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Uncertainty Uncertainty

Let action At = leave for airport t minutes before flight
Will At get me there on time?

Problems:
1) partial observability (road state, other drivers’ plans, etc.)
2) noisy sensors (KCBS traffic reports)
3) uncertainty in action outcomes (flat tire, etc.)
4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either
1) risks falsehood: “A25 will get me there on time”

or 2) leads to conclusions that are too weak for decision making:
“A25 will get me there on time if there’s no accident on the bridge
and it doesn’t rain and my tires remain intact etc etc.”

(A1440 might reasonably be said to get me there on time
but I’d have to stay overnight in the airport . . .)
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Methods for handling uncertainty 
Methods for handling uncertainty

Default or nonmonotonic logic:
Assume my car does not have a flat tire
Assume A25 works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:
A25 !→0.3 AtAirportOnTime
Sprinkler !→0.99 WetGrass
WetGrass !→0.7 Rain

Issues: Problems with combination, e.g., Sprinkler causes Rain??

Probability
Given the available evidence,

A25 will get me there on time with probability 0.04
Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

(Fuzzy logic handles degree of truth NOT uncertainty e.g.,
WetGrass is true to degree 0.2)
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Probability 
Probability

Probabilistic assertions summarize effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:
Probabilities relate propositions to one’s own state of knowledge

e.g., P (A25|no reported accidents) = 0.06

These are not claims of a “probabilistic tendency” in the current situation
(but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence:
e.g., P (A25|no reported accidents, 5 a.m.) = 0.15

(Analogous to logical entailment status KB |= α, not truth.)
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Making decisions under uncertainty 
Making decisions under uncertainty

Suppose I believe the following:

P (A25 gets me there on time| . . .) = 0.04

P (A90 gets me there on time| . . .) = 0.70

P (A120 gets me there on time| . . .) = 0.95

P (A1440 gets me there on time| . . .) = 0.9999

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory
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Probability basics Probability basics

Begin with a set Ω—the sample space
e.g., 6 possible rolls of a die.
ω ∈ Ω is a sample point/possible world/atomic event

A probability space or probability model is a sample space
with an assignment P (ω) for every ω ∈ Ω s.t.

0 ≤ P (ω) ≤ 1
ΣωP (ω) = 1

e.g., P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1/6.

An event A is any subset of Ω

P (A) = Σ{ω∈A}P (ω)

E.g., P (die roll < 4) = P (1) + P (2) + P (3) = 1/6 + 1/6 + 1/6 = 1/2
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Random variables 

Random variables

A random variable is a function from sample points to some range, e.g., the
reals or Booleans

e.g., Odd(1) = true.

P induces a probability distribution for any r.v. X :

P (X = xi) = Σ{ω:X(ω) =xi}P (ω)

e.g., P (Odd = true) = P (1) + P (3) + P (5) = 1/6 + 1/6 + 1/6 = 1/2
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Propositions Propositions

Think of a proposition as the event (set of sample points)
where the proposition is true

Given Boolean random variables A and B:
event a = set of sample points where A(ω) = true
event ¬a = set of sample points where A(ω) = false
event a ∧ b = points where A(ω) = true and B(ω) = true

Often in AI applications, the sample points are defined
by the values of a set of random variables, i.e., the
sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model
e.g., A = true, B = false, or a ∧ ¬b.

Proposition = disjunction of atomic events in which it is true
e.g., (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
⇒ P (a ∨ b) = P (¬a ∧ b) + P (a ∧ ¬b) + P (a ∧ b)
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Why use probability? 
Why use probability?

The definitions imply that certain logically related events must have related
probabilities

E.g., P (a ∨ b) = P (a) + P (b) − P (a ∧ b)

>A     B

True

A B

de Finetti (1931): an agent who bets according to probabilities that violate
these axioms can be forced to bet so as to lose money regardless of outcome.
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Syntax for propositions 
Syntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)
Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite)
e.g., Weather is one of ⟨sunny, rain, cloudy, snow⟩
Weather = rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions
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Prior probability Prior probability

Prior or unconditional probabilities of propositions
e.g., P (Cavity = true) = 0.1 and P (Weather = sunny) = 0.72

correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = ⟨0.72, 0.1, 0.08, 0.1⟩ (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)

P(Weather, Cavity) = a 4 × 2 matrix of values:

Weather = sunny rain cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points
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Probability for continuous variables Probability for continuous variables

Express distribution as a parameterized function of value:
P (X = x) = U [18, 26](x) = uniform density between 18 and 26

0.125

dx18 26

Here P is a density; integrates to 1.
P (X = 20.5) = 0.125 really means

lim
dx→0

P (20.5 ≤ X ≤ 20.5 + dx)/dx = 0.125
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Gaussian density 

Gaussian density

P (x) = 1√
2πσ

e−(x−µ)2/2σ2

0
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Conditional probability Conditional probability

Conditional or posterior probabilities
e.g., P (cavity|toothache) = 0.8
i.e., given that toothache is all I know
NOT “if toothache then 80% chance of cavity”

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P (cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,
but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P (cavity|toothache, 49ersWin) = P (cavity|toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial
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Conditional probability Conditional probability

Definition of conditional probability:

P (a|b) =
P (a ∧ b)

P (b)
if P (b) ̸= 0

Product rule gives an alternative formulation:
P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

A general version holds for whole distributions, e.g.,
P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4 × 2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:
P(X1, . . . , Xn) = P(X1, . . . , Xn−1) P(Xn|X1, . . . ,Xn−1)

= P(X1, . . . ,Xn−2) P(Xn1|X1, . . . ,Xn−2) P(Xn|X1, . . . , Xn−1)
= . . .
= Πn

i = 1P(Xi|X1, . . . ,Xi−1)
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Inference by enumeration 

Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)
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Inference by enumeration 

Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration 

Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

P (cavity∨toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28
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Inference by enumeration 

Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Can also compute conditional probabilities:

P (¬cavity|toothache) =
P (¬cavity ∧ toothache)

P (toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Normalization Normalization

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Denominator can be viewed as a normalization constant α

P(Cavity|toothache) = αP(Cavity, toothache)

= α [P(Cavity, toothache, catch) + P(Cavity, toothache,¬catch)]

= α [⟨0.108, 0.016⟩ + ⟨0.012, 0.064⟩]
= α ⟨0.12, 0.08⟩ = ⟨0.6, 0.4⟩

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables
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Inference by enumeration, contd. 
Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be H = X − Y − E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|E= e) = αP(Y,E= e) = αΣhP(Y,E= e,H =h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???
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Independence 
Independence

A and B are independent iff
P(A|B) =P(A) or P(B|A) =P(B) or P(A, B) =P(A)P(B)

Weather
Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

P(Toothache, Catch,Cavity,Weather)
= P(Toothache, Catch,Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?

Chapter 13 23



Conditional independence 
Conditional independence

P(Toothache, Cavity, Catch) has 23 − 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t depend
on whether I have a toothache:

(1) P (catch|toothache, cavity) = P (catch|cavity)

The same independence holds if I haven’t got a cavity:
(2) P (catch|toothache,¬cavity) = P (catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch|Toothache,Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence 
Conditional independence contd.

Write out full joint distribution using chain rule:
P(Toothache, Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust
form of knowledge about uncertain environments.
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Bayes’ Rule Bayes’ Rule

Product rule P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

⇒ Bayes’ rule P (a|b) =
P (b|a)P (a)

P (b)

or in distribution form

P(Y |X) =
P(X|Y )P(Y )

P(X)
= αP(X|Y )P(Y )

Useful for assessing diagnostic probability from causal probability:

P (Cause|Effect) =
P (Effect|Cause)P (Cause)

P (Effect)

E.g., let M be meningitis, S be stiff neck:

P (m|s) =
P (s|m)P (m)

P (s)
=

0.8 × 0.0001

0.1
= 0.0008

Note: posterior probability of meningitis still very small!
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Bayes’ Rule and conditional independence Bayes’ Rule and conditional independence

P(Cavity|toothache ∧ catch)

= αP(toothache ∧ catch|Cavity)P(Cavity)

= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . , Effectn) = P(Cause)ΠiP(Effecti|Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Total number of parameters is linear in n
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Bayesian networks 



Bayesian networks 
Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P(Xi|Parents(Xi))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values
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Example 
Example

Topology of network encodes conditional independence assertions:

Weather Cavity

Toothache Catch

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity
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Example 

Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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Example 
Example contd.

.001
P(B)

.002
P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B
T
T
F
F

E
T
F
T
F

.95

.29

.001

.94

P(A|B,E)

A
T
F

.90

.05

P(J|A) A
T
F

.70

.01

P(M|A)
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Compactness 

Compactness

A CPT for Boolean Xi with k Boolean parents has
B E

J

A

M

2k rows for the combinations of parent values

Each row requires one number p for Xi = true
(the number for Xi = false is just 1 − p)

If each variable has no more than k parents,
the complete network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25 − 1 = 31)
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Global semantics 

Global semantics

“Global” semantics defines the full joint distribution
B E

J

A

M

as the product of the local conditional distributions:

P (x1, . . . , xn) = Πn
i = 1P (xi|parents(Xi))

e.g., P (j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= P (j|a)P (m|a)P (a|¬b,¬e)P (¬b)P (¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063
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Local semantics 
Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

Theorem: Local semantics ⇔ global semantics
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Markov blanket 
Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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Constructing Bayesian networks 

Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1, . . . , Xn

2. For i = 1 to n
add Xi to the network
select parents from X1, . . . ,Xi−1 such that

P(Xi|Parents(Xi)) = P(Xi|X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:

P(X1, . . . ,Xn) = Πn
i = 1P(Xi|X1, . . . , Xi−1) (chain rule)

= Πn
i = 1P(Xi|Parents(Xi)) (by construction)
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Example Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A|J, M) = P (A|J)? P (A|J, M) = P (A)? No
P (B|A, J, M) = P (B|A)? Yes
P (B|A, J, M) = P (B)? No
P (E|B,A, J, M) = P (E|A)? No
P (E|B,A, J, M) = P (E|A,B)? Yes
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