
Lecture	
 3:	
 Search	
 2

Artificial Intelligence, CS, Nanjing University
Spring, 2015, Yang Yu

http://cs.nju.edu.cn/yuy/course_ai15.ashx

http://cs.nju.edu.cn/yuy/course_dm12.ashx
http://cs.nju.edu.cn/yuy/course_dm12.ashx

Previously...Implementation: general tree search

function Tree-Search(problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test(problem,State(node)) then return node

fringe← InsertAll(Expand(node,problem), fringe)

function Expand(node, problem) returns a set of nodes
successors← the empty set
for each action, result in Successor-Fn(problem,State[node]) do

s← a new Node

Parent-Node[s]← node; Action[s]← action; State[s]← result

Path-Cost[s]←Path-Cost[node] + Step-Cost(node,action, s)
Depth[s]←Depth[node] + 1
add s to successors

return successors

Chapter 3 30

note the time of goal-
test: expanding time
not generating time

Informed Search Strategies

best-first search: f but what is best?

uniform cost search: cost function g
heuristic function: h

n

initial state current state goal state

g(n) h(n)

Example: hSLD Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 3 6

Section 3.5. Informed (Heuristic) Search Strategies 93

Urziceni

Neamt

Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti

Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu

Hirsova

Eforie

Arad

Lugoj

Drobeta

Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329

80
199

380
234

374

100
193

Figure 3.22 Values of hSLD—straight-line distances to Bucharest.

expanding a node that is not on the solution path; hence, its search cost is minimal. It is
not optimal, however: the path via Sibiu and Fagaras to Bucharest is 32 kilometers longer
than the path through Rimnicu Vilcea and Pitesti. This shows why the algorithm is called
“greedy”—at each step it tries to get as close to the goal as it can.

Greedy best-first tree search is also incomplete even in a finite state space, much like
depth-first search. Consider the problem of getting from Iasi to Fagaras. The heuristic sug-
gests that Neamt be expanded first because it is closest to Fagaras, but it is a dead end. The
solution is to go first to Vaslui—a step that is actually farther from the goal according to
the heuristic—and then to continue to Urziceni, Bucharest, and Fagaras. The algorithm will
never find this solution, however, because expanding Neamt puts Iasi back into the frontier,
Iasi is closer to Fagaras than Vaslui is, and so Iasi will be expanded again, leading to an infi-
nite loop. (The graph search version is complete in finite spaces, but not in infinite ones.) The
worst-case time and space complexity for the tree version is O(bm), where m is the maximum
depth of the search space. With a good heuristic function, however, the complexity can be
reduced substantially. The amount of the reduction depends on the particular problem and on
the quality of the heuristic.

3.5.2 A* search: Minimizing the total estimated solution cost

The most widely known form of best-first search is called A∗ search (pronounced “A-starA
∗

SEARCH

search”). It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the cost
to get from the node to the goal:

f(n) = g(n) + h(n) .

Since g(n) gives the path cost from the start node to node n, and h(n) is the estimated cost
of the cheapest path from n to the goal, we have

f(n) = estimated cost of the cheapest solution through n .

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the
node with the lowest value of g(n) + h(n). It turns out that this strategy is more than just
reasonable: provided that the heuristic function h(n) satisfies certain conditions, A∗ search is
both complete and optimal. The algorithm is identical to UNIFORM-COST-SEARCH except
that A∗ uses g + h instead of g.

Greedy search

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Chapter 4, Sections 1–2 6

Example

Greedy search example

Arad
366

Chapter 4, Sections 1–2 7

Example

Greedy search example

Zerind

Arad

Sibiu Timisoara
253 329 374

Chapter 4, Sections 1–2 8

Example

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara
329 374

366 176 380 193

Chapter 4, Sections 1–2 9

Example

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Chapter 4, Sections 1–2 10

Properties
Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal?? No

Chapter 4, Sections 1–2 15

A* search A∗ search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal

Chapter 4, Sections 1–2 16

Example

A∗ search example

Arad
366=0+366

Chapter 4, Sections 1–2 17

Example

A∗ search example

Zerind

Arad

Sibiu Timisoara
447=118+329 449=75+374393=140+253

Chapter 4, Sections 1–2 18

Example

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Chapter 4, Sections 1–2 19

Example

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176
Rimnicu Vilcea

Craiova Pitesti Sibiu
526=366+160 553=300+253417=317+100

671=291+380

Chapter 4, Sections 1–2 20

Example

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Chapter 4, Sections 1–2 21

Example

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Chapter 4, Sections 1–2 22

A* is optimal: Admissible and consistency

Admissible: never over estimate the cost

n

initial state current state goal state

g(n) h(n)

no larger than the cost
of the optimal path
from n to the goalExample: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 3 6

A* is optimal: Admissible and consistency

A* is optimal with admissible heuristic

why?

A* is optimal: Admissible and consistency

A* is optimal with admissible heuristic

why?
Optimality of A∗ (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2

Start

f(G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion

Chapter 4, Sections 1–2 23

solution

A* is optimal: Admissible and consistency

A* is optimal with admissible heuristic

why?
Optimality of A∗ (more useful)

Lemma: A∗ expands nodes in order of increasing f value∗

Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi, where fi < fi+1

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Chapter 4, Sections 1–2 24

A* is optimal: Admissible and consistency

Proof of lemma: Consistency

A heuristic is consistent if

n
c(n,a,n’)

h(n’)

h(n)

G

n’

h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f(n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f(n)

I.e., f(n) is nondecreasing along any path.

Chapter 4, Sections 1–2 30

Admissible is not the best condition

Proof is similar with that of admissible

Example
Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =?? 6
h2(S) =?? 4+0+3+3+1+0+2+1 = 14

Chapter 4, Sections 1–2 32

Dominance Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb

Chapter 4, Sections 1–2 33

why?

Admissible heuristics from relaxed problem
Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Chapter 4, Sections 1–2 34

Example
Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n2)
and is a lower bound on the shortest (open) tour

Chapter 4, Sections 1–2 35

Beyond Classical Search

max

x2X

objective-function(x)

Iterative-improvement search

a higher level perspective of optimization

Hill-climbing contd.

Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum
"flat" local maximum

shoulder

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves escape from shoulders loop on flat maxima

Chapter 4, Sections 3–4 7

solution spacesolution

Different with path search

Uniform-cost, A* --> path search

path search v.s. iterative improvement search

by A*: search the path one-step by one-step

by iterative improvement: improve a path

Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 3 6

Hill climbing
Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])
loop do

neighbor← a highest-valued successor of current

if Value[neighbor] ≤ Value[current] then return State[current]
current←neighbor

end

Chapter 4, Sections 3–4 6

Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])
loop do

neighbor← a highest-valued successor of current

if Value[neighbor] ≤ Value[current] then return State[current]
current←neighbor

end

Chapter 4, Sections 3–4 6

Hill climbing
Hill-climbing contd.

Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum
"flat" local maximum

shoulder

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves escape from shoulders loop on flat maxima

Chapter 4, Sections 3–4 7

