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Previously...

Path-based search

Uninformed search

Depth-first, breadth first, uniform-cost search

Informed search

Best-first, A* search

[terative-improvement search

Hill climbing: greedy method



Greedy idea in continuous space

Suppose we want to site three airports in Romania:
— 6-D state space defined by (1, 12), (2, v2), (3, ¥3)
— objective function f(x1, v, T2, Y2, T3,Y3) =
sum of squared distances from each city to nearest airport
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Greedy idea in continuous space

discretize and use hill climbing
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Greedy idea in continuous space
gradient decent

— 6-D state space defined by (1, 12), (22, 12), (23, y3)
— objective function f(x1, Yo, T2, Yo, T3, Y3) =
sum of squared distances from each city to nearest airport

Gradient methods compute

_(of 9f of of of 9f
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to increase/reduce f, e.g., by x « x + aV f(x)

vV



Greedy idea in continuous space
gradient decent

— 6-D state space defined by (1, 12), (22, 12), (23, y3)
— objective function f(x1, Yo, T2, Yo, T3, Y3) =
sum of squared distances from each city to nearest airport

Sometimes can solve for V f(x) = 0 exactly (e.g., with one city).
Newton—Raphson (1664, 1690) iterates x «— x — H;l(X)Vf(X)
to solve V f(x) = 0, where H;; = 9° f /Ox;0x;

Taylor’s series:
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Greedy idea

1st and 2nd order methods may not find global
optimal solutions

they work for convex functions

Objectixe function ﬁlobal maximum

shoulder

local maximum

"flat" local maximum
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Meta-heuristics

“problem independent
“black-box
“zeroth-order method

and usually inspired from nature phenomenon



Simulated annealing

temperature from high to low

when high temperature, form the shape
when low temperature, polish the detail



Simulated annealing

ldea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED- ANNEALING( problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for 1+ 1 to oo do
T «— schedule]t]

if 7'= 0 then return current
next— a randomly selected successor of current the neighborhood range

AE« VALUE[nezt] — VALUE|[current] shrinks with T

if AE > 0 then current <« next the probability of acceptir
else current < next only with probability e EIT 4 bad solution decreases

Lo d

with T

g



Simulated annealing

a demo

graphic from http://en.wikipedia.org/wiki/Simulated_annealing
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Local beam search

|dea: keep k states instead of 1; choose top k of all their successors

Not the same as £ searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k£ states end up on same local hill
|dea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!



Genetic algorithm

a simulation of Darwin’s evolutionary theory

over-reproduction with diversity
nature selection

reproduction

random initialization

parent
population

offspring
solutions

evaluated
offspring
solutions

selection evaluation



Genetic algorithm

Encode a solution as a vector,

1: Pop < n randomly drawn solutions from X’

2: for t=1,2,... do

3: Pop™ < {mutate(s) | Vs € Pop}, the mutated solutions
4: Pop®© < {crossover(si, s2) | ds1,s2 € Pop™}, the recombined solutions
5 evaluate every solution in Pop® by f(s)(Vs € Pop®)

6: Pop® <+ selected solutions from Pop and Pop°

7: Pop < Pop?®

8: terminate if meets a stopping criterion

9: end for



24748552 |_ 24 31%
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Fitness Selection

GAs require states encoded as strings (GPs use programs)

Genetic algorithm

32752411

247148552

32752411

24415124

>~
>~

Pairs

32748552

3274812

24752411

24752411

32752124

3202552124

24415411

Cross-Over

2441541[7]

Crossover helps iff substrings are meaningful components




Example

Encode a solution as a vector with length n
each element of the vector can be chosen from {1,...,V }
parameters: mutation probability pm, crossover probability pc

1: Pop =randomly generate n solutions from {1,...,V }»
2: fort=1,2, ...do
3: Popm=emptyset, Pop‘=emptyset

4: fori=1ton

5: let x be the i-th solution in Pop

6: for j = 1 to n: with probability p,,, change x; by a random value from {1,...,V }
7 add x into Pop™

8: end for

9: fori=1ton

10: let x be the i-th solution in Pop™

11: let x” be a randomly selected solution from Pop™

12: with probability p., exchange a random part of x with x’

13: add x into Pop¢

14: end for

15:  evaluate solutions in Pop¢, select the best n solutions from Pop and Pop¢to Pop
16:  terminal if a good solution 1s found

17: end for



An evolutionary of virtual life






Properties of meta-heuristics

zeroth order

do not need differentiable functions

convergence

will find an optimal solution if P( x* | x )>0
or P(x->x1->..->xxk>x*)>0

a missing link

[observationj — [simulationj
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Properties of meta-heuristics

A

2010

2000
differential evolution
particle swarm optimization algorithms

ant colony optimization algorithms

1990

memetic algorithms |, ifial immune systems

cultural algorithms | tabu search .
simulated annealing

1980

1970 _ ,
evolutionary strategies

evolutionary programming

1960 |genetic algorithms



http://en.wikipedia.org/wiki/Memetic_algorithms
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Example

hard to apply traditional optimization methods
but easy to test a given solution

Representation:

parameterize

represented as a vector of parameters

> )

test by simulation/experiment

Fitness:




Example

Technological overview of the next generation Shinkansen high-speed train Series N700
M. Ueno', S. Usui', H. Tanaka', A. Watanabe®

Central Japan Railway Company, Tokyo, Japan, *West Japan Railway Company, Osaka, Japan

Abstract
In March 2005, Central Japan Railway Company (JR Central) has completed prototype
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waves and other issues related to environmental compatibility such as external noise. To

Series 700 combat this, an aero double-wing-type has been adopted for nose shape (Fig. 3). This nose
shape, which boasts the most appropriate aerodynamic performance, has been newly developed
for railway rolling stock using the latest analytical technique (i.e. genetic algorithms) used to
develop the main wings of airplanes. The shape resembles a bird in flight, suggesting a feeling
Qf bnldnass and snead

o e R L Y |

On the Tokaido Shinkansen line, Series N700 cars save 19% energy than Series 700 cars,

despite a 30% increase in the output of their traction equipment for higher-speed operation (Fig.
4).

This is a result of adopting the aerodynamically excellent nose shape, reduced running
resistance thanks to the drastically smoothened car body and under-floor equipment, effective

this nose ... has been newly developed ... using the latest
analytical technique (i.e. genetic algorithms)

~_ - - - -0/
%
N700 cars save 19% energy ... 30% increase in the output... This is a
result of adopting the ... nose shape

\_

Series N700
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Example

NASA ST5 satellite hard to apply traditional optimization methods
but easy to test a given solution




Example

NASA ST5 satellite hard to apply traditional optimization methods
but easy to test a given solution

Computer-Automated Evolution of an X-Band
Antenna for NASA’s Space Technology 5 |

Mission

. |
Gregory. S. Hornby Gregory.S.Hornby@nasa.gov
Mail Stop 269-3, University Affiliated Research Center, UC Santa Cruz, Moffett Field,
CA, 94035, USA
Jason D. Lohn Jason.Lohn@west.cmu.edu
Carnegie Mellon University, Mail Stop 23-11, Moffett Field, CA 94035, USA
Derek S. Linden dlinden@jemengineering.com
JEM Engineering, 8683 Cherry Lane, Laurel, MD 20707, USA Moffett Field, CA 94035,
USA

|
J

Since there are two antennas on each spacecraft, and not just one, it is important
to measure the overall gain pattern with two antennas mounted on the spacecraft. For
this, different combinations of the two evolved antennas and the QHA were tried on
the the ST5 mock-up and measured in an anechoic chamber. With two QHAs 38% effi-
ciency was achieved, using a QHA with an evolved antenna resulted in 80% efficiency,
and using two evolved antennas resulted in 93% efficiency. Here “efficiency” means
how much power is being radiated versus how much power is being eaten up in resis-
tance, with greater efficiency resulting in a stronger signal and greater range. Figure 11,




Example

NASA ST5 satellite

QHAs(ATL&1T) 38% evolved anfehﬁas resulted
efficiency in 93% efficiency
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Since there are two antennas on each spacecraft, and not just one, it is important
to measure the overall gain pattern with two antennas mounted on the spacecraft. For
this, different combinations of the two evolved antennas and the QHA were tried on
the the ST5 mock-up and measured in an anechoic chamber. With two QHAs 38% effi-
ciency was achieved, using a QHA with an evolved antenna resulted in 80% efficiency,
and using two evolved antennas resulted in 93% efficiency. Here “efficiency” means
how much power is being radiated versus how much power is being eaten up in resis-
tance, with greater efficiency resulting in a stronger signal and greater range. Figure 11,




Different Environment Properties



Nondeterministic actions

In the erratic vacuum world, the Suck action works as follows:

e When applied to a dirty square the action cleans the square and sometimes cleans up
dirt in an adjacent square, too.

e When applied to a clean square the action sometimes deposits dirt on the carpet.”
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almost all real-world problems are nondeterministic
how do you solve this problem?



AND-OR tree search

OR node: different actions (as usual)
AND node: different transitions

Suck Right
7|~ 5| = o5 2] wx 7-%
GOAL Suck Right Left Suck

5 = 1 ;fg SR 6 1 4 % 8 =4 4 =
LOOP Loop Suck Left 1oop GOAL
. )

p: = a solution is not a path
GOAL LOOP but a tree




Depth-first AND-OR tree search

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(problem .INITIAL-STATE, problem, [])

function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
if problem.GOAL-TEST(state) then return the empty plan
if state is on path then return failure
for each action in problem.ACTIONS(state) do
plan < AND-SEARCH(RESULTS(state, action), problem, [state | path])
if plan # failure then return [action | plan]
return failure

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
for each s; in states do
plan,; < OR-SEARCH(Ss;, problem, path)
if plan,; = failure then return failure
return [if s; then plan, else if so then plan, else .. .if s,,_; then plan,, , else plan,]




Search with no observations

search in belief (In agent’s mind)
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