)^{m}
$$

There are \boldsymbol{k} consistent hypotheses

Generalization error

h is consistent with \boldsymbol{m} example:

$$
P \leq(1-\epsilon)^{m}
$$

There are \boldsymbol{k} consistent hypotheses

Probability of choosing a bad one: h_{1} is chosen and h_{1} is bad $P \leq(1-\epsilon)^{m}$
 h_{2} is chosen and h_{2} is bad $P \leq(1-\epsilon)^{m}$
h_{k} is chosen and h_{k} is bad $P \leq(1-\epsilon)^{m}$

Generalization error

h is consistent with \boldsymbol{m} example:

$$
P \leq(1-\epsilon)^{m}
$$

There are \boldsymbol{k} consistent hypotheses

Probability of choosing a bad one:
h_{1} is chosen and h_{1} is bad $P \leq(1-\epsilon)^{m}$
 h_{2} is chosen and h_{2} is bad $P \leq(1-\epsilon)^{m}$
h_{k} is chosen and h_{k} is bad $P \leq(1-\epsilon)^{m}$
overall:
$\exists h: h$ can be chosen (consistent) but is bad

Generalization error

h_{1} is chosen and h_{1} is bad $P \leq(1-\epsilon)^{m}$ h_{2} is chosen and h_{2} is bad $P \leq(1-\epsilon)^{m}$
h_{k} is chosen and h_{k} is bad $P \leq(1-\epsilon)^{m}$

overall:

$\exists h: h$ can be chosen (consistent) but is bad

Generalization error

h_{1} is chosen and h_{1} is bad $P \leq(1-\epsilon)^{m}$ h_{2} is chosen and h_{2} is bad $P \leq(1-\epsilon)^{m}$
h_{k} is chosen and h_{k} is bad $P \leq(1-\epsilon)^{m}$

overall:

$\exists h: h$ can be chosen (consistent) but is bad
Union bound: $P(A \cup B) \leq P(A)+P(B)$

Generalization error

h_{1} is chosen and h_{1} is bad $P \leq(1-\epsilon)^{m}$ h_{2} is chosen and h_{2} is bad $P \leq(1-\epsilon)^{m}$
h_{k} is chosen and h_{k} is bad $P \leq(1-\epsilon)^{m}$

overall:

$\exists h$: h can be chosen (consistent) but is bad
Union bound: $P(A \cup B) \leq P(A)+P(B)$
$P(\exists h$ is consistent but bad $) \leq k \cdot(1-\epsilon)^{m} \leq|\mathcal{H}| \cdot(1-\epsilon)^{m}$

Generalization error

$P(\exists h$ is consistent but bad $) \leq k \cdot(1-\epsilon)^{m} \leq|\mathcal{H}| \cdot(1-\epsilon)^{m}$

$$
P\left(\epsilon_{g} \geq \epsilon\right) \leq|\mathcal{H}| \cdot(1-\epsilon)^{m}
$$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

Generalization error

$P(\exists h$ is consistent but bad $) \leq k \cdot(1-\epsilon)^{m} \leq|\mathcal{H}| \cdot(1-\epsilon)^{m}$

$$
\stackrel{\substack{\text { (} \left.\epsilon_{g} \geq \epsilon\right)}}{\swarrow|\mathcal{H}| \cdot(1-\epsilon)^{m}}
$$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

Generalization error

$P(\exists h$ is consistent but bad $) \leq k \cdot(1-\epsilon)^{m} \leq|\mathcal{H}| \cdot(1-\epsilon)^{m}$

$$
\begin{gathered}
\Downarrow \\
P\left(\epsilon_{g} \geq \epsilon\right) \leq \frac{|\mathcal{H}| \cdot(1-\epsilon)^{m}}{\delta}
\end{gathered}
$$

with probability at least $1-\delta$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

Inconsistent hypothesis

What if the ground-truth hypothesis is NOT a box: non-zero training error

Inconsistent hypothesis

What if the ground-truth hypothesis is NOT a box: non-zero training error

Inconsistent hypothesis

What if the ground-truth hypothesis is NOT a box: non-zero training error

with probability at least $1-\delta$
$\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{m}\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}$

Inconsistent hypothesis

What if the ground-truth hypothesis is NOT a box: non-zero training error

with probability at least $1-\delta$
$\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{m}\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}$
smaller generalization error: • smaller hypothesis space

- smaller training error

Hoeffding's inequality

X be an i.i.d. random variable
$X_{1}, X_{2}, \ldots, X_{m}$ be m samples

$$
X_{i} \in[a, b]
$$

$\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mathbb{E}[X] \leftarrow$ difference between sum and expectation

$$
P\left(\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mathbb{E}[X] \geq \epsilon\right) \leq \exp \left(-\frac{2 \epsilon^{2} m}{(b-a)^{2}}\right)
$$

Generalization error

for one h

$$
X_{i}=I\left(h\left(x_{i}\right) \neq f\left(x_{i}\right)\right) \in[0,1]
$$

$$
\frac{1}{m} \sum_{i=1}^{m} X_{i} \rightarrow \epsilon_{t}(h) \quad \mathbb{E}\left[X_{i}\right] \rightarrow \epsilon_{g}(h)
$$

$$
\begin{gathered}
P\left(\epsilon_{t}(h)-\epsilon_{g}(h) \geq \epsilon\right) \leq \exp \left(-2 \epsilon^{2} m\right) \\
P\left(\epsilon_{t}-\epsilon_{g} \geq \epsilon\right) \\
\leq P\left(\exists h \in|\mathcal{H}|: \epsilon_{t}(h)-\epsilon_{g}(h) \geq \epsilon\right) \leq|\mathcal{H}| \exp \left(-2 \epsilon^{2} m\right)
\end{gathered}
$$

Generalization error

for one h

$$
X_{i}=I\left(h\left(x_{i}\right) \neq f\left(x_{i}\right)\right) \in[0,1]
$$

$$
\frac{1}{m} \sum_{i=1}^{m} X_{i} \rightarrow \epsilon_{t}(h) \quad \mathbb{E}\left[X_{i}\right] \rightarrow \epsilon_{g}(h)
$$

$$
P\left(\epsilon_{t}(h)-\epsilon_{g}(h) \geq \epsilon\right) \leq \exp \left(-2 \epsilon^{2} m\right)
$$

$$
P\left(\epsilon_{t}-\epsilon_{g} \geq \epsilon\right)
$$

with probability at least $1-\delta$

$$
\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{2 m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}
$$

Generalization error: Summary

assume i.i.d. examples
consistent hypothesis case:
with probability at least $1-\delta$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

inconsistent hypothesis case:

$$
\begin{aligned}
& \text { with probability at least } 1-\delta \\
& \qquad \epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{m}\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}
\end{aligned}
$$

generalization error:
number of examples m
training error ϵ_{t}
hypothesis space complexity $\ln |\mathcal{H}|$

PAC-learning

Probably approximately correct (PAC):

$$
\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{2 m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}
$$

PAC-learning

Probably approximately correct (PAC): with probability at least $1-\delta$
$\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{2 m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}$

PAC-learning

Probably approximately correct (PAC): with probability at least $1-\delta$

$$
\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{2 m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}
$$

PAC-learnable: [Valiant, 1984]
A concept class \mathcal{C} is PAC-learnable if exists a learning algorithm A such that for all $f \in \mathcal{C}, \epsilon>0, \delta>0$ and distribution D

$$
P_{D}\left(\epsilon_{g} \leq \epsilon\right) \geq 1-\delta
$$

using $m=\operatorname{poly}(1 / \epsilon, 1 / \delta)$ examples and polynomial time.

PAC-learning

Probably approximately correct (PAC): with probability at least $1-\delta$

$$
\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{2 m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}
$$

PAC-learnable: [Valiant, 1984]
A concept class \mathcal{C} is PAC-learnable if exists a learning algorithm A such that

Leslie Valiant
Turing Award (2010)
EATCS Award (2008)
Knuth Prize (1997)
Nevanlinna Prize (1986) for all $f \in \mathcal{C}, \epsilon>0, \delta>0$ and distribution D

$$
P_{D}\left(\epsilon_{g} \leq \epsilon\right) \geq 1-\delta
$$

using $m=\operatorname{poly}(1 / \epsilon, 1 / \delta)$ examples and polynomial time.

Dimensions of modeling

Learning algorithms revisit

Decision Tree

Tree depth and the possibilities

features: n
feature type: binary depth: $d<n$

How many different trees?
one-branch: $2^{d} \frac{n!}{(n-d)!}>2^{d} \frac{n^{n}}{(n-d)^{n} e^{n}}$
full-tree: $\quad 2^{2^{d}} \prod_{i=0}^{d-1} \frac{(n-i)!}{(n-d-i)!}$
the possibility of trees grows very fast with d

The overfitting phenomena

-- the divergence between infinite and finite samples
red: generalization error blue: training error
tree depth

The overfitting phenomena

-- the divergence between infinite and finite samples
red: generalization error blue: training error
tree depth

The overfitting phenomena

-- the divergence between infinite and finite samples

The overfitting phenomena

-- the divergence between infinite and finite samples

The overfitting phenomena

-- the divergence between infinite and finite samples

The overfitting phenomena

-- the divergence between infinite and finite samples

To make decision tree less complex
Pre-pruning: early stop

- minimum data in leaf
- maximum depth
- maximum accuracy

Post-pruning: prune full grown DT
reduced error pruning

Reduced error pruning

1. Grow a decision tree
2. For every node starting from the leaves
3. Try to make the node leaf, if does not increase the error, keep as the leaf

could split a validation set out from the training set to evaluate the error

DT boundary visualization

decision stump

max depth=2

max depth=12

Oblique decision tree

choose a linear combination in each node:
axis parallel:
$X_{1}>0.5$
oblique:
$0.2 X_{1}+0.7 X_{2}+0.1 X_{3}>0.5$
was hard to train

Learning algorithms revisit

Naive Bayes

Naive Bayes

graphic representation

naive Bayes assumption:

$$
P(\boldsymbol{x} \mid y)=\prod_{i} P\left(x_{i} \mid y\right)
$$

no assumption:

Relaxation of naive Bayes assumption

assume features are conditional independence given the class
if the assumption holds, naive Bayes
classifier will have excellence performance
if the assumption does not hold ...

Relaxation of naive Bayes assumption

assume features are conditional independence given the class
if the assumption holds, naive Bayes
classifier will have excellence performance
if the assumption does not hold ...

- Naive Bayes classifier may also have good performance
- Reform the data to satisfy the assumption
- Invent algorithms to relax the assumption

Reform the data

clustering to generate data with subclasses

Semi-naive Bayes classifiers

TreeNB
train an NB classifier in each leaf node of a rough decision tree

Semi-naive Bayes classifiers

TAN (Tree Augmented NB)
extends NB by allowing every feature to have one more parent feature other than the class, which forms a tree structure

fully connected

TAN

Semi-naive Bayes classifiers

fully connected graph $=\sum_{x_{i}, x_{i}, y} P\left(x_{i}, x_{i}, y\right) \log \frac{P\left(x_{i}, x_{i} \mid y\right)}{P\left(x_{i} y\right) P\left(x_{j} \mid y\right)}$ among features

Semi-naive Bayes classifiers

AODE (average one-dependent estimators) expand a posterior probability with one-dependent estimators
(ODEs)

$$
\begin{aligned}
& P(\boldsymbol{x} \mid y)=P\left(x_{2}, \ldots, x_{n} \mid x_{1}, y\right) P\left(x_{1} \mid y\right) \\
& =P\left(x_{1} \mid y\right) \prod P\left(x_{i} \mid x_{1}, y\right)
\end{aligned}
$$

the conditional independency is less important

- harder to estimate (fewer data)

AODE: average ODEs

$$
f(x)=\underset{y}{\arg \max } \sum_{i} I\left(\operatorname{count}\left(x_{i} \geq m\right)\right) \cdot \tilde{P}(y) \cdot \tilde{P}\left(x_{i} \mid y\right) \cdot \prod_{j} \tilde{P}\left(x_{j} \mid x_{i}, y\right)
$$

Handling numerical features

Discretization

recall what we have talked about in Lecture 2

Estimate probability density $(\mathrm{P}(\mathrm{X}) \rightarrow \mathrm{p}(\mathrm{x})$)
Gaussian model:
$p(x)=\frac{1}{\sqrt{2 \pi \delta^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \delta^{2}}}$
$p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(2 \pi)^{k / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$
training: calculate mean and covariance test: calculate density

Bayesian networks

inference in a graphic model representation a model simplified by conditional independence a clear description of how things are going

$P(C=T)$	$P(C=F)$			
0.8	0.2	\quad	$P(S=T)$	$P(S=F)$
:---:	:---:			
0.02	0.98			

Judea Pearl Turing Award 2011
"for fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"

监督学习的目标是否是最小化训练误差？
PAC－learning泛化界对于任意的潜在分布是否都成立？
解释过配（overfitting）和欠配（underfitting）现象。
解释 Bias－Variance 困境。
一数据集用以下两个多项式函数空间都可以得到O训练错误率，使用哪个函数空间的泛化错误可能更低？
$\mathcal{F}_{1}=\left\{y=a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}$
$\mathcal{F}_{2}=\left\{y=a+a x+b x^{2}+b x^{3}+(a+b) x^{4} \mid a, b \in \mathbb{R}\right\}$
朴素贝叶斯假设不满足时，朴素贝叶斯的性能一定不好？

