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Previously...

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE|[problem)), fringe)
loop do
if fringe is empty then return failure
node «+— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return node
fringe «— INSERTALL(EXPAND(node, problem), fringe)

note the tima of goal-
test: expanding time
not generatimng time

function EXPAND( node, problem) returns a set of nodes

successors <— the empty set

for each action, result in SUCCESSOR-FN(problem, STATE[node]) do
s<—a new NODE
PARENT-NODE[s] «+— node; ACTION[s] < action; STATE[s] < result
PATH-COST[$] +— PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s| < DEPTH[node] + 1
add s to successors

return successors




Informed Search Strategies

best-first search: [ but what is best?

uniform cost search: cost function g
heuristic function: h

O gn) @ h(n) Q

initial state current state goal state




Example: hsip
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Values of h gy p—straight-line distances to Bucharest.




Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from 7 to the closest goal

E.g., hsip(n) = straight-line distance from 7 to Bucharest

Greedy search expands the node that appears to be closest to goal
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Properties

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b™)—keeps all nodes in memory

Optimal?? No




A* search

ldea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic
i.e., h(n) < h*(n) where h*(n) is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal G5.)

E.g., hsip(n) never overestimates the actual road distance

Theorem: A* search is optimal



Example

366=0+366



Example

393=140+253 447=118+329 449=75+374



Example

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193



Example
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Example
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Example

CArad
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CArad > (Fagarasy COradea >  Emicu Viced>

646=280+366 671=291+380
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A* is optimal: Admissible and consistency

Admissible: never over estimate the cost

O gn) @ h(n) O

initial state current state goal state

no larger than the cost
of the optimal path
from n to the goal




A* is optimal: Admissible and consistency
A* is optimal with admissible heuristic

why?



A* is optimal: Admissible and consistency
A* is optimal with admissible heuristic

Why7 solution

Suppose some suboptimal gegl (G5 has been generated and is in the queue.

Let n be an unexpanded node on a shortest path to an optimal goal .
Start

N

GO G,

f(GQ) = g<G2> since h(Gg) =0
g(G1)  since Gy is suboptimal

AVARRY,

f(n since h is admissible

Since f(G3) > f(n), A* will never select &, for expansion



A* is optimal: Admissible and consistency
A* is optimal with admissible heuristic

why?

Lemma: A* expands nodes in order of increasing f value*

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour ¢ has all nodes with f = f;, where f; < f; 1




A* is optimal: Admissible and consistency
Admissible is not the best condition

A heuristic is consistent if
h(n) < c¢(n,a,n’) + h(n')
If /» is consistent, we have c(n,a,n’)

f(n')

||
=%
3\
_|_
>
=

IV

l.e., f(n) is nondecreasing along any path.

Proof is similar with that of admissible



Example

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

hi(S) =77 6
ho(S) =77 44+0+34+3+14+0+2+1 = 14




Dominance

If ho(n) > hi(n) for all n (both admissible)
then h, dominates /1 and is better for search

why?

Typical search costs:

d =14 IDS = 3,473,941 nodes
A*(h1) = 539 nodes
A*(hs) = 113 nodes

d =24 IDS =~ 54,000,000,000 nodes
A*(hy) = 39,135 nodes
A*(hy) = 1,641 nodes

Given any admissible heuristics h,, hy,
h(n) = max(hy(n), hy(n))

Is also admissible and dominates A, h;



Admissible heuristics from relaxed problem

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then ho(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
Is no greater than the optimal solution cost of the real problem



Example

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour



Beyond Classical Search



[terative-improvement search

a higher level perspective of optimization

max objective-function(x)
reX

Objectixe function ﬁlobal maximum

shoulder

local maximum

"flat" local maximum

» STt space
current _
Statg solution solution space



Different with path search

Uniform-cost, A* --> path search

path search v.s. iterative improvement search

by A*: search the path one-step by one-step

by iterative improvement: improve a path



Hill climbing

“Like climbing Everest in thick fog with amnesia”

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current «— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor«— a highest-valued successor of current
if VALUE[neighbor] < VALUE|[current] then return STATE[current]
current «— neighbor

end




Hill climbing

Useful to consider state space landscape

objectixe function lobal maximum

shoulder

local maximum

"flat" local maximum

»state space
current

state
Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves (&)escape from shoulders (Z)loop on flat maxima



