

# Lecture 4: Machine Learning II Principle of Learning

http://cs.nju.edu.cn/yuy/course\_dm14ms.ashx



# The core of all the problems



 $\boldsymbol{x}$ 

infinite samples

V.S.

finite samples

#### Classification

NANA ALISON

Features: color, weight

**Label**: taste is sweet (positive/+) or not (negative/-)



(color, weight)  $\rightarrow$  sweet?  $\mathcal{X} \rightarrow \{-1, +1\}$ 

ground-truth function f

examples/training data:  $\{(\boldsymbol{x}_1,y_1),\ldots,(\boldsymbol{x}_m,y_m)\}$   $y_i=f(\boldsymbol{x}_i)$ 

learning: find an f' that is <u>close</u> to f

### Classification



#### what can be observed:

on examples/training data:

$$\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}$$
  $y_i = f(\boldsymbol{x}_i)$ 

e.g. training error

$$\epsilon_t = \frac{1}{m} \sum_{i=1}^m I(h(\boldsymbol{x}_i) \neq y_i)$$

#### what is expected:

over the whole distribution: generalization error

$$\epsilon_g = \mathbb{E}_x[I(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))]$$
$$= \int_{\mathcal{X}} p(x)I(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))]dx$$

# Regression



**Features**: color, weight

**Label**: price [0,1]



learning:  $\underline{\text{find}}$  an f' that is  $\underline{\text{close}}$  to f

# Regression



#### what can be observed:

on examples/training data:

$$\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}$$
  $y_i = f(\boldsymbol{x}_i)$ 

e.g. training mean square error/MSE

$$\epsilon_t = \frac{1}{m} \sum_{i=1}^m (h(\boldsymbol{x}_i) - y_i)^2$$

#### what is expected:

over the whole distribution: generalization MSE

$$\epsilon_g = \mathbb{E}_x (h(\boldsymbol{x}) \neq f(\boldsymbol{x}))^2$$
$$= \int_{\mathcal{X}} p(x) (h(\boldsymbol{x}) - f(\boldsymbol{x}))^2 dx$$

#### an abstract view of learning algorithms



S: most specific hypothesis

G: most general hypothesis

version space: consistent hypotheses [Mitchell, 1997]



an abstract view of learning algorithms





S: most specific hypothesis

G: most general hypothesis

version space: consistent hypotheses [Mitchell, 1997]



#### a conceptual algorithm:

- 1. for every example, remove the conflict boxes
- 2. find S in remaining boxes
- 3. find G in remaining boxes
- 4. output the mean of S and G

#### an abstract view of learning algorithms





S: most specific hypothesis

G: most general hypothesis

version space: consistent hypotheses [Mitchell, 1997]



#### a conceptual algorithm:

- 1. for every example, remove the conflict boxes
- 2. find S in remaining boxes
- 3. find G in remaining boxes
- 4. output the mean of S and G

#### an abstract view of learning algorithms





selection a hypothesis according to learner's bias

S: most specific hypothesis

G: most general hypothesis

version space: consistent hypotheses [Mitchell, 1997]



#### a conceptual algorithm:

- 1. for every example, remove the conflict boxes
- 2. find S in remaining boxes
- 3. find G in remaining boxes
- 4. output the mean of S and G

an abstract view of learning algorithms



#### three components of a learning algorithm



#### Theories

The i.i.d. assumption:

all training examples and future (test)
examples are drawn independently from
an identical distribution



bias-variance dilemma (regression)

generalization bound (classification)

Suppose we have 100 training examples but there can be different training sets

Start from the expected training MSE:

$$E_D[\epsilon_t] = E_D \left[ \frac{1}{m} \sum_{i=1}^m (h(\boldsymbol{x}_i) - y_i)^2 \right] = \frac{1}{m} \sum_{i=1}^m E_D \left[ (h(\boldsymbol{x}_i) - y_i)^2 \right]$$

(assume no noise)

$$E_{D} \left[ (h(\boldsymbol{x}) - f(\boldsymbol{x}))^{2} \right]$$

$$= E_{D} \left[ (h(\boldsymbol{x}) - E_{D}[h(\boldsymbol{x})] + E_{D}[h(\boldsymbol{x})] - f(\boldsymbol{x}))^{2} \right]$$

$$= E_{D} \left[ (h(\boldsymbol{x}) - E_{D}[h(\boldsymbol{x})])^{2} \right] + E_{D} \left[ (E_{D}[h(\boldsymbol{x})] - f(\boldsymbol{x}))^{2} \right]$$

$$+ E_{D} \left[ 2(h(\boldsymbol{x}) - E_{D}[h(\boldsymbol{x})])(E_{D}[h(\boldsymbol{x})] - f(\boldsymbol{x})) \right]$$

$$= E_{D} \left[ (h(\boldsymbol{x}) - E_{D}[h(\boldsymbol{x})])^{2} \right] + E_{D} \left[ (E_{D}[h(\boldsymbol{x})] - f(\boldsymbol{x}))^{2} \right]$$
variance bias^2

bias^2 variance

$$E_D\left[(h(oldsymbol{x})-E_D[h(oldsymbol{x})])^2
ight]$$
 variance

$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
  $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$  variance bias^2

larger hypothesis space => lower bias but higher variance



hypothesis space

$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
  $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$  variance bias^2

$$E_D\left[(E_D[h(oldsymbol{x})] - f(oldsymbol{x}))^2
ight] \ ext{bias} \ ^2$$

larger hypothesis space => lower bias but higher variance



hypothesis space

$$E_D\left[(h(oldsymbol{x})-E_D[h(oldsymbol{x})])^2
ight]$$
 variance

$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
  $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$  variance bias^2



smaller hypothesis space => smaller variance but higher bias



hypothesis space

$$E_D\left[(h(oldsymbol{x})-E_D[h(oldsymbol{x})])^2
ight]$$
 variance

$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
  $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$  variance bias^2



smaller hypothesis space => smaller variance but higher bias



hypothesis space

variance







training error v.s. hypothesis space size





training error v.s. hypothesis space size





linear functions: high training error, small space  $\{y=a+bx\mid a,b\in\mathbb{R}\}$ 



training error v.s. hypothesis space size



linear functions: high training error, small space

$$\{y = a + bx \mid a, b \in \mathbb{R}\}\$$

higher polynomials: moderate training error, moderate space

$$\{y = a + bx + cx^2 + dx^3 \mid a, b, c, d \in \mathbb{R}\}$$



training error v.s. hypothesis space size



linear functions: high training error, small space

$$\{y = a + bx \mid a, b \in \mathbb{R}\}\$$

higher polynomials: moderate training error, moderate space

$$\{y = a + bx + cx^2 + dx^3 \mid a, b, c, d \in \mathbb{R}\}$$

even higher order: no training error, large space

$$\{y = a + bx + cx^2 + dx^3 + ex^4 + fx^5 \mid a, b, c, d, e, f \in \mathbb{R}\}$$

$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
 variance

$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
  $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$  variance bias^2



$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
  $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$  variance bias^2

$$E_D\left[(E_D[h(\boldsymbol{x})] - f(\boldsymbol{x}))^2\right]$$
  
bias^2



$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
 variance

$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
  $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$  variance bias^2



$$E_D\left[(h({m x})-E_D[h({m x})])^2
ight]$$
 variance

$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
  $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$  variance bias^2



$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
 variance

$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
  $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$  variance bias^2



$$E_D\left[(h({m x})-E_D[h({m x})])^2
ight]$$
 variance

$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
  $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$  variance bias^2



NANAL SERVICE UNITY

assume i.i.d. examples, and the ground-truth hypothesis is a box





assume i.i.d. examples, and the ground-truth hypothesis is a box



the error of picking a consistent hypothesis:

with probability at least  $1 - \delta$   $\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$ 



assume i.i.d. examples, and the ground-truth hypothesis is a box



the error of picking a consistent hypothesis:

with probability at least  $1 - \delta$   $\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$ 

smaller generalization error:

- more examples
- smaller hypothesis space

for one *h* 

What is the probability of

h is consistent  $\epsilon_g(h) \ge \epsilon$ 

assume h is **bad**:  $\epsilon_g(h) \geq \epsilon$ 



for one *h* 

What is the probability of

h is consistent  $\epsilon_q(h) \ge \epsilon$ 

assume h is **bad**:  $\epsilon_g(h) \ge \epsilon$ 

*h* is consistent with 1 example:



for one *h* 

What is the probability of

$$h$$
 is consistent  $\epsilon_g(h) \ge \epsilon$ 

assume h is **bad**:  $\epsilon_g(h) \ge \epsilon$ 

*h* is consistent with 1 example:

$$P \le 1 - \epsilon$$



for one *h* 

What is the probability of h is consistent  $\epsilon_q(h) \geq \epsilon$ 

assume h is **bad**:  $\epsilon_g(h) \geq \epsilon$ 

*h* is consistent with 1 example:

$$P \le 1 - \epsilon$$

*h* is consistent with *m* example:



for one *h* 

What is the probability of

$$h$$
 is consistent  $\epsilon_q(h) \ge \epsilon$ 

assume h is **bad**:  $\epsilon_g(h) \ge \epsilon$ 

*h* is consistent with 1 example:

$$P \le 1 - \epsilon$$

*h* is consistent with *m* example:

$$P \le (1 - \epsilon)^m$$





*h* is consistent with *m* example:

$$P \le (1 - \epsilon)^m$$

There are k consistent hypotheses —





*h* is consistent with *m* example:

$$P \le (1 - \epsilon)^m$$

There are k consistent hypotheses -

Probability of choosing a bad one:

 $h_1$  is chosen and  $h_1$  is bad  $P \leq (1 - \epsilon)^m$ 

 $h_2$  is chosen and  $h_2$  is bad  $P \leq (1 - \epsilon)^m$ 

- - -

 $h_k$  is chosen and  $h_k$  is bad  $P \leq (1 - \epsilon)^m$ 





*h* is consistent with *m* example:

$$P \le (1 - \epsilon)^m$$

There are k consistent hypotheses  $\sim$ 



 $h_1$  is chosen and  $h_1$  is bad  $P \leq (1 - \epsilon)^m$ 

 $h_2$  is chosen and  $h_2$  is bad  $P \leq (1 - \epsilon)^m$ 

- - -

 $h_k$  is chosen and  $h_k$  is bad  $P \leq (1 - \epsilon)^m$ 

#### overall:

∃*h*: *h* can be chosen (consistent) but is bad



 $h_1$  is chosen and  $h_1$  is bad  $P \leq (1 - \epsilon)^m$ 

 $h_2$  is chosen and  $h_2$  is bad  $P \leq (1 - \epsilon)^m$ 

- - -

 $h_k$  is chosen and  $h_k$  is bad  $P \leq (1 - \epsilon)^m$ 

#### overall:

 $\exists h$ : h can be chosen (consistent) but is bad



 $h_1$  is chosen and  $h_1$  is bad  $P \leq (1 - \epsilon)^m$ 

 $h_2$  is chosen and  $h_2$  is bad  $P \leq (1 - \epsilon)^m$ 

- - -

 $h_k$  is chosen and  $h_k$  is bad  $P \leq (1 - \epsilon)^m$ 

#### overall:

∃*h*: *h* can be chosen (consistent) but is bad

Union bound:  $P(A \cup B) \leq P(A) + P(B)$ 



 $h_1$  is chosen and  $h_1$  is bad  $P \leq (1 - \epsilon)^m$ 

 $h_2$  is chosen and  $h_2$  is bad  $P \leq (1 - \epsilon)^m$ 

---

 $h_k$  is chosen and  $h_k$  is bad  $P \leq (1 - \epsilon)^m$ 

#### overall:

∃*h*: *h* can be chosen (consistent) but is bad

Union bound:  $P(A \cup B) \le P(A) + P(B)$ 

 $P(\exists h \text{ is consistent but bad}) \leq k \cdot (1 - \epsilon)^m \leq |\mathcal{H}| \cdot (1 - \epsilon)^m$ 





$$P(\exists h \text{ is consistent but bad}) \leq k \cdot (1 - \epsilon)^m \leq |\mathcal{H}| \cdot (1 - \epsilon)^m$$

$$P(\epsilon_g \ge \epsilon) \le |\mathcal{H}| \cdot (1 - \epsilon)^m$$

$$\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$



$$P(\exists h \text{ is consistent but bad}) \leq k \cdot (1 - \epsilon)^m \leq |\mathcal{H}| \cdot (1 - \epsilon)^m$$

$$P(\epsilon_g \ge \epsilon) \le |\mathcal{H}| \cdot (1 - \epsilon)^m$$

$$\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$



$$P(\exists h \text{ is consistent but bad}) \leq k \cdot (1 - \epsilon)^m \leq |\mathcal{H}| \cdot (1 - \epsilon)^m$$

$$P(\epsilon_g \ge \epsilon) \le |\mathcal{H}| \cdot (1 - \epsilon)^m$$

with probability at least  $1 - \delta$ 

$$\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$

What if the ground-truth hypothesis is NOT a box: non-zero training error





What if the ground-truth hypothesis is NOT a box: non-zero training error







What if the ground-truth hypothesis is NOT a box: non-zero training error



with probability at least  $1 - \delta$ 

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{m}} (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$



What if the ground-truth hypothesis is NOT a box: non-zero training error



with probability at least  $1 - \delta$ 

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{m}(\ln|\mathcal{H}| + \ln\frac{1}{\delta})}$$

smaller generalization error:

- more examples
- smaller hypothesis space
- smaller training error

## Hoeffding's inequality



X be an i.i.d. random variable  $X_1, X_2, \ldots, X_m$  be m samples

$$X_i \in [a, b]$$

$$\frac{1}{m} \sum_{i=1}^{m} X_i - \mathbb{E}[X] \leftarrow \text{ difference between sum and expectation}$$

$$P\left(\frac{1}{m}\sum_{i=1}^{m}X_{i} - \mathbb{E}[X] \ge \epsilon\right) \le \exp\left(-\frac{2\epsilon^{2}m}{(b-a)^{2}}\right)$$



for one 
$$h$$

$$X_i = I(h(x_i) \neq f(x_i)) \in [0, 1]$$

$$\frac{1}{m} \sum_{i=1}^{m} X_i \to \epsilon_t(h) \qquad \qquad \mathbb{E}[X_i] \to \epsilon_g(h)$$

$$P(\epsilon_t(h) - \epsilon_g(h) \ge \epsilon) \le \exp(-2\epsilon^2 m)$$

$$P(\epsilon_t - \epsilon_g \ge \epsilon)$$

$$\leq P(\exists h \in |\mathcal{H}| : \epsilon_t(h) - \epsilon_g(h) \geq \epsilon) \leq |\mathcal{H}| \exp(-2\epsilon^2 m)$$



for one 
$$h$$

$$X_i = I(h(x_i) \neq f(x_i)) \in [0, 1]$$

$$\frac{1}{m} \sum_{i=1}^{m} X_i \to \epsilon_t(h) \qquad \qquad \mathbb{E}[X_i] \to \epsilon_g(h)$$

$$P(\epsilon_t(h) - \epsilon_g(h) \ge \epsilon) \le \exp(-2\epsilon^2 m)$$

$$P(\epsilon_t - \epsilon_g \ge \epsilon)$$

$$\leq P(\exists h \in |\mathcal{H}| : \epsilon_t(h) - \epsilon_g(h) \geq \epsilon) \leq |\mathcal{H}| \exp(-2\epsilon^2 m)$$

with probability at least  $1 - \delta$ 

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{2m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})}$$

## Generalization error: Summary



## assume i.i.d. examples consistent hypothesis case:

with probability at least  $1 - \delta$ 

$$\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$

#### inconsistent hypothesis case:

with probability at least  $1 - \delta$ 

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{m}} (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$

#### generalization error:

number of examples m training error  $\epsilon_t$  hypothesis space complexity  $\ln |\mathcal{H}|$ 



#### Probably approximately correct (PAC):

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{2m}} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$



#### Probably approximately correct (PAC):

with probability at least  $1 - \delta$ 

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{2m}} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$



#### Probably approximately correct (PAC):

with probability at least  $1 - \delta$ 

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{2m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})}$$

#### PAC-learnable: [Valiant, 1984]

A concept class  $\mathcal{C}$  is PAC-learnable if exists a learning algorithm A such that for all  $f \in \mathcal{C}$ ,  $\epsilon > 0$ ,  $\delta > 0$  and distribution D  $P_D(\epsilon_g \leq \epsilon) \geq 1 - \delta$ using  $m = poly(1/\epsilon, 1/\delta)$  examples and polynomial time.

#### Probably approximately correct (PAC):

with probability at least  $1 - \delta$ 

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{2m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})}$$

#### PAC-learnable: [Valiant, 1984]

A concept class C is PAC-learnable if exists a learning algorithm A such that

for all  $f \in \mathcal{C}$ ,  $\epsilon > 0$ ,  $\delta > 0$  and distribution D  $P_D(\epsilon_g \le \epsilon) \ge 1 - \delta$ 

using  $m = poly(1/\epsilon, 1/\delta)$  examples and polynomial time.



Leslie Valiant
Turing Award (2010)
EATCS Award (2008)
Knuth Prize (1997)
Nevanlinna Prize (1986)

## Dimensions of modeling



## Learning algorithms revisit



#### **Decision Tree**

## Tree depth and the possibilities

features: *n* 

feature type: binary

depth: d<n

How many different trees?

one-branch: 
$$2^d \frac{n!}{(n-d)!} > 2^d \frac{n^n}{(n-d)^n e^n}$$

 $2^{2^d} \prod_{i=0}^{d-1} \frac{(n-i)!}{(n-d-i)!}$ full-tree:

f1

0

f2



the possibility of trees grows very fast with d

























## Pruning



To make decision tree less complex

**Pre-pruning**: early stop

- minimum data in leaf
- maximum depth
- maximum accuracy

**Post-pruning:** prune full grown DT reduced error pruning

## Reduced error pruning

- 1. Grow a decision tree
- 2. For every node starting from the leaves

3. Try to make the node leaf, if does not increase the error,

keep as the leaf



could split a validation set out from the training set to evaluate the error

## DT boundary visualization









decision stump

max depth=2

max depth=12

## Oblique decision tree



#### choose a linear combination in each node:

#### axis parallel:

$$X_1 > 0.5$$

#### oblique:

$$0.2 X_1 + 0.7 X_2 + 0.1 X_3 > 0.5$$

was hard to train



## Learning algorithms revisit



Naive Bayes

## Naive Bayes

graphic representation

naive Bayes assumption:

$$P(\boldsymbol{x} \mid y) = \prod_{i} P(x_i \mid y)$$



no assumption:



## Relaxation of naive Bayes assumption



assume features are conditional independence given the class

if the assumption holds, naive Bayes classifier will have excellence performance

if the assumption does not hold ...

## Relaxation of naive Bayes assumption



assume features are conditional independence given the class

if the assumption holds, naive Bayes classifier will have excellence performance

if the assumption does not hold ...

- Naive Bayes classifier may also have good performance
- Reform the data to satisfy the assumption
- ▶ Invent algorithms to relax the assumption

## Reform the data



#### clustering to generate data with subclasses

original data



clustering the data in each class











reformed data



form a new data set with subclasses



#### **TreeNB**

train an NB classifier in each leaf node of a rough decision tree



TAN (Tree Augmented NB)

extends NB by allowing every feature to have one more parent feature other than the class, which forms a tree structure



fully connected



# NANA ALIS

#### TAN (Tree Augmented NB)



fully connected graph among features

mutual information for every node pair

$$I(X_{i}, X_{j} | Y) = \mathbb{E}_{Y}[I(X_{i}; X_{j}) | Y]$$

$$= \mathbb{E}_{Y}[H(X_{i}) - H(X_{i} | X_{j}) | Y]$$

$$= \sum_{x_{i}, x_{j}, y} P(x_{i}, x_{j}, y) \log \frac{P(x_{i}, x_{j} | y)}{P(x_{i} | y)P(x_{j} | y)}$$



weights assigned



connect to the class node





AODE (average one-dependent estimators)

expand a posterior probability with one-dependent estimators (ODEs)

$$P(\mathbf{x} \mid y) = P(x_2, \dots, x_n \mid x_1, y) P(x_1 \mid y)$$
  
=  $P(x_1 \mid y) \prod_{i} P(x_i \mid x_1, y)$ 

#### compare with NB:

$$P(\boldsymbol{x} \mid y) = \prod_{i} P(x_i \mid y)$$

- ▶ the conditional independency is less important
- harder to estimate (fewer data)

AODE: average ODEs

$$f(x) = \underset{y}{\operatorname{arg\,max}} \sum_{i} I(\operatorname{count}(x_i \ge m)) \cdot \tilde{P}(y) \cdot \tilde{P}(x_i \mid y) \cdot \prod_{j} \tilde{P}(x_j \mid x_i, y)$$

## Handling numerical features



#### Discretization

recall what we have talked about in Lecture 2

Estimate probability density  $(P(X) \rightarrow p(x))$ Gaussian model:

$$p(x) = \frac{1}{\sqrt{2\pi\delta^2}} e^{-\frac{(x-\mu)^2}{2\delta^2}}$$

$$p(x_1, \dots, x_n) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu})}$$

training: calculate mean and covariance test: calculate density

## Bayesian networks

inference in a graphic model representation a model simplified by conditional independence a clear description of how things are going





Judea Pearl Turing Award 2011

"for fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"

## 习题



监督学习的目标是否是最小化训练误差?

PAC-learning泛化界对于任意的潜在分布是否都成立?

解释过配(overfitting)和欠配(underfitting)现象。

解释 Bias-Variance 困境。

一数据集用以下两个多项式函数空间都可以得到O训练错误率,使用哪个函数空间的泛化错误可能更低?

$$\mathcal{F}_1 = \{ y = a + bx + cx^2 \mid a, b, c \in \mathbb{R} \}$$

$$\mathcal{F}_2 = \{ y = a + ax + bx^2 + bx^3 + (a+b)x^4 \mid a, b \in \mathbb{R} \}$$

朴素贝叶斯假设不满足时,朴素贝叶斯的性能一定不好?