Data Mining for M.Sc. students, CS, Nanjing University Fall, 2014, Yang Yu

Lecture 5: Machine Learning III Nearest Neighbors and Neural Networks

http://cs.nju.edu.cn/yuy/course_dm14ms.ashx

Nearest neighbor

what looks similar are similar

Nearest neighbor

for classification:

1-nearest neighbor:

k-nearest neighbor:

Predict the label as that of the NN or the (weighted) majority of the k-NN

Nearest neighbor

for regression:

1-nearest neighbor:

k-nearest neighbor:

Predict the label as that of the NN or the (weighted) average of the k-NN

Search for the nearest neighbor

Linear search

n times of distance calculations
$O(d n \ln k)$
d is the dimension, n is the number of samples

Nearest neighbor

for retrieval:

\star
 - ロロ 0

Nearest neighbor classifier

- as classifier, asymptotically less than 2 times of the optimal Bayes error
- naturally handle multi-class
- no training time
- nonlinear decision boundary
- slow testing speed for a large training data set
- have to store the training data
- sensitive to similarity function

Accelerate NN search: branch-and-bound

k-d tree:

construction:
alternatively choose one dimension, make a split by the median value.

Accelerate NN search: branch-and-bound

k-d tree:

linear search on k-d tree:
search(node,x):

1. if node is a leave, return the distance and the instance
2. compare search(left branch,x) and search(right branch,x)
3. return the instance with smaller distance

Accelerate NN search: branch-and-bound

k-d tree:

a smarter search on k-d tree: search(node, x):

1. if node is a leave, return the distance and the instance
2. if out-of-best-range, return infinity distance
3. compare $\operatorname{search(left~branch,x)~and~search(right~branch,x)~}$
4. return the instance with smaller distance

Accelerate NN search: branch-and-bound

k-d tree:
search for the nearest neighbor: follow the depth-first search

1. find the leaf containing the test instance, and calculate the distance to training point a

Accelerate NN search: branch-and-bound

k-d tree:

search for the nearest neighbor: follow the depth-first search

1. find the leaf containing the test instance, and calculate the distance to training point a
2. back-tracing like the depthfirst search. Skip nodes not overlapped with the current circle.

the cycle overlaps with the box of b, so visit the leaf of b

Accelerate NN search: branch-and-bound

k-d tree:

search for the nearest neighbor: follow the depth-first search

1. find the leaf containing the test instance, and calculate the distance to training point a
2. back-tracing like the depthfirst search. Skip nodes not overlapped with the current circle.

the cycle overlaps with the box of b, so visit the leaf of b
the cycle does not overlap with the box of node 5 and node 3, skip them

Accelerate NN search: hashing

hashing

hash function buckets:

Accelerate NN search: hashing

hashing

locality sensitive hashing:
similar objects in the same bucket

Accelerate NN search: hashing

hashing

locality sensitive hashing:

similar objects in the same bucket
A LSH function family $\mathcal{H}\left(c, r, P_{1}, P_{2}\right)$ has the following properties for any $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in S$

$$
\text { if }\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\| \leq r, \text { then } P_{h \in \mathcal{H}}\left(h\left(\boldsymbol{x}_{1}\right)=h\left(\boldsymbol{x}_{2}\right)\right) \geq P_{1}
$$

similar objects should be hashed in the same bucket with high probability
if $\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\| \geq c r$, then $P_{h \in \mathcal{H}}\left(h\left(\boldsymbol{x}_{1}\right)=h\left(\boldsymbol{x}_{2}\right)\right) \leq P_{2}$ dissimilar objects should be hashed in the same bucket with low probability

Accelerate NN search: hashing

Binary vectors in Hamming space
objects: (1100101101)
Hamming distance: count the number of positions with different elements
$\|110101001,110001100\|_{H}=3$

Accelerate NN search: hashing

Binary vectors in Hamming space
objects: (1100101101)
Hamming distance: count the number of positions with different elements

$$
\|110101001,110001100\|_{H}=3
$$

LSH functions: $\mathcal{H}=\left\{h_{1}, \ldots, h_{n}\right\}$ where $h_{i}(\boldsymbol{x})=x_{i}$

	h_{2}	h_{5}	h_{9}
110101001	1	0	1
110010100	1	1	0
000110110	0	1	0
111001001	1	0	1
000011101	0	1	1

Accelerate NN search: hashing

Binary vectors in Hamming space
objects: (1100101101)
Hamming distance: count the number of positions with different elements

$$
\|110101001,110001100\|_{H}=3
$$

LSH functions: $\mathcal{H}=\left\{h_{1}, \ldots, h_{n}\right\}$ where $h_{i}(\boldsymbol{x})=x_{i}$

	h_{2}	h_{5}	h_{9}
110101001	1	0	1
110010100	1	1	0
000110110	0	1	0
111001001	1	0	1
000011101	0	1	1

$$
\begin{aligned}
P\left(h_{i}\left(\boldsymbol{x}_{1}\right)\right. & \left.=h_{i}\left(\boldsymbol{x}_{2}\right)\right)=1-\frac{\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|}{d} \\
&
\end{aligned}
$$

frequency in the same bucket for a sample of hashing functions

Accelerate NN search: hashing

Real vectors with angle similarity

$$
\theta\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\arccos \frac{\boldsymbol{x}_{1}^{\top} \boldsymbol{x}_{2}}{\left\|\boldsymbol{x}_{1}\right\|\left\|\boldsymbol{x}_{2}\right\|}
$$

LSH functions: $\mathcal{H}=\left\{h_{\boldsymbol{r}}\right\}\left(\boldsymbol{r} \in \mathbb{B}^{n}\right)$ where $h_{r}(\boldsymbol{x})=\operatorname{sign}\left(\boldsymbol{r}^{\top} \boldsymbol{x}\right)$

$$
\left.\left.P l_{h_{r}\left(x_{1}\right)}\right)=_{r}\left(x_{2}\right)\right)=1-\frac{\theta_{1}\left(x_{1}, x_{2}\right)}{7}
$$

frequency in the same bucket for a sample of hashing functions

Reduce the model complexity

What is the model complexity of NN classifiers?
How to make it simpler?

Reduce the model complexity

What is the model complexity of NN classifiers?
How to make it simpler?
k-NN revisit:

1) build prototypes, which are exactly the training instances
2) find an class assignment of the prototypes to minimize the training error under k-NN

Reduce the model complexity

What is the model complexity of NN classifiers?
How to make it simpler?
k-NN revisit:

1) build prototypes, which are exactly the training instances
2) find an class assignment of the prototypes
to minimize the training error under k-NN
model: data
hypothesis space: all class assignments

Reduce the model complexity

What is the model complexity of NN classifiers?
How to make it simpler?

Reduce the model complexity

What is the model complexity of NN classifiers?
How to make it simpler?

Reduce the model complexity

What is the model complexity of NN classifiers?
How to make it simpler?

Data reduction

keep boundary examples only
Condensed kNN [Hart, TIT68]: iteratively record and remove a boundary example

Data reduction

keep boundary examples only

Condensed kNN [Hart, TIT68]: iteratively record and remove a boundary example

Data reduction

keep boundary examples only

Condensed kNN [Hart, TiT68]: iteratively record and remove a boundary example

[images from http://
en.wikipedia.org/wiki/Knearest_neighbors_algori thml

Neural networks

Neuron / perceptron

output a function of sum of input
linear function:

$$
f\left(\sum_{i} w_{i} x_{i}\right)=\sum_{i} w_{i} x_{i}
$$

threshold function:

$$
f\left(\sum_{i} w_{i} x_{i}\right)=I\left(\sum_{i} w_{i} x_{i}>0\right)
$$

sigmoid function:

$$
f\left(\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{-\Sigma}}
$$

Limitation of single neuron

x_{1}	x_{2}	r
0	0	0
0	1	1
1	0	1
1	1	0

[Minsky and Papert, Perceptrons, 1969]

Marvin Minsky
Turing Award 1969

Multi-layer perceptrons

feed-forward network

sigmoid network with one hidden layer can approximate arbitrary function [Cybenko 1989]

Back-propagation algorithm

$$
\begin{aligned}
& \hat{y}=F(\boldsymbol{x}) \quad f\left(\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{-\bar{z}}} \\
& \text { gradient descent }
\end{aligned}
$$

$$
\text { error: } E(\boldsymbol{w})=(F(\boldsymbol{x})-y)^{2}
$$

[Rumelhart, Hinton, Williams. Nature 1986]

Back-propagation algorithm

$$
\hat{y}=F(\boldsymbol{x}) \quad f\left(\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{-\Sigma}}
$$ gradient descent

$$
\text { error: } E(\boldsymbol{w})=(F(\boldsymbol{x})-y)^{2}
$$

update one weight: $\Delta w_{i, j}=-\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i, j}}$

Back-propagation algorithm

$$
\hat{y}=F(\boldsymbol{x}) \quad f\left(\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{-\Sigma}}
$$ gradient descent error: $E(\boldsymbol{w})=(F(\boldsymbol{x})-y)^{2}$

update one weight: $\Delta w_{i, j}=-\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i, j}}$ weight of the laster layer

$$
\frac{\partial E(\boldsymbol{w})}{\partial w_{i, j}}=\frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})} \frac{\partial F(\boldsymbol{x})}{\partial w_{i, j}}
$$

Back-propagation algorithm

$$
\hat{y}=F(\boldsymbol{x}) \quad f\left(\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{-\Sigma}}
$$ gradient descent error: $E(\boldsymbol{w})=(F(\boldsymbol{x})-y)^{2}$

update one weight: $\Delta w_{i, j}=-\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i, j}}$ weight of the laster layer

$$
\frac{\partial E(\boldsymbol{w})}{\partial w_{i, j}}=\frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})} \frac{\partial F(\boldsymbol{x})}{\partial w_{i, j}}
$$

weight of the first layer

$$
\frac{\partial E(\boldsymbol{w})}{\partial w_{i, j}}=\frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})} \frac{\partial F(\boldsymbol{x})}{\partial \mathrm{HL} 2} \frac{\partial \mathrm{HL} 2}{\partial \mathrm{HL} 1} \frac{\partial \mathrm{HL} 1}{\partial w_{i, j}}
$$

Back-propagation algorithm

For each given training example (\mathbf{x}, \mathbf{y}), do

1. Input the instance \mathbf{x} to the NN and compute the output value o_{u} of every output unit u of the network
2. For each network output unit k, calculate its error term δ_{k}

$$
\delta_{k} \leftarrow o_{k}\left(1-o_{k}\right)\left(y_{k}-o_{k}\right)
$$

3. For each hidden unit k, calculate its error term δ_{h}

$$
\delta_{h} \leftarrow o_{k}\left(1-o_{k}\right) \sum_{k \in o u t p u t s} w_{k h} \delta_{k}
$$

4. Update each network weight $w_{j i}$ which is the weight associated with the i-th input value to the unit j

$$
w_{j i} \longleftarrow w_{j i}+\eta \delta_{j} x_{j i}
$$

Advantage and disadvantages

Smooth and nonlinear decision boundary

Slow convergence
Many local optima
Best network structure unknown

Hard to handle nominal features

Complexity of networks

The number of free variables?
Leave to "linear models"

Deep network

autoencoder:

Pretraining

Fine-tuning
[Hinton and Salakhutdinov, Science 2006]

Hopfield networks

a fully connected recursive network

Hopfield networks

run:

1) set the input value of blue nodes
2) run the network
3) read the output from the yellow nodes

Hopfield networks

train:

set the input and the output the same pattern associative rule:

$$
w_{i j}=\frac{1}{N} x_{i} x_{j}
$$

多层神经网络为何能实现非线性分类？

BP 算法能否收玫到全局最优解？
k 近邻分类算法是否需要训练预测模型？

