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The core of all the problems
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Classification

(color, weight) → sweet ?

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-) 
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ground-truth function

{(x1, y1), . . . , (xm, ym)}
yi = f(xi)

examples/training data:

learning: find an fˊ that is close to f



Classification

{(x1, y1), . . . , (xm, ym)} yi = f(xi)
on examples/training data:

what can be observed:

what is expected:

e.g. training error

✏t =
1

m

mX

i=1

I(h(xi) 6= yi)

over the whole distribution: generalization error
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= E
x

[I(h(x) 6= f(x))]

=

Z

X
p(x)I(h(x) 6= f(x))]dx
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X ! [0,+1]

Regression

(color, weight) → price

Features: color, weight
Label: price [0,1] 
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ground-truth function

{(x1, y1), . . . , (xm, ym)}
yi = f(xi)

examples/training data:

learning: find an fˊ that is close to f



✏t =
1

m

mX

i=1

(h(xi)� yi)
2

✏

g

= E
x

(h(x) 6= f(x))2

=

Z

X
p(x)(h(x)� f(x))2dx

Regression

what can be observed:

what is expected:

{(x1, y1), . . . , (xm, ym)} yi = f(xi)
on examples/training data:

e.g. training mean square error/MSE

over the whole distribution: generalization MSE



The version space algorithm
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S: most specific hypothesis

G: most general hypothesis

version space: consistent 
hypotheses [Mitchell, 1997]

an abstract view of learning algorithms
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S: most specific hypothesis

G: most general hypothesis

version space: consistent 
hypotheses [Mitchell, 1997]

a conceptual algorithm: 
1. for every example, remove 

the conflict boxes
2. find S in remaining boxes
3. find G in remaining boxes
4. output the mean of S and G
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The version space algorithm
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S: most specific hypothesis

G: most general hypothesis

version space: consistent 
hypotheses [Mitchell, 1997]

a conceptual algorithm: 
1. for every example, remove 

the conflict boxes
2. find S in remaining boxes
3. find G in remaining boxes
4. output the mean of S and G

an abstract view of learning algorithms

selection a hypothesis 
according to learner’s bias



The version space algorithm

an abstract view of learning algorithms

hypothesis 
space search 

algorithm
scoring 
function

three components of a learning algorithm



Theories

bias-variance dilemma   (regression)

generalization bound     (classification)

The i.i.d. assumption:
all training examples and future (test) 
examples are drawn independently from 
an identical distribution

unknown but fixed 
distribution D



ED[✏t] = ED

"
1

m

mX

i=1

(h(xi)� yi)
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#
=
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m

mX

i=1

ED

⇥
(h(xi)� yi)

2
⇤

ED

⇥
(h(x)� f(x))2

⇤

= ED

⇥
(h(x)�ED[h(x)] + ED[h(x)]� f(x))2

⇤

= ED

⇥
(h(x)� ED[h(x)])2

⇤
+ ED

⇥
(ED[h(x)]� f(x))2

⇤

+ ED [2(h(x)� ED[h(x)])(ED[h(x)]� f(x))]

= ED

⇥
(h(x)� ED[h(x)])2

⇤
+ ED

⇥
(ED[h(x)]� f(x))2

⇤

Bias-variance dilemma

Suppose we have 100 training examples
but there can be different training sets

Start from the expected training MSE:

(assume no noise)

     variance                            bias^2
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Bias-variance dilemma

     variance                            bias^2
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hypothesis space

larger hypothesis space
=>
lower bias
but higher variance
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⇥
(h(x)� ED[h(x)])2

⇤
ED
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(ED[h(x)]� f(x))2

⇤
Bias-variance dilemma

     variance                            bias^2

f

hypothesis space

smaller hypothesis space
=>
smaller variance
but higher bias
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Bias-variance dilemma
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hypothesis space

smaller hypothesis space
=>
smaller variance
but higher bias
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⇤
ED

⇥
(ED[h(x)]� f(x))2

⇤
Bias-variance dilemma
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Overfitting and underfitting

training error v.s. hypothesis space size
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x

{y = a+ bx | a, b 2 R}

Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space
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x

{y = a+ bx | a, b 2 R}

{y = a+ bx+ cx

2 + dx

3 | a, b, c, d 2 R}

Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space

higher polynomials: moderate training error, moderate space



y

x

{y = a+ bx | a, b 2 R}

{y = a+ bx+ cx

2 + dx

3 + ex

4 + fx

5 | a, b, c, d, e, f 2 R}

{y = a+ bx+ cx

2 + dx

3 | a, b, c, d 2 R}

Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space

even higher order: no training error, large space

higher polynomials: moderate training error, moderate space
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Overfitting and bias-variance dilemma

     variance                            bias^2
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Generalization error
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assume i.i.d. examples, and the ground-truth 
hypothesis is a box 
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assume i.i.d. examples, and the ground-truth 
hypothesis is a box 

✏g <
1

m
· (ln |H|+ ln
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with probability at least 1� �

the error of picking a 
consistent hypothesis:



Generalization error
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assume i.i.d. examples, and the ground-truth 
hypothesis is a box 

‣more examples
‣ smaller hypothesis spacesmaller generalization error:

✏g <
1

m
· (ln |H|+ ln

1

�
)

with probability at least 1� �

the error of picking a 
consistent hypothesis:



h is consistent

✏g(h) � ✏

✏g(h) � ✏

Generalization error

What is the probability of

assume h is bad:

for one h



h is consistent
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Generalization error

What is the probability of

h is consistent with 1 example:

assume h is bad:

for one h



h is consistent
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h is consistent

✏g(h) � ✏

✏g(h) � ✏

P  1� ✏

Generalization error

What is the probability of

h is consistent with 1 example:

h is consistent with m example:

assume h is bad:

for one h



h is consistent

✏g(h) � ✏

✏g(h) � ✏

P  1� ✏

Generalization error

What is the probability of

h is consistent with 1 example:

h is consistent with m example:

assume h is bad:

P  (1� ✏)m

for one h



P  (1� ✏)m

Generalization error

h is consistent with m example:

There are k consistent hypotheses



P  (1� ✏)m

Generalization error

h is consistent with m example:

There are k consistent hypotheses

...

Probability of choosing a bad one:
h1 is chosen and h1 is bad
h2 is chosen and h2 is bad

hk is chosen and hk is bad

P  (1� ✏)m

P  (1� ✏)m

P  (1� ✏)m



∃h: h can be chosen (consistent) but is bad

P  (1� ✏)m

Generalization error

h is consistent with m example:

There are k consistent hypotheses

...

Probability of choosing a bad one:
h1 is chosen and h1 is bad
h2 is chosen and h2 is bad

hk is chosen and hk is bad

P  (1� ✏)m

P  (1� ✏)m

P  (1� ✏)m

overall:



∃h: h can be chosen (consistent) but is bad

Generalization error

h1 is chosen and h1 is bad
h2 is chosen and h2 is bad

hk is chosen and hk is bad
...

P  (1� ✏)m

P  (1� ✏)m

P  (1� ✏)m

overall:



∃h: h can be chosen (consistent) but is bad

Generalization error

h1 is chosen and h1 is bad
h2 is chosen and h2 is bad

hk is chosen and hk is bad
...

P  (1� ✏)m

P  (1� ✏)m

P  (1� ✏)m

overall:

P (A [B)  P (A) + P (B)Union bound:



∃h: h can be chosen (consistent) but is bad

P (9h is consistent but bad)  k · (1� ✏)m  |H| · (1� ✏)m

Generalization error

h1 is chosen and h1 is bad
h2 is chosen and h2 is bad

hk is chosen and hk is bad
...

P  (1� ✏)m

P  (1� ✏)m

P  (1� ✏)m

overall:

P (A [B)  P (A) + P (B)Union bound:



P (9h is consistent but bad)  k · (1� ✏)m  |H| · (1� ✏)m
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Generalization error
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P (9h is consistent but bad)  k · (1� ✏)m  |H| · (1� ✏)m
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Generalization error

with probability at least 1� �
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What if the ground-truth hypothesis 
is NOT a box: non-zero training error
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What if the ground-truth hypothesis 
is NOT a box: non-zero training error

‣more examples
‣ smaller hypothesis space
‣smaller training error

smaller generalization error:

✏g < ✏t +

r
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m
(ln |H|+ ln
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with probability at least 1� �
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training error



X be an i.i.d. random variable

X1, X2, . . . , Xm be m samples

1

m

mX

i=1

Xi � E[X] di↵erence between sum and expectation

P (

1

m

mX

i=1

Xi � E[X] � ✏)  exp

✓
� 2✏2m

(b� a)2

◆

Xi 2 [a, b]

Hoeffding's inequality
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mX

i=1

Xi ! ✏t(h) E[Xi] ! ✏g(h)

for one h

Xi = I(h(xi) 6= f(xi)) 2 [0, 1]

P (✏t(h)� ✏g(h) � ✏)  exp

�
�2✏2m

�

P (✏t � ✏g � ✏)

 P (9h 2 |H| : ✏t(h)� ✏g(h) � ✏)  |H| exp ��2✏2m
�

Generalization error 
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Xi ! ✏t(h) E[Xi] ! ✏g(h)

for one h

Xi = I(h(xi) 6= f(xi)) 2 [0, 1]

P (✏t(h)� ✏g(h) � ✏)  exp
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�2✏2m

�

P (✏t � ✏g � ✏)

 P (9h 2 |H| : ✏t(h)� ✏g(h) � ✏)  |H| exp ��2✏2m
�

✏g < ✏t +
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Generalization error 

�
with probability at least 1� �



Generalization error: Summary

✏g <
1

m
· (ln |H|+ ln

1

�
)

with probability at least 1� �

assume i.i.d. examples
consistent hypothesis case:

inconsistent hypothesis case:

generalization error: 
       number of examples
       training error
       hypothesis space complexity

✏g < ✏t +

r
1

m
(ln |H|+ ln

1

�
)

with probability at least 1� �

m
✏t

ln |H|



PAC-learning
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Probably approximately correct (PAC):
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PAC-learning

✏g < ✏t +

r
1

2m
· (ln |H|+ ln

1

�
)

Probably approximately correct (PAC):
with probability at least 1� �

PAC-learnable: [Valiant, 1984]

A concept class    is PAC-learnable if 

exists a learning algorithm A such that 

for all         ,                  and distribution D

using                             examples and 
polynomial time. 

PD(✏g  ✏) � 1� �

C

f 2 C ✏ > 0, � > 0

m = poly(1/✏, 1/�)



PAC-learning

✏g < ✏t +

r
1

2m
· (ln |H|+ ln

1

�
)

Probably approximately correct (PAC):
with probability at least 1� �

PAC-learnable: [Valiant, 1984]

A concept class    is PAC-learnable if 

exists a learning algorithm A such that 

for all         ,                  and distribution D

using                             examples and 
polynomial time. 

PD(✏g  ✏) � 1� �

C

f 2 C ✏ > 0, � > 0

m = poly(1/✏, 1/�)

Leslie Valiant
Turing Award (2010)
EATCS Award (2008)
Knuth Prize (1997)
Nevanlinna Prize (1986)



Dimensions of modeling

f

f ’

< x,f(x) >
< x,f(x) >

< x,f(x) >

< x,f(x) >

< x,f(x) >
algorithm

optimization

model

loss function



Learning algorithms revisit

Decision Tree



2d
n!

(n� d)!
> 2d

nn

(n� d)nen

22
d
d�1Y

i=0

(n� i)!

(n� d� i)!

Tree depth and the possibilities

f1

f20

0 1

1 f3

0 1

10

10

features: n
feature type: binary 
depth: d<n

How many different trees?

the possibility of trees grows very fast with d

one-branch:

full-tree:



The overfitting phenomena 

-- the divergence between infinite and 
finite samples 
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Pruning

To make decision tree less complex

Pre-pruning: early stop

Post-pruning: prune full grown DT

‣minimum data in leaf

‣maximum depth

‣maximum accuracy

reduced error pruning



Reduced error pruning

color

weight
not 

sweet

not red red

not 
sweet preservation

<100g >=100g

sweetnot 
sweet

goodbad

1. Grow a decision tree

2. For every node starting from the leaves

3. Try to make the node leaf, if does not increase the error, 
keep as the leaf

could split a validation set out 
from the training set to 
evaluate the error



DT boundary visualization

decision stump max depth=2 max depth=12



Oblique decision tree

choose a linear combination in each node:

axis parallel:
X1>0.5

oblique:
0.2 X1+ 0.7 X2+ 0.1 X3 > 0.5

was hard to train



Learning algorithms revisit

Naive Bayes



P (x | y) =
Y

i

P (xi | y) y

Naive Bayes

naive Bayes assumption:

xi

y

xi

graphic representation

no assumption:



Relaxation of naive Bayes assumption

assume features are conditional 
independence given the class

if the assumption holds, naive Bayes 
classifier will have excellence performance

if the assumption does not hold ...



Relaxation of naive Bayes assumption

assume features are conditional 
independence given the class

if the assumption holds, naive Bayes 
classifier will have excellence performance

if the assumption does not hold ...

‣ Naive Bayes classifier may also have good 
performance

‣ Reform the data to satisfy the assumption

‣ Invent algorithms to relax the assumption



Reform the data

clustering to generate data with subclasses

o
ri
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 d
at

a

clustering the 
data in each class

form a new data set 
with subclasses

2-class

4-class



Semi-naive Bayes classifiers

TreeNB

color

w
ei

g
h

t

NB1

NB2

NB3

train an NB classifier in each leaf node of a 
rough decision tree



Semi-naive Bayes classifiers

TAN (Tree Augmented NB)
extends NB by allowing every feature to 
have one more parent feature other than 
the class, which forms a tree structure

y

xi

y

xi

fully connected TAN



I(X
i

, X
j

| Y ) = E
Y

[I(X
i

;X
j

) | Y ]

= E
Y

[H(X
i

)�H(X
i

| X
j

) | Y ]

=

X

xi,xj ,y

P (x
i

, x
j

, y) log
P (x

i

, x
j

| y)
P (x

i

| y)P (x
j

| y)

wij

Semi-naive Bayes classifiers

TAN (Tree Augmented NB)
xi xi

fully connected graph 
among features

weights assigned

mutual information 
for every node pair

maximum 
weighted 
spanning tree

wij

xi

and 
choose 
a root

xi

connect to the 
class node

y



f(x) = argmax

y

X

i

I(count(xi � m)) · ˜P (y) · ˜P (xi | y) ·
Y

j

˜

P (xj | xi, y)

P (x | y) = P (x2, . . . , xn | x1, y)P (x1 | y)

= P (x1 | y)
Y

i

P (xi | x1, y)

Semi-naive Bayes classifiers

AODE (average one-dependent estimators)

P (x | y) =
Y

i

P (xi | y)

compare with NB:expand a posterior probability 
with one-dependent estimators 
(ODEs)

‣the conditional independency is less important

‣harder to estimate (fewer data)

AODE: average ODEs



p(x) =
1p
2⇡�2

e

� (x�µ)2

2�2

p(x1, . . . , xn) =
1

(2⇡)k/2|⌃|1/2
e

� 1
2 (x�µ)>⌃�1(x�µ)

Handling numerical features

Discretization

     recall what we have talked about in Lecture 2

Estimate probability density (P(X) → p(x))

Gaussian model:

training: calculate mean and covariance
test: calculate density



Bayesian networks

inference in a graphic model representation
a model simplified by conditional independence
a clear description of how things are going

Judea Pearl
Turing Award 2011

“for fundamental contributions 
to artificial intelligence through 
the development of a calculus 
for probabilistic and causal 
reasoning”



习题

监督学习的目标是否是最小化训练误差？

PAC-learning泛化界对于任意的潜在分布是否都成立？

解释过配(overfitting)和欠配(underfitting)现象。

解释 Bias-Variance 困境。

一数据集用以下两个多项式函数空间都可以得到0训练错
误率，使用哪个函数空间的泛化错误可能更低？

朴素贝叶斯假设不满足时，朴素贝叶斯的性能一定不好？

F1 = {y = a+ bx+ cx

2 | a, b, c 2 R}
F2 = {y = a+ ax+ bx

2 + bx

3 + (a+ b)x4 | a, b 2 R}


