

Artificial Intelligence, CS, Nanjing University Spring, 2016, Yang Yu

Lecture 11: Uncertainty 2

http://cs.nju.edu.cn/yuy/course_ai16.ashx

Conditional Probability Conditional Independence

Bayesian Network: a network of conditional independence

Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

 Choose an ordering of variables X₁,..., X_n
 For i = 1 to n add X_i to the network select parents from X₁,..., X_{i-1} such that P(X_i|Parents(X_i)) = P(X_i|X₁, ..., X_{i-1})

This choice of parents guarantees the global semantics:

$$\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1}) \quad \text{(chain rule)} \\ = \prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i)) \quad \text{(by construction)}$$

Suppose we choose the ordering M, J, A, B, E

Example: Car diagnosis

Initial evidence: car won't start Testable variables (green), "broken, so fix it" variables (orange) Hidden variables (gray) ensure sparse structure, reduce parameters

Compact conditional distributions

CPT grows exponentially with number of parents CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case: X = f(Parents(X)) for some function f

E.g., Boolean functions $NorthAmerican \Leftrightarrow Canadian \lor US \lor Mexican$

E.g., numerical relationships among continuous variables $\frac{\partial Level}{\partial t} = \text{ inflow + precipitation - outflow - evaporation}$

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_1 \dots U_k$ include all causes (can add leak node)

2) Independent failure probability q_i for each cause alone

$\Rightarrow P(X U_1 \dots U_j, \neg U_{j+1} \dots$	$\dots \neg U_k) = 1 - \prod_{i=1}^{j} q_i$
---	---

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
T	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters **linear** in number of parents

Hybrid (discrete+continuous) networks

Discrete (*Subsidy*? and *Buys*?); continuous (*Harvest* and *Cost*)

Option 1: discretization—possibly large errors, large CPTs Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., *Cost*)

2) Discrete variable, continuous parents (e.g., *Buys*?)

Continuous child variables

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

$$P(Cost = c | Harvest = h, Subsidy? = true$$
$$= N(a_th + b_t, \sigma_t)(c)$$
$$= \frac{1}{\sigma_t \sqrt{2\pi}} exp\left(-\frac{1}{2}\left(\frac{c - (a_th + b_t)}{\sigma_t}\right)^2\right)$$

Mean *Cost* varies linearly with *Harvest*, variance is fixed

Linear variation is unreasonable over the full range but works OK if the **likely** range of *Harvest* is narrow

Continuous child variables

All-continuous network with LG distributions

 \Rightarrow full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Discrete variable w/ continuous parents

Probit distribution uses integral of Gaussian:

$$\begin{split} \Phi(x) &= \int_{-\infty}^{x} N(0,1)(x) dx \\ P(Buys? = true \mid Cost = c) &= \Phi((-c+\mu)/\sigma) \end{split}$$

Why the probit?

NANHAR 1902

- 1. It's sort of the right shape
- 2. Can view as hard threshold whose location is subject to noise

Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

$$P(Buys? = true \mid Cost = c) = \frac{1}{1 + exp(-2\frac{-c+\mu}{\sigma})}$$

Sigmoid has similar shape to probit but much longer tails:

Inference in Bayesian networks

Inference tasks

Simple queries: compute posterior marginal $P(X_i | \mathbf{E} = \mathbf{e})$ e.g., P(NoGas | Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: $\mathbf{P}(X_i, X_j | \mathbf{E} = \mathbf{e}) = \mathbf{P}(X_i | \mathbf{E} = \mathbf{e})\mathbf{P}(X_j | X_i, \mathbf{E} = \mathbf{e})$

Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Exact inference

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network: $\mathbf{P}(B|j,m) = \mathbf{P}(B,j,m)/P(j,m)$ $= \alpha \mathbf{P}(B,j,m)$ $= \alpha \sum_{e} \sum_{a} \mathbf{P}(B,e,a,j,m)$

Rewrite full joint entries using product of CPT entries: $\begin{aligned} \mathbf{P}(B|j,m) \\ &= \alpha \ \Sigma_e \ \Sigma_a \ \mathbf{P}(B) P(e) \mathbf{P}(a|B,e) P(j|a) P(m|a) \\ &= \alpha \mathbf{P}(B) \ \Sigma_e \ P(e) \ \Sigma_a \ \mathbf{P}(a|B,e) P(j|a) P(m|a) \end{aligned}$

Recursive depth-first enumeration: O(n) space, $O(d^n)$ time

Enumeration algorithm

```
function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables \{X\} \cup E \cup Y
Q(X) \leftarrow a distribution over X, initially empty
for each value x_i of X do
extend e with value x_i for X
Q(x_i) \leftarrow ENUMERATE-ALL(VARS[bn], e)
return NORMALIZE(Q(X))
```

```
function ENUMERATE-ALL(vars, e) returns a real number

if EMPTY?(vars) then return 1.0

Y \leftarrow \text{FIRST}(vars)

if Y has value y in e

then return P(y \mid Pa(Y)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e)

else return \Sigma_y P(y \mid Pa(Y)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e_y)

where e_y is e extended with Y = y
```

Evaluation tree

Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

$$\begin{split} \mathbf{P}(B|j,m) &= \alpha \underbrace{\mathbf{P}(B)}_{B} \underbrace{\sum_{e} \underbrace{P(e)}_{E} \sum_{a} \underbrace{\mathbf{P}(a|B,e)}_{A} \underbrace{P(j|a)}_{J} \underbrace{P(m|a)}_{M}}_{J} \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{E} \underbrace{P(a|B,e)}_{A} \underbrace{P(j|a)}_{J} f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{a} \underbrace{P(a|B,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{a} \underbrace{F_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{F_{\bar{A}JM}} (b,e) \text{ (sum out } A) \\ &= \alpha \mathbf{P}(B) \underbrace{f_{\bar{E}\bar{A}JM}(b)}_{E\bar{A}JM} (b) \text{ (sum out } E) \\ &= \alpha f_{B}(b) \times f_{\bar{E}\bar{A}JM}(b) \end{split}$$

Variable elimination: Basic operations

Summing out a variable from a product of factors: move any constant factors outside the summation add up submatrices in pointwise product of remaining factors

 $\Sigma_x f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \Sigma_x f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_{\bar{X}}$

assuming f_1, \ldots, f_i do not depend on X

Pointwise product of factors f_1 and f_2 : $f_1(x_1, ..., x_j, y_1, ..., y_k) \times f_2(y_1, ..., y_k, z_1, ..., z_l)$ $= f(x_1, ..., x_j, y_1, ..., y_k, z_1, ..., z_l)$ E.g., $f_1(a, b) \times f_2(b, c) = f(a, b, c)$

Variable elimination algorithm

function ELIMINATION-ASK(X, e, bn) returns a distribution over Xinputs: X, the query variable e, evidence specified as an event bn, a belief network specifying joint distribution $\mathbf{P}(X_1, \dots, X_n)$ factors \leftarrow []; $vars \leftarrow \text{REVERSE}(\text{VARS}[bn])$ for each var in vars do factors \leftarrow [MAKE-FACTOR(var, e)|factors] if var is a hidden variable then factors \leftarrow SUM-OUT(var, factors) return NORMALIZE(POINTWISE-PRODUCT(factors))

Irrelevant variables

Consider the query P(JohnCalls|Burglary=true)

 $P(J|b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a|b, e) P(J|a) \sum_{m} P(m|a)$

Sum over m is identically 1; M is **irrelevant** to the query

Thm 1: Y is irrelevant unless $Y \in Ancestors(\{X\} \cup \mathbf{E})$

Here, X = JohnCalls, $\mathbf{E} = \{Burglary\}$, and $Ancestors(\{X\} \cup \mathbf{E}) = \{Alarm, Earthquake\}$ so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)

Irrelevant variables contd.

Defn: <u>moral graph</u> of Bayes net: marry all parents and drop arrows Defn: A is <u>m-separated</u> from B by C iff separated by C in the moral graph Thm 2: Y is irrelevant if m-separated from X by E

For P(JohnCalls|Alarm = true), both Burglary and Earthquake are irrelevant

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^k n)$

Multiply connected networks:

- can reduce 3SAT to exact inference \Rightarrow NP-hard
- equivalent to **counting** 3SAT models \Rightarrow #P-complete

Approximate inference

Inference by stochastic simulation

Basic idea:

- 1) Draw N samples from a sampling distribution S
- 2) Compute an approximate posterior probability \hat{P}
- 3) Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior

About random number generation

How to generate a discrete distribution from the uniform distribution?

given U[0,1]

generate A 30%, B 60%, C 10%

About random number generation

How to generate a continuous distribution from the uniform distribution?

given U[0,1]

generate N(0,1)

About random number generation

How to generate a discrete distribution from a discrete distribution?

given A,B,C 33.33%

generate A,B,C,D 25%


```
function PRIOR-SAMPLE(bn) returns an event sampled from bn

inputs: bn, a belief network specifying joint distribution \mathbf{P}(X_1, \ldots, X_n)

\mathbf{x} \leftarrow an event with n elements

for i = 1 to n do

x_i \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))

given the values of Parents(X_i) in \mathbf{x}

return \mathbf{x}
```
Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event $S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i)) = P(x_1 \dots x_n)$ i.e., the true prior probability

E.g., $S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$

Let $N_{PS}(x_1 \dots x_n)$ be the number of samples generated for event x_1, \dots, x_n

Then we have

$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n) / N$$
$$= S_{PS}(x_1, \dots, x_n)$$
$$= P(x_1 \dots x_n)$$

That is, estimates derived from PRIORSAMPLE are consistent Shorthand: $\hat{P}(x_1, \ldots, x_n) \approx P(x_1 \ldots x_n)$

Conditional Probability: Rejection sampling

 $\hat{\mathbf{P}}(X|\mathbf{e})$ estimated from samples agreeing with \mathbf{e}

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)local variables: N, a vector of counts over X, initially zero

for j = 1 to N do $\mathbf{x} \leftarrow PRIOR-SAMPLE(bn)$ if \mathbf{x} is consistent with \mathbf{e} then $\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1$ where x is the value of X in \mathbf{x} return NORMALIZE($\mathbf{N}[X]$)

E.g., estimate $\mathbf{P}(Rain|Sprinkler = true)$ using 100 samples 27 samples have Sprinkler = trueOf these, 8 have Rain = true and 19 have Rain = false.

 $\hat{\mathbf{P}}(Rain|Sprinkler = true) = \text{NORMALIZE}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle$

Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

 $\hat{\mathbf{P}}(X|\mathbf{e}) = \alpha \mathbf{N}_{PS}(X, \mathbf{e})$ (algorithm defn.) $= \mathbf{N}_{PS}(X, \mathbf{e}) / N_{PS}(\mathbf{e})$ (normalized by $N_{PS}(\mathbf{e})$) $\approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e})$ (property of PRIORSAMPLE) $= \mathbf{P}(X|\mathbf{e})$ (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if $P(\mathbf{e})$ is small

 $P(\mathbf{e})$ drops off exponentially with number of evidence variables!

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

```
function LIKELIHOOD-WEIGHTING(X, \mathbf{e}, bn, N) returns an estimate of P(X|\mathbf{e})
local variables: W, a vector of weighted counts over X, initially zero
```

```
for j = 1 to N do
```

```
x, w \leftarrow \text{WEIGHTED-SAMPLE}(bn)
```

 $\mathbf{W}[x] \leftarrow \mathbf{W}[x] + w$ where x is the value of X in x return NORMALIZE($\mathbf{W}[X]$)

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

```
\mathbf{x} \leftarrow \text{an event with } n \text{ elements; } w \leftarrow 1
for i = 1 to n do
if X_i has a value x_i in e
then w \leftarrow w \times P(X_i = x_i \mid parents(X_i))
else x_i \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))
return \mathbf{x}, w
```


w = 1.0

 $w = 1.0 \times 0.1$

 $w = 1.0 \times 0.1 \times 0.99 = 0.099$

Likelihood weighting analysis

Sampling probability for WEIGHTEDSAMPLE is $S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$ Note: pays attention to evidence in **ancestors** only \Rightarrow somewhere "in between" prior and posterior distribution

Weight for a given sample \mathbf{z}, \mathbf{e} is $w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | parents(E_i))$

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight

Approximate inference using MCMC

"State" of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e)
local variables: N[X], a vector of counts over X, initially zero
Z, the nonevidence variables in bn
x, the current state of the network, initially copied from e
initialize x with random values for the variables in Y
for j = 1 to N do
for each Z_i in Z do
sample the value of Z_i in x from P(Z_i|mb(Z_i))
given the values of MB(Z_i) in x
N[x] \leftarrow N[x] + 1 where x is the value of X in x
return NORMALIZE(N[X])
```

Can also choose a variable to sample at random each time

The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see

MCMC example contd.

Estimate $\mathbf{P}(Rain|Sprinkler = true, WetGrass = true)$

Sample *Cloudy* or *Rain* given its Markov blanket, repeat. Count number of times *Rain* is true and false in the samples.

- E.g., visit 100 states 31 have Rain = true, 69 have Rain = false
- $\hat{\mathbf{P}}(Rain|Sprinkler = true, WetGrass = true) = NORMALIZE(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle$

Theorem: chain approaches stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov blanket sampling

Markov blanket of *Cloudy* is *Sprinkler* and *Rain* Markov blanket of *Rain* is *Cloudy, Sprinkler*, and *WetGrass*

Probability given the Markov blanket is calculated as follows: $P(x'_i|mb(X_i)) = P(x'_i|parents(X_i)) \prod_{Z_j \in Children(X_i)} P(z_j|parents(Z_j))$

Easily implemented in message-passing parallel systems, brains

Main computational problems:

- 1) Difficult to tell if convergence has been achieved
- 2) Can be wasteful if Markov blanket is large:

 $P(X_i|mb(X_i))$ won't change much (law of large numbers)

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by LW, MCMC:

- LW does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to $1 \mbox{ or } 0$
- Can handle arbitrary combinations of discrete and continuous variables