

Data Mining for M.Sc. students, CS, Nanjing University Fall, 2014, Yang Yu

Lecture 5: Machine Learning III Nearest Neighbors and Neural Networks

http://cs.nju.edu.cn/yuy/course_dm14ms.ashx

what looks similar are similar

for classification:

Predict the label as that of the NN or the (weighted) majority of the k-NN

for regression:

Predict the label as that of the NN or the (weighted) *average* of the k-NN

Search for the nearest neighbor

Linear search

---0000000000

n times of distance calculations *O(dn* ln *k) d* is the dimension, *n* is the number of samples

for retrieval:

Nearest neighbor classifier

 as classifier, asymptotically less than 2 times of the optimal Bayes error

- naturally handle multi-class
- no training time
- nonlinear decision boundary

slow testing speed for a large training data set

- have to store the training data
- sensitive to similarity function

nonparametric method

construction: alternatively choose one dimension, make a split by the median value.

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

linear search on k-d tree:
 search(node,x):

1. if node is a leave, return the distance and the instance

2. compare *search*(left branch,x) and *search*(right branch,x)

3. return the instance with smaller distance

search(node,x):

- 1. if node is a leave, return the distance and the instance
- 2. if *out-of-best-range*, return infinity distance
- 2. compare *search*(left branch,x) and *search*(right branch,x)
- 3. return the instance with smaller distance

Accelerate NN search: branch-and-bound

k-d tree:

search for the nearest neighbor: follow the depth-first search

1. find the leaf containing the test instance, and calculate the distance to training point *a*

Accelerate NN search: branch-and-bound

k-d tree:

search for the nearest neighbor: follow the depth-first search

1. find the leaf containing the test instance, and calculate the distance to training point *a*

2. back-tracing like the depthfirst search. Skip nodes not overlapped with the current circle.

find in the leaf of *a*, draw a cycle with diameter being the distance

the cycle overlaps with the box of *b*, so visit the leaf of *b*

Accelerate NN search: branch-and-bound

k-d tree:

search for the nearest neighbor: follow the depth-first search

1. find the leaf containing the test instance, and calculate the distance to training point *a*

2. back-tracing like the depthfirst search. Skip nodes not overlapped with the current circle.

find in the leaf of *a*, draw a cycle with diameter being the distance

the cycle overlaps with the box of *b*, so visit the leaf of *b*

the cycle does not overlap with the box of node 5 and node 3, skip them

locality sensitive hashing: similar objects in the same bucket

locality sensitive hashing: similar objects in the same bucket

A LSH function family $\mathcal{H}(c, r, P_1, P_2)$ has the following properties for any $x_1, x_2 \in S$

if $||\boldsymbol{x}_1 - \boldsymbol{x}_2|| \leq r$, then $P_{h \in \mathcal{H}}(h(\boldsymbol{x}_1) = h(\boldsymbol{x}_2)) \geq P_1$ similar objects should be hashed in the same bucket with high probability if $||\boldsymbol{x}_1 - \boldsymbol{x}_2|| \geq cr$, then $P_{h \in \mathcal{H}}(h(\boldsymbol{x}_1) = h(\boldsymbol{x}_2)) \leq P_2$ dissimilar objects should be hashed in the same bucket with low probability Accelerate NN search: hashing

Binary vectors in Hamming space

objects: (1100101101) Hamming distance: count the number of positions with different elements

 $||110101001, 110001100||_H = 3$

Accelerate NN search: hashing

Binary vectors in Hamming space

objects: (1100101101) Hamming distance: count the number of positions with different elements $\|110101001, 110001100\|_{H} = 3$

LSH functions: $\mathcal{H} = \{h_1, \ldots, h_n\}$ where $h_i(\boldsymbol{x}) = x_i$

Accelerate NN search: hashing

Binary vectors in Hamming space

objects: (1100101101) Hamming distance: count the number of positions with different elements $\|110101001, 110001100\|_{H} = 3$

LSH functions: $\mathcal{H} = \{h_1, \ldots, h_n\}$ where $h_i(\boldsymbol{x}) = x_i$

Real vectors with angle similarity

$$heta(m{x}_1,m{x}_2) = rccos rac{m{x}_1^{+}m{x}_2}{\|m{x}_1\|\|m{x}_2\|}$$

LSH functions: $\mathcal{H} = \{h_r\} (r \in \mathbb{B}^n)$ where $h_r(x) = \operatorname{sign}(r^\top x)$

ers?

What is the model complexity of NN classifiers?

What is the model complexity of NN classifiers?

How to make it simpler?

k-NN revisit:1) build prototypes, which are exactly the training instances2) find an class assignment of the prototypes to minimize the training error under *k*-NN

What is the model complexity of NN classifiers?

How to make it simpler?

k-NN revisit:1) build prototypes, which are exactly the training instances2) find an class assignment of the prototypes to minimize the training error under *k*-NN

model: data hypothesis space: all class assignments

ers?

What is the model complexity of NN classifiers?

ers?

What is the model complexity of NN classifiers?

What is the model complexity of NN classifiers?

Data reduction

keep boundary examples only

Condensed kNN [Hart, TIT68]: iteratively record and remove a boundary example

Data reduction

keep boundary examples only

Condensed kNN [Hart, TIT68]: iteratively record and remove a boundary example

[images from <u>http://</u> <u>en.wikipedia.org/wiki/K-</u> <u>nearest_neighbors_algori</u> <u>thm]</u>

Data reduction

keep boundary examples only

Condensed kNN [Hart, TIT68]: iteratively record and remove a boundary example

[images from <u>http://</u> en.wikipedia.org/wiki/Knearest_neighbors_algori thm]

Neural networks

Neuron / perceptron

output a function of sum of input

linear function: $f(\sum_{i} w_{i} x_{i}) = \sum_{i} w_{i} x_{i}$

threshold function:

$$f(\sum_{i} w_i x_i) = I(\sum_{i} w_i x_i > 0)$$

sigmoid function:

$$f(\sum_{i} w_i x_i) = \frac{1}{1 + e^{-\Sigma}}$$

[Minsky and Papert, Perceptrons, 1969]

Marvin Minsky Turing Award 1969

AI Winter

Multi-layer perceptrons

feed-forward network

sigmoid network with one hidden layer can approximate arbitrary function [Cybenko 1989]

$$\hat{y} = F(\boldsymbol{x})$$
 $f(\sum_{i} w_{i}x_{i}) = \frac{1}{1 + e^{-\Sigma}}$
gradient descent

error: $E(w) = (F(x) - y)^2$

 $\hat{y} = F(\boldsymbol{x}) \quad f(\sum_{i} w_{i} x_{i}) = \frac{1}{1 + e^{-\Sigma}}$ gradient descent
error: $E(\boldsymbol{w}) = (F(\boldsymbol{x}) - y)^{2}$ $\Delta w_{i,j} = -\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}}$

update one weight: $\Delta w_{i,j} = -\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}}$

$$\hat{y} = F(\boldsymbol{x}) \quad f(\sum_{i} w_{i}x_{i}) = \frac{1}{1 + e^{-\Sigma}}$$
gradient descent
error: $E(\boldsymbol{w}) = (F(\boldsymbol{x}) - y)^{2}$

$$\Delta w_{i,j} = -\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}}$$
r layer
$$\partial F(\boldsymbol{x})$$

update one weight: $\Delta w_{i,j} = -\eta$ weight of the laster layer $\frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}} = \frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})} \frac{\partial F(\boldsymbol{x})}{\partial w_{i,j}}$

$$\hat{y} = F(\boldsymbol{x}) \quad f(\sum_{i} w_{i}x_{i}) = \frac{1}{1 + e^{-\Sigma}}$$
gradient descent
error: $E(\boldsymbol{w}) = (F(\boldsymbol{x}) - y)^{2}$
update one weight: $\Delta w_{i,j} = -\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}}$
weight of the laster layer
$$\frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}} = \frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})} \frac{\partial F(\boldsymbol{x})}{\partial w_{i,j}}$$
weight of the first layer
$$\frac{\partial E(\boldsymbol{w})}{\partial E(\boldsymbol{w})} \quad \partial E(\boldsymbol{w}) \quad \partial F(\boldsymbol{x}) \quad \partial \text{HL2} \quad \partial \text{HL1}$$

$$\overline{\partial w_{i,j}} = \overline{\partial F(\boldsymbol{x})} \overline{\partial \text{HL2}} \overline{\partial \text{HL1}} \overline{\partial W_{i,j}}$$

For each given training example (x, y), do

- 1. Input the instance **x** to the NN and compute the output value o_u of every output unit *u* of the network
- 2. For each network output unit k, calculate its error term δ_k

 $\delta_k \leftarrow o_k (1 - o_k) (y_k - o_k)$

3. For each hidden unit k, calculate its error term δ_h

$$\delta_h \leftarrow o_k(1 - o_k) \sum_{k \in outputs} w_{kh} \delta_k$$

4. Update each network weight w_{ji} which is the weight associated with the *i*-th input value to the unit *j*

$$w_{ji} \leftarrow w_{ji} + \eta \delta_j x_{ji}$$

Advantage and disadvantages

Smooth and nonlinear decision boundary

Slow convergence

Many local optima

Best network structure unknown

Hard to handle nominal features

Complexity of networks

The number of free variables?

Leave to "linear models"

Deep network

autoencoder:

[Hinton and Salakhutdinov, Science 2006]

Hopfield networks

a fully connected recursive network

NANA 1992

run:

1) set the input value of blue nodes

2) run the network

3) read the output from the yellow nodes

NANHUNG UNITE

train:

set the input and the output the same pattern

associative rule:

$$w_{ij} = \frac{1}{N} x_i x_j$$

多层神经网络为何能实现非线性分类?

BP算法能否收敛到全局最优解?

k近邻分类算法是否需要训练预测模型?