

Artificial Intelligence, CS, Nanjing University Spring, 2015, Yang Yu

Lecture 4: Search 3

http://cs.nju.edu.cn/yuy/course_ai15.ashx

Previously...

Path-based search

Uninformed search

Depth-first, breadth first, uniform-cost search

Informed search

Best-first, A* search

Iterative-improvement search

Hill climbing: greedy method

Greedy idea in continuous space

Suppose we want to site three airports in Romania:

- 6-D state space defined by (x_1,y_2) , (x_2,y_2) , (x_3,y_3)
- objective function $f(x_1, y_2, x_2, y_2, x_3, y_3) =$ sum of squared distances from each city to nearest airport

Greedy idea in continuous space discretize and use hill climbing

Greedy idea in continuous space gradient decent

- 6-D state space defined by (x_1,y_2) , (x_2,y_2) , (x_3,y_3)
- objective function $f(x_1, y_2, x_2, y_2, x_3, y_3) =$ sum of squared distances from each city to nearest airport

Gradient methods compute

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$$

to increase/reduce f, e.g., by $\mathbf{x} \leftarrow \mathbf{x} + \alpha \nabla f(\mathbf{x})$

1-order method

Greedy idea in continuous space gradient decent

- 6-D state space defined by (x_1,y_2) , (x_2,y_2) , (x_3,y_3)
- objective function $f(x_1, y_2, x_2, y_2, x_3, y_3) =$ sum of squared distances from each city to nearest airport

Sometimes can solve for $\nabla f(\mathbf{x}) = 0$ exactly (e.g., with one city). Newton-Raphson (1664, 1690) iterates $\mathbf{x} \leftarrow \mathbf{x} - \mathbf{H}_f^{-1}(\mathbf{x})\nabla f(\mathbf{x})$ to solve $\nabla f(\mathbf{x}) = 0$, where $\mathbf{H}_{ij} = \partial^2 f / \partial x_i \partial x_j$

2-order method

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

1st and 2nd order methods may not find global optimal solutions

they work for convex functions

Meta-heuristics

"problem independent "black-box "zeroth-order method

. . .

and usually inspired from nature phenomenon

Simulated annealing

temperature from high to low

when high temperature, form the shape when low temperature, polish the detail

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
inputs: problem, a problem
          schedule, a mapping from time to "temperature"
local variables: current, a node
                    next, a node
                    T, a "temperature" controlling prob. of downward steps
current \leftarrow Make-NODe(INITIAL-STATe[problem])
for t \leftarrow 1 to \infty do
     T \leftarrow schedule[t]
     if T = 0 then return current
                                                          the neighborhood range
     next \leftarrow a randomly selected successor of current
                                                          shrinks with T
     \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]
     if \Delta E > 0 then current \leftarrow next
                                                          the probability of accepting
     else current \leftarrow next only with probability e^{\Delta E/T}
                                                          a bad solution decreases
                                                          with T
```


Simulated annealing

a demo

graphic from http://en.wikipedia.org/wiki/Simulated_annealing

Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel! Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

a simulation of Darwin's evolutionary theory

over-reproduction with diversity nature selection

Genetic algorithm

Encode a solution as a vector,

- 1: $Pop \leftarrow n$ randomly drawn solutions from \mathcal{X}
- 2: for t=1,2,... do
- 3: $Pop^m \leftarrow \{mutate(s) \mid \forall s \in Pop\}, \text{ the mutated solutions}$
- 4: $Pop^{c} \leftarrow \{crossover(s_1, s_2) \mid \exists s_1, s_2 \in Pop^{m}\}, \text{ the recombined solutions}$
- 5: evaluate every solution in Pop^c by $f(s)(\forall s \in Pop^c)$
- 6: $Pop^s \leftarrow \text{selected solutions from } Pop \text{ and } Pop^c$
- 7: $Pop \leftarrow Pop^s$
- 8: **terminate** if meets a stopping criterion
- 9: end for

Fitness Selection

Cross-Over

Mutation

GAs require states encoded as strings (GPs use programs)

Pairs

Crossover helps iff substrings are meaningful components

Example

Encode a solution as a vector with length *n*

each element of the vector can be chosen from $\{1,...,V\}$

parameters: mutation probability p_m , crossover probability p_c

- 1: $Pop = randomly generate n solutions from \{1,...,V\}^n$
- 2: for *t*=1,2, ... do
- 3: *Pop^m*=emptyset, *Pop^c*=emptyset
- 4: for i = 1 to n
- 5: let *x* be the *i*-th solution in *Pop*
- 6: for j = 1 to n: with probability p_m , change x_j by a random value from $\{1, ..., V\}$
- 7: add x into Pop^m
- 8: end for
- 9: for i = 1 to n
- 10: let x be the *i*-th solution in Pop^m
- 11: let x' be a randomly selected solution from Pop^m
- 12: with probability p_c , exchange a random part of x with x'
- 13: add x into Pop^c
- 14: end for
- 15: evaluate solutions in Pop^c , select the best *n* solutions from Pop and Pop^c to Pop
- 16: terminal if a good solution is found

17: end for

An evolutionary of virtual life

An evolutionary of virtual life

Properties of meta-heuristics

zeroth order do not need differentiable functions

will find an optimal solution if $P(x^* | x) > 0$ or $P(x \to x_1 \to ... \to x_k \to x^*) > 0$

a missing link

Properties of meta-heuristics

zeroth order do not need differentiable functions

convergence

will find an optimal solution if $P(x^* | x) > 0$ or $P(x \to x_1 \to ... \to x_k \to x^*) > 0$

a missing link

Properties of meta-heuristics

grey wolf optimizer 2010 gravitational search algorithm river formation dynamics	fireworks algorithm brainstorm algorithm bat algorithm intelligent water drops algorithm artificial bee colony algorithms
2000 differential evolution	particle swarm optimization algorithms
1990 memetic algorithms	ant colony optimization algorithms artificial immune systems
cultural algorithms	tabu search simulated annealing
1980	
1970	evolutionary strategies evolutionary programming
1960	genetic algorithms

hard to apply traditional optimization methods but easy to test a given solution

Representation:

Fitness:

represented as a vector of parameters

test by simulation/experiment

Example

Series 700

Series N700

Technological overview of the next generation Shinkansen high-speed train Series N700

M. Ueno¹, S. Usui¹, H. Tanaka¹, A. Watanabe²

¹Central Japan Railway Company, Tokyo, Japan, ²West Japan Railway Company, Osaka, Japan

Abstract

In March 2005, Central Japan Railway Company (JR Central) has completed prototype trainent of the Series NZ00, the next generation Shinkenson high speed reliance technological developed.

waves and other issues related to environmental compatibility such as external noise. To combat this, an aero double-wing-type has been adopted for nose shape (Fig. 3). This nose shape, which boasts the most appropriate aerodynamic performance, has been newly developed for railway rolling stock using the latest analytical technique (i.e. genetic algorithms) used to develop the main wings of airplanes. The shape resembles a bird in flight, suggesting a feeling of boldness and speed

ouppiedo dei cuynamie neide. [1] -

On the Tokaido Shinkansen line, Series N700 cars save 19% energy than Series 700 cars, despite a 30% increase in the output of their traction equipment for higher-speed operation (Fig. 4).

This is a result of adopting the aerodynamically excellent nose shape, reduced running resistance thanks to the drastically smoothened car body and under-floor equipment, effective

this nose ... has been newly developed ... using the latest analytical technique (i.e. **genetic algorithms**)

N700 cars save **19%** energy ... **30%** increase in the output... This is a result of adopting the ... nose shape

NASA ST5 satellite

hard to apply traditional optimization methods but easy to test a given solution

Example

NASA ST5 satellite

hard to apply traditional optimization methods but easy to test a given solution

Jason D. Lohn Jason.Lohn@west.cmu.edu Carnegie Mellon University, Mail Stop 23-11, Moffett Field, CA 94035, USA Derek S. Linden dlinden@jemengineering.com

JEM Engineering, 8683 Cherry Lane, Laurel, MD 20707, USA Moffett Field, CA 94035, USA

Since there are two antennas on each spacecraft, and not just one, it is important to measure the overall gain pattern with two antennas mounted on the spacecraft. For this, different combinations of the two evolved antennas and the QHA were tried on the the ST5 mock-up and measured in an anechoic chamber. With two QHAs 38% efficiency was achieved, using a QHA with an evolved antenna resulted in 80% efficiency, and using two evolved antennas resulted in 93% efficiency. Here "efficiency" means how much power is being radiated versus how much power is being eaten up in resistance, with greater efficiency resulting in a stronger signal and greater range. Figure 11

Example

NASA ST5 satellite

Conical Cuts

100

QHAs(人工设计) 38% efficiency

evolved antennas resulted in 93% efficiency

Jason D. Lohn

Carnegie Mellon University, Mail Stop 23-11, Moffett Field, C.

Derek S. Linden

dlinde

.ohn@west.cmu.edu 035, USA

Djemengineering.com offett Field, CA 94035,

JEM Engineering, 8683 Cherry Lane, Laurel, MD 20707, USA N USA

Since there are two antennas on each spacecraft, and not just one, it is important to measure the overall gain pattern with two antennas mounted on the spacecraft. For this, different combinations of the two evolved antennas and the QHA were tried on the the ST5 mock-up and measured in an anechoic chamber. With two QHAs 38% efficiency was achieved, using a QHA with an evolved antenna resulted in 80% efficiency, and using two evolved antennas resulted in 93% efficiency. Here "efficiency" means how much power is being radiated versus how much power is being eaten up in resistance, with greater efficiency resulting in a stronger signal and greater range. Figure 11

Different Environment Properties

Nondeterministic actions

In the **erratic vacuum world**, the *Suck* action works as follows:

- When applied to a dirty square the action cleans the square and sometimes cleans up dirt in an adjacent square, too.
- When applied to a clean square the action sometimes deposits dirt on the carpet.⁹

almost all real-world problems are nondeterministic how do you solve this problem?

AND-OR tree search

OR node: different actions (as usual) AND node: different transitions

NANI 1902 UNITED

a solution is not a path but a tree

Depth-first AND-OR tree search

function AND-OR-GRAPH-SEARCH(*problem*) **returns** *a conditional plan*, *or failure* OR-SEARCH(*problem*.INITIAL-STATE, *problem*,[])

function OR-SEARCH(*state*, *problem*, *path*) **returns** *a conditional plan*, *or failure* **if** *problem*.GOAL-TEST(*state*) **then return** the empty plan **if** *state* is on *path* **then return** *failure* **for each** *action* **in** *problem*.ACTIONS(*state*) **do** *plan* \leftarrow AND-SEARCH(RESULTS(*state*, *action*), *problem*, [*state* | *path*]) **if** *plan* \neq *failure* **then return** [*action* | *plan*] **return** *failure*

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure for each s_i in states do $plan_i \leftarrow \text{OR-SEARCH}(s_i, problem, path)$ if $plan_i = failure$ then return failure return [if s_1 then $plan_1$ else if s_2 then $plan_2$ else ... if s_{n-1} then $plan_{n-1}$ else $plan_n$]

Search with no observations

search in **belief (in agent's mind)**

