;ﬁrf Artificial Intelligence, CS, Nanjing University
: Spring, 2015, Yang Yu

NANJING UNIVERSITY

Lecture 3: Search 2

http://cs.nju.edu.cn/yuy/course_ail5.ashx

http://cs.nju.edu.cn/yuy/course_dm12.ashx
http://cs.nju.edu.cn/yuy/course_dm12.ashx

Previously...

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE|[problem)), fringe)
loop do
if fringe is empty then return failure
node «+— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return node
fringe «— INSERTALL(EXPAND(node, problem), fringe)

note the tima of goal-
test: expanding time
not generatimng time

function EXPAND(node, problem) returns a set of nodes

successors <— the empty set

for each action, result in SUCCESSOR-FN(problem, STATE[node]) do
s<—a new NODE
PARENT-NODE[s] «+— node; ACTION[s] < action; STATE[s] < result
PATH-COST[$] +— PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s| < DEPTH[node] + 1
add s to successors

return successors

Informed Search Strategies

best-first search: [but what is best?

uniform cost search: cost function g
heuristic function: h

O gn) @ h(n) Q

initial state current state goal state

Example: hsip

Arad :

118

Timisoara

75
Dobreta []

] Oradea

[]Mehadia

[JVaslui

Eforie

Arad 366 Mehadia
Bucharest 0 Neamt
Craiova 160 Oradea
Drobeta 242 Pitesti

Eforie 161 Rimnicu Vilcea
Fagaras 176 Sibiu

Giurgiu 77 Timisoara
Hirsova 151 Urziceni

Iasi 226 Vaslui

Lugoj 244 Zerind

241
234
380
100
193
253
329

80
199
374

Figure 3.22

Values of h gy p—straight-line distances to Bucharest.

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from 7 to the closest goal

E.g., hsip(n) = straight-line distance from 7 to Bucharest

Greedy search expands the node that appears to be closest to goal

Example

366

Example

253 329 374

Example

366 176

Example

329 374

Properties

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b™)—keeps all nodes in memory

Optimal?? No

A* search

ldea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic
i.e., h(n) < h*(n) where h*(n) is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal G5.)

E.g., hsip(n) never overestimates the actual road distance

Theorem: A* search is optimal

Example

366=0+366

Example

393=140+253 447=118+329 449=75+374

Example

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

Example

CArad
. Sbu Cimisoara) C Zerind >

447=118+329 449=75+374

CArad D PFagaras> COradea > @immios Viced>

646=280+366 415=239+176 671=291+380

CCraiova> Pitesti > (_Sibiu_3

526=366+160 417=317+100 553=300+253

Example

Arad
~Sbiu_ Cimisoara) C zerind >

447=118+329 449=75+374

Chraa> > Tae> Giied

646=280+366 671=291+380

st > Guonaesd Craova P Pitest > Sbiu >

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Example

CArad
. sbu_ Cimisoara) C Zerind >

447=118+329 449=75+374

CArad > (Fagarasy COradea > Emicu Viced>

646=280+366 671=291+380
591=338+253 450=450+0 526=366+160 553=300+253

C Craiova)

418=418+0 615=455+160 607=414+193

A* is optimal: Admissible and consistency

Admissible: never over estimate the cost

O gn) @ h(n) O

initial state current state goal state

no larger than the cost
of the optimal path
from n to the goal

A* is optimal: Admissible and consistency
A* is optimal with admissible heuristic

why?

A* is optimal: Admissible and consistency
A* is optimal with admissible heuristic

Why7 solution

Suppose some suboptimal gegl (G5 has been generated and is in the queue.

Let n be an unexpanded node on a shortest path to an optimal goal .
Start

N

GO G,

f(GQ) = g<G2> since h(Gg) =0
g(G1) since Gy is suboptimal

AVARRY,

f(n since h is admissible

Since f(G3) > f(n), A* will never select &, for expansion

A* is optimal: Admissible and consistency
A* is optimal with admissible heuristic

why?

Lemma: A* expands nodes in order of increasing f value*

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour ¢ has all nodes with f = f;, where f; < f; 1

A* is optimal: Admissible and consistency
Admissible is not the best condition

A heuristic is consistent if
h(n) < c¢(n,a,n’) + h(n')
If /» is consistent, we have c(n,a,n’)

f(n')

||
=%
3\
|
>
=

IV

l.e., f(n) is nondecreasing along any path.

Proof is similar with that of admissible

Example

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

hi(S) =77 6
ho(S) =77 44+0+34+3+14+0+2+1 = 14

Dominance

If ho(n) > hi(n) for all n (both admissible)
then h, dominates /1 and is better for search

why?

Typical search costs:

d =14 IDS = 3,473,941 nodes
A*(h1) = 539 nodes
A*(hs) = 113 nodes

d =24 IDS =~ 54,000,000,000 nodes
A*(hy) = 39,135 nodes
A*(hy) = 1,641 nodes

Given any admissible heuristics h,, hy,
h(n) = max(hy(n), hy(n))

Is also admissible and dominates A, h;

Admissible heuristics from relaxed problem

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then ho(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
Is no greater than the optimal solution cost of the real problem

Example

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

Beyond Classical Search

[terative-improvement search

a higher level perspective of optimization

max objective-function(x)
reX

Objectixe function ﬁlobal maximum

shoulder

local maximum

"flat" local maximum

» STt space
current _
Statg solution solution space

Different with path search

Uniform-cost, A* --> path search

path search v.s. iterative improvement search

by A*: search the path one-step by one-step

by iterative improvement: improve a path

Hill climbing

“Like climbing Everest in thick fog with amnesia”

function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current «— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor«— a highest-valued successor of current
if VALUE[neighbor] < VALUE|[current] then return STATE[current]
current «— neighbor

end

Hill climbing

Useful to consider state space landscape

objectixe function lobal maximum

shoulder

local maximum

"flat" local maximum

»state space
current

state
Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves (&)escape from shoulders (Z)loop on flat maxima

