

Artificial Intelligence, CS, Nanjing University Spring, 2015, Yang Yu

Lecture 10: Uncertainty 1

http://cs.nju.edu.cn/yuy/course_ai15.ashx

Previously...

Search

Path-based search Iterative improvement search

Logic

Propositional Logic First Order Logic (FOL)

Probability

Uncertianty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

1) partial observability (road state, other drivers' plans, etc.)

- 2) noisy sensors (KCBS traffic reports)
- 3) uncertainty in action outcomes (flat tire, etc.)
- 4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either

1) risks falsehood: " A_{25} will get me there on time"

or 2) leads to conclusions that are too weak for decision making:

" A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

 $(A_{1440} \text{ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)$

Methods for handling uncertainty

Default or nonmonotonic logic:

Assume my car does not have a flat tire

Assume A_{25} works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:

 $A_{25} \mapsto_{0.3} AtAirportOnTime$ $Sprinkler \mapsto_{0.99} WetGrass$ $WetGrass \mapsto_{0.7} Rain$

Issues: Problems with combination, e.g., Sprinkler causes Rain??

Probability

Given the available evidence,

 A_{25} will get me there on time with probability 0.04 Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

Probability

Probabilistic assertions summarize effects of

laziness: failure to enumerate exceptions, qualifications, etc. ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

Probabilities relate propositions to one's own state of knowledge e.g., $P(A_{25}|{\rm no\ reported\ accidents})=0.06$

These are **not** claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence: e.g., $P(A_{25}|\text{no reported accidents}, 5 \text{ a.m.}) = 0.15$

(Analogous to logical entailment status $KB \models \alpha$, not truth.)

Making decisions under uncertainty

Suppose I believe the following:

 $P(A_{25} \text{ gets me there on time}|...) = 0.04$ $P(A_{90} \text{ gets me there on time}|...) = 0.70$ $P(A_{120} \text{ gets me there on time}|...) = 0.95$ $P(A_{1440} \text{ gets me there on time}|...) = 0.9999$

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc. Utility theory is used to represent and infer preferences Decision theory = utility theory + probability theory

Probability basics

Begin with a set Ω —the sample space e.g., 6 possible rolls of a die. $\omega \in \Omega$ is a sample point/possible world/atomic event

A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

$$\begin{array}{l} 0 \leq P(\omega) \leq 1 \\ \Sigma_{\omega} P(\omega) = 1 \\ \text{e.g., } P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6 \end{array}$$

An event A is any subset of Ω

 $P(A) = \sum_{\{\omega \in A\}} P(\omega)$

E.g., P(die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2

Random variables

A random variable is a function from sample points to some range, e.g., the reals or Booleans

e.g., Odd(1) = true.

P induces a probability distribution for any r.v. X:

 $P(X = x_i) = \sum_{\{\omega: X(\omega) = x_i\}} P(\omega)$

e.g., P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2

Propositions

Think of a proposition as the event (set of sample points) where the proposition is true

Given Boolean random variables A and B: event $a = \text{set of sample points where } A(\omega) = true$ event $\neg a = \text{set of sample points where } A(\omega) = false$ event $a \wedge b = \text{points where } A(\omega) = true$ and $B(\omega) = true$

Often in AI applications, the sample points are **defined** by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model e.g., A = true, B = false, or $a \land \neg b$. Proposition = disjunction of atomic events in which it is true e.g., $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$ $\Rightarrow P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$

Why use probability?

The definitions imply that certain logically related events must have related probabilities

 $\mathsf{E.g.,}\ P(a \lor b) = P(a) + P(b) - P(a \land b)$

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Syntax for propositions

Propositional or Boolean random variables e.g., *Cavity* (do I have a cavity?) *Cavity* = *true* is a proposition, also written *cavity*

Discrete random variables (finite or infinite) e.g., Weather is one of $\langle sunny, rain, cloudy, snow \rangle$ Weather = rain is a proposition Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded) e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions

Prior probability

Prior or unconditional probabilities of propositions e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments: $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$ (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point) $\mathbf{P}(Weather, Cavity) = a \ 4 \times 2$ matrix of values:

Weather =	sunny	rain	cloudy	snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Probability for continuous variables

Express distribution as a parameterized function of value: P(X = x) = U[18, 26](x) = uniform density between 18 and 26

Here P is a density; integrates to 1. P(X = 20.5) = 0.125 really means

 $\lim_{dx \to 0} P(20.5 \le X \le 20.5 + dx)/dx = 0.125$

Gaussian density

Conditional probability

Conditional or posterior probabilities e.g., P(cavity|toothache) = 0.8i.e., given that toothache is all I know NOT "if toothache then 80% chance of cavity"

(Notation for conditional distributions:

 $\mathbf{P}(Cavity|Toothache) = 2$ -element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have P(cavity|toothache, cavity) = 1Note: the less specific belief **remains valid** after more evidence arrives, but is not always **useful**

New evidence may be irrelevant, allowing simplification, e.g.,

P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

Definition of conditional probability:

 $P(a|b) = \frac{P(a \wedge b)}{P(b)} \text{ if } P(b) \neq 0$

Product rule gives an alternative formulation: $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

A general version holds for whole distributions, e.g., $\mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather|Cavity)\mathbf{P}(Cavity)$ (View as a 4 × 2 set of equations, **not** matrix mult.)

Chain rule is derived by successive application of product rule: $\mathbf{P}(X_1, \dots, X_n) = \mathbf{P}(X_1, \dots, X_{n-1}) \ \mathbf{P}(X_n | X_1, \dots, X_{n-1})$ $= \mathbf{P}(X_1, \dots, X_{n-2}) \ \mathbf{P}(X_{n_1} | X_1, \dots, X_{n-2}) \ \mathbf{P}(X_n | X_1, \dots, X_{n-1})$ $= \dots$ $= \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1})$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Start with the joint distribution:

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$

 $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)} = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Normalization

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant $\boldsymbol{\alpha}$

 $\mathbf{P}(Cavity|toothache) = \alpha \, \mathbf{P}(Cavity,toothache)$

- $= \alpha \left[\mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch) \right]$
- $= \alpha \left[\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle \right]$
- $= \alpha \left< 0.12, 0.08 \right> = \left< 0.6, 0.4 \right>$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by enumeration, contd.

Let \mathbf{X} be all the variables. Typically, we want the posterior joint distribution of the query variables \mathbf{Y} given specific values \mathbf{e} for the evidence variables \mathbf{E}

Let the hidden variables be $\mathbf{H}=\mathbf{X}-\mathbf{Y}-\mathbf{E}$

Then the required summation of joint entries is done by summing out the hidden variables:

 $\mathbf{P}(\mathbf{Y}|\mathbf{E}=\mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}) = \alpha \Sigma_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})$

The terms in the summation are joint entries because \mathbf{Y} , \mathbf{E} , and \mathbf{H} together exhaust the set of random variables

Obvious problems:

- 1) Worst-case time complexity $O(d^n)$ where d is the largest arity
- 2) Space complexity $O(d^n)$ to store the joint distribution
- 3) How to find the numbers for $O(d^n)$ entries???

Independence

 $\begin{aligned} \mathbf{P}(Toothache, Catch, Cavity, Weather) \\ &= \mathbf{P}(Toothache, Catch, Cavity) \mathbf{P}(Weather) \end{aligned}$

32 entries reduced to 12; for n independent biased coins, $2^n \rightarrow n$

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

 $\mathbf{P}(Toothache, Cavity, Catch)$ has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity: (2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

 $Catch \text{ is conditionally independent of } Toothache \text{ given } Cavity: \\ \mathbf{P}(Catch|Toothache, Cavity) = \mathbf{P}(Catch|Cavity) \\$

Equivalent statements:

$$\begin{split} \mathbf{P}(Toothache|Catch,Cavity) &= \mathbf{P}(Toothache|Cavity) \\ \mathbf{P}(Toothache,Catch|Cavity) &= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \end{split}$$

Conditional independence

Write out full joint distribution using chain rule:

 $\mathbf{P}(Toothache, Catch, Cavity)$

- $= \mathbf{P}(Toothache|Catch,Cavity) \mathbf{P}(Catch,Cavity)$
- $= \mathbf{P}(Toothache|Catch,Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity)$
- $= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity)$

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause | Effect) = \frac{P(Effect | Cause) P(Cause)}{P(Effect)}$$

E.g., let M be meningitis, S be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

 $\mathbf{P}(Cavity | toothache \wedge catch)$

- $= \ \alpha \ \mathbf{P}(toothache \wedge catch|Cavity) \mathbf{P}(Cavity)$
- $= \alpha \mathbf{P}(toothache|Cavity)\mathbf{P}(catch|Cavity)\mathbf{P}(Cavity)$

This is an example of a naive Bayes model:

 $\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause)\Pi_i \mathbf{P}(Effect_i | Cause)$

Total number of parameters is **linear** in n

Bayesian networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:

a set of nodes, one per variable

- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents: $\mathbf{P}(X_i | Parents(X_i))$

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: *Burglar*, *Earthquake*, *Alarm*, *JohnCalls*, *MaryCalls* Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example

A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values

Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)

If each variable has no more than k parents, the complete network requires $O(n\cdot 2^k)$ numbers

I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^5 - 1 = 31$)

Global semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

 $P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

e.g., $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

- $= P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$
- $= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$

 ≈ 0.00063

Local semantics

Local semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics \Leftrightarrow global semantics

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

 Choose an ordering of variables X₁,..., X_n
For i = 1 to n add X_i to the network select parents from X₁,..., X_{i-1} such that P(X_i|Parents(X_i)) = P(X_i|X₁, ..., X_{i-1})

This choice of parents guarantees the global semantics:

$$\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1}) \quad \text{(chain rule)} \\ = \prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i)) \quad \text{(by construction)}$$

Suppose we choose the ordering M, J, A, B, E

