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Previously...

Conditional Probability
Conditional Independence

Bayesian Network:
a network of conditional independence
inference in Bayesian network



Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents;, etc.

E; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten

This assumes discrete time; step size depends on problem

Notation: X,;, = X, Xotly ooy Xpo1, Xp



Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: X, depends on bounded subset of X.;_;

First-order Markov process: P(X;| Xy 1) = P(X| X} 1)
Second-order Markov process: P(X;|X ;1) = P(X;|X; 9, Xy 1)
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Sensor Markov assumption: P(E;| X, Eg; 1) = P(E;X})

Stationary process: transition model P(X;|X;_;) and
sensor model P(E;|X;) fixed for all ¢



Example

R;,_{| P(R;)

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add T'emp;, Pressure;

Example: robot motion.
Augment position and velocity with Battery,



Inference tasks

Filtering: P(X;|e;)
belief state—input to the decision process of a rational agent

Prediction: P(X;.x|e1) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xj|ey,) for 0 < k <t
better estimate of past states, essential for learning

Most likely explanation: arg maxx,, P(x1.|€1.)
speech recognition, decoding with a noisy channel



Filtering
Aim: devise a recursive state estimation algorithm:

P(XH—l‘el:Hl) — f(et—|—17 P(Xt‘elzt))

P(Xii1lerr1) = P(Xyqilers, erq)
= OzP(etH‘XHla el:t>P<Xzﬁ+1‘elzt>
= aP(e 1| Xi11)P(Xip1|ery)

|.e., prediction + estimation. Prediction by summing out X;:

P(Xt+1’elzt+1) — OéP(etJrl‘Xt+1)2XtP<Xt+1‘Xta el:t)P<Xt’elzt)
— @P(etﬂ\XHl)thP(XtH’Xt)P(Xt\elzt)

fl:t+1 — FORWARD(th, etH) where fl:t — P(Xt\eu)
Time and space constant (independent of ¢)



Filtering example

0.500 0.627
0. 500 0.373
True 0.500 0. 18 O.JBB
False 0.500 0.182 0.117




Smoothing

Divide evidence ey, into €., €41

P(Xylert) = P(Xyler, €pr1:)

oaP (Xy|err)Perr1:4| Xy, err)
aP (Xy|e1.r)P(epr1.4 Xy)

= oty b1

Backward message computed by a backwards recursion:

P(ekﬂ:t\Xk) = ) P(ek—l—l:t‘Xka Xk+1)P(Xk+1\Xk)

Xk+1

= 2 P(ek+1:t|Xk+1)P(Xk+1’Xk)

XE+1
= 2ix,, Pler1]xp1) Peryoq|Xps1) P(xpq1| Xi)



Smoothing example

0.500 0.627

0.500 0.373
True 0.500 !18 0.&!83 ¢ q
False  0.500 0. 182 0.117 orwar

0. 883 0.&!83

0.117 0117 smoothed

0. 690 1.000

0410 1.000 backward

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(¢|f])



Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x;.
= most likely path to some x; plus one more step

max P(xy, ..., xq, Xppleri)
— P(et+1‘Xt—|—1) H%(%X <P<Xt+1‘Xt) Xlr.n..é)l(i{_l P(Xla ey X1, Xt‘elit)>

|dentical to filtering, except f;.; replaced by

mi; = Xll”n“%(_l P(Xla ceey Xt—1, Xt‘elzt)a

l.e., my(7) gives the probability of the most likely path to state .
Update has sum replaced by max, giving the Viterbi algorithm:

m. 1 = P(e1|Xe1) max (P(X¢y1]x:)myy)



Viterbi example

Rain | Rain2 Rain 3 Rain 4 Rain 5

state [
space
paths

umbrella

most
likely
paths




Hidden Markov models

X is a single, discrete variable (usually E; is too)
Domain of X; is {1,...,5}

Transition matrix T;; = P(X,=j|X,_1=1), e.g., (0'7 0'3)

0.3 0.7

Sensor matrix O, for each time step, diagonal elements P(e;| X, =1)

e.g., with U; =true, O = (0(59 002)

Forward and backward messages as column vectors:

.
fi001 = a0 T £,
b1t = TOg1brioy

Forward-backward algorithm needs time O(S“t) and space O(St)



Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
f1.001 = OéotﬂTTfl:t
O \fii1 = oT'fyy
O/(TT)_lO;}lfLHl = i

Algorithm: forward pass computes f;, backward pass does {;, b;



Country dance algorithm



Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, =X, Y. Z . X. Y. Z.

Airplanes, robots, ecosystems, economies, chemical plants, planets, ...

Gaussian prior, linear Gaussian transition model and sensor model



Updating Gaussian distributions

Prediction step: if P(X;|ey.;) is Gaussian, then prediction
P(XtJrl‘el:t) — /XtP<Xt+1‘Xt>P<Xt‘elzt) dx;

is Gaussian. If P(X;.|ey.) is Gaussian, then the updated distribution
P(Xi1lerir1) = aP(en 1] X)) P(Xiplers)

is Gaussian

Hence P(X;|e|;) is multivariate Gaussian N (p,, 32;) for all ¢

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t — oo



Simple 1-D example

Gaussian random walk on X-axis, s.d. o,, sensor s.d. o.
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General Kalman update

Transition and sensor models:

P(xXia[x:) = N(Fxy, X;)(X111)
P(z/|x:) = NHx;, X,)(z)

F' is the matrix for the transition; X2, the transition noise covariance
H is the matrix for the sensors; >2. the sensor noise covariance

Filter computes the following update:

pi = Fuy+ K (ze — HF py)
Y = I-K)(FEFT +3)

where K; 1 = (FX,F' + ) H'(HFZ,F' +3,)H' + X.)!
is the Kalman gain matrix

>2; and K, are independent of observation sequence, so compute offline



2-D tracking example: filtering

2D filtering
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2-D tracking example: smoothing
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Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; = p,
Fails if systems is locally unsmooth




Dynamic Bayesian networks

Xy, E; contain arbitrarily many variables in a replicated Bayes net

PRy Ry | P(R))




DBNSs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

/; D\

N /

Sparse dependencies = exponentially fewer parameters;

e.g., 20 state variables, three parents each
DBN has 20 x 2% =160 parameters, HMM has 2%V x 22V ~ 10'*




DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?
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Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm
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Problem: inference cost for each update grows with ¢

Rollup filtering: add slice t + 1, “sum out” slice ¢ using variable elimination

Largest factor is O(d""!), update cost O(d""?)
(cf. HMM update cost O(d*"))



Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence!
= fraction “agreeing’ falls exponentially with ¢
= number of samples reqwred grows exponentlally with ¢
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Particle filtering

Basic idea: ensure that the population of samples ( “particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for €,

Rain,  Rain; Rain, Rain,
t 0000 @
rue 0000 @
® (] YY)
false @ (Y ) (YY)
(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space



Particle filtering

Assume consistent at time t: N(x;|le;;)/N = P(x;|eq,)

Propagate forward: populations of x;.; are

N(Xt+1|el:t) — ZXtP<Xt+1’Xt)N(Xt’elzt>

Weight samples by their likelihood for e, :

W(Xt+1\e1:t+1) — P(et+1’Xt+1)N(Xt+1\elzt)

Resample to obtain populations proportional to 1V:

N(x¢y1leres1)/N

OéW(Xt+1\e1:t+1) — OéP(et+1!Xt+1)N(Xt+1\elzt)
aP(et+1‘Xt+1)2XtP<Xt+l’Xt)N<Xt‘elzt>
&/P(et—l-l‘xt—i—l)EXtP(Xt—i-l’Xt)P(Xt’elit)

P(Xt+1 ’elzt—i—l)



Particle filtering performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult
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Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (X;| X, 1)
— sensor model P (E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow 7 state variables, linear Gaussian, O(n?) update
Dynamic Bayes nets subsume HMMSs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs



