

Artificial Intelligence, CS, Nanjing University Spring, 2016, Yang Yu

Lecture 12: Learning 1

http://cs.nju.edu.cn/yuy/course_ai16.ashx

Previously...

ALISANA ALISANA

Search

Path-based search Iterative improvement search

Knowledge

Propositional Logic First Order Logic (FOL)

Uncertainty Bayesian network

Learning is essential for unknown environments, i.e., when designer lacks omniscience

Learning is useful as a system construction method, i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent's decision mechanisms to improve performance

Inductive Learning

Simplest form: learn a function from examples (tabula rasa)

f is the target function

An example is a pair
$$x$$
, $f(x)$, e.g., $\begin{array}{c|c} O & O & X \\ \hline X & \\ \hline X & \\ \end{array}$, +1

Problem: find a(n) hypothesis hsuch that $h \approx f$ given a training set of examples

(This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes a deterministic, observable "environment"
- Assumes examples are given
- Assumes that the agent wants to learn f—why?)

Examples described by attribute values (Boolean, discrete, continuous, etc.) E.g., situations where I will/won't wait for a table:

Example	Attributes						Target				
pro	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Т	Some	\$\$\$	F	T	French	0–10	Т
X_2	T	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	T	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	T	F	Т	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	T	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	T	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	T	Т	Т	Т	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	Т	Т	Т	Full	\$	F	F	Burger	30–60	T

Classification of examples is positive (T) or negative (F)

Learning task: Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

color

(color, weight) \rightarrow sweet ? $\mathcal{X} \rightarrow \{-1, +1\}$

ground-truth function f

Learning task: Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ? $\mathcal{X} \rightarrow \{-1, +1\}$

ground-truth function f

examples/training data: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}\$ $y_i = f(\boldsymbol{x}_i)$

Learning task: Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ? $\mathcal{X} \rightarrow \{-1, +1\}$

ground-truth function f

examples/training data: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}\$ $y_i = f(\boldsymbol{x}_i)$

learning: <u>find</u> an *f* that is <u>close</u> to *f*

Features: color, weight **Label**: price [0,1]

Features: color, weight **Label**: price [0,1]

(color, weight) \rightarrow price $\mathcal{X} \rightarrow [0, +1]$

ground-truth function f

examples/training data: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}\$ $y_i = f(\boldsymbol{x}_i)$

Features: color, weight Label: price [0,1]

(color, weight) \rightarrow price $\mathcal{X} \rightarrow [0, +1]$

ground-truth function f

examples/training data: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}\$ $y_i = f(\boldsymbol{x}_i)$

learning: <u>find</u> an *f* that is <u>close</u> to *f*

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

E.g., curve fitting:

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

E.g., curve fitting:

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

E.g., curve fitting:

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

E.g., curve fitting:

how to learn? why it can learn?

Learning algorithms

Decision tree Neural networks Linear classifiers Bayesian classifiers Lazy classifiers

. . .

Why different classifiers? heuristics viewpoint performance

Decision tree learning

what is a decision tree

One possible representation for hypotheses E.g., here is the "true" tree for deciding whether to wait:

Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:

Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

Prefer to find more **compact** decision trees

Hypothesis spaces (all possible trees)

(==)

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., $Hungry \land \neg Rain$)??

Each attribute can be in (positive), in (negative), or out $\Rightarrow 3^n$ distinct conjunctive hypotheses

More expressive hypothesis space

- increases chance that target function can be expressed
- increases number of hypotheses consistent w/ training set

 \Rightarrow may get worse predictions

Decision tree learning algorithm

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree
```

if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MODE(examples)
else

```
best \leftarrow CHOOSE-ATTRIBUTE(attributes, examples)

tree \leftarrow a \text{ new decision tree with root test } best

for each value v_i of best do

examples_i \leftarrow \{\text{elements of } examples \text{ with } best = v_i\}

subtree \leftarrow DTL(examples_i, attributes - best, MODE(examples))

add a branch to tree with label v_i and subtree subtree

return tree
```


Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice—gives **information** about the classification

Information

Information answers questions

The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit = answer to Boolean question with prior (0.5, 0.5)

Information in an answer when prior is $\langle P_1, \ldots, P_n \rangle$ is

 $H(\langle P_1,\ldots,P_n\rangle) = \sum_{i=1}^n - P_i \log_2 P_i$

(also called entropy of the prior)

Information

NAN 1902

Suppose we have p positive and n negative examples at the root

 $\Rightarrow H(\langle p/(p+n), n/(p+n)\rangle) \text{ bits needed to classify a new example E.g., for 12 restaurant examples, } p = n = 6 \text{ so we need 1 bit}$

An attribute splits the examples E into subsets E_i , each of which (we hope) needs less information to complete the classification

Let E_i have p_i positive and n_i negative examples $\Rightarrow H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i) \rangle)$ bits needed to classify a new example

 \Rightarrow expected number of bits per example over all branches is

$$\sum_{i} \frac{p_i + n_i}{p + n} H(\langle p_i / (p_i + n_i), n_i / (p_i + n_i) \rangle)$$

For *Patrons*?, this is 0.459 bits, for *Type* this is (still) 1 bit

 $\Rightarrow~$ choose the attribute that minimizes the remaining information needed

id	color	taste	-
1	red	sweet	
2	red	sweet	
3	half-red	sweet	
4	not-red	sweet	
5	not-red	not-sweet	
6	half-red	sweet	
7	red	not-sweet	
8	not-red	not-sweet	
9	not-red	sweet	
10	half-red	not-sweet	
11	red	sweet	
12	half-red	not-sweet	
13	not-red	not-sweet	

taste?

not-red

Example

red

Ð

half-red

8

color **∢**

Example				
	id	color	taste	
$color \leftarrow \bigcirc taste?$	1	red	sweet	
$color \leftarrow \rightarrow caste :$	2	red	sweet	
	3	half-red	sweet	
red half-red not-red	4	not-red	sweet	
Teu mairreu notreu	5	not-red	not-sweet	
	6	half-red	sweet	
	7	red	not-sweet	
	8	not-red	not-sweet	
	9	not-red	sweet	
	10	half-red	not-sweet	
	11	red	sweet	
	12	half-red	not-sweet	
information gain:	13	not-red	not-sweet	
entropy before split: $H(X) = -\sum_{i}$	ratio(class	$(a_i) \ln ratio(a_i)$	$class_i) = 0.$	6902

entropy after split: $I(X; split) = \sum_{i}^{i} ratio(split_{i})H(split_{i})$

information gain: $= \frac{4}{13}0.5623 + \frac{4}{13}0.6931 + \frac{5}{13}0.6730 = 0.6452$ Gain(X; split) = H(X) - I(X; split) = 0.045

Decision tree learning algorithm

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose "most significant" attribute as root of (sub)tree

Patrons?

0000

Full

Some

None

```
function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MODE(examples)
else
    best ← CHOOSE-ATTRIBUTE(attributes, examples)
```

```
best \leftarrow CHOOSE-ATTRIBUTE(attributes, examples)

tree \leftarrow a new decision tree with root test best

for each value v_i of best do

examples_i \leftarrow \{elements of examples with best = v_i\}

subtree \leftarrow DTL(examples_i, attributes - best, MODE(examples))

add a branch to tree with label v_i and subtree subtree

return tree
```

Example of learned tree

Decision tree learned from the 12 examples:

Continuous attribute

id	weight	taste
1	110	sweet
2	105	sweet
3	100	sweet
4	93	sweet
5	80	not-sweet
6	98	sweet
7	95	not-sweet
8	102	not-sweet
9	98	sweet
10	90	not-sweet
11	108	sweet
12	101	not-sweet
13	89	not-sweet

for every split point

information gain:

$$H(X) = -\sum_{i} ratio(class_{i}) \ln ratio(class_{i}) = 0.6902$$
$$I(X; \text{split}) = \sum_{i} ratio(split_{i})H(split_{i})$$
$$= \frac{5}{13}0.5004 + \frac{8}{13}0.5623 = 0.5385$$

Gain(X; split) = H(X) - I(X; split) = 0.1517

for every split point

information gain: entropy before split: $H(X) = -\sum_{i} ratio(class_{i}) \ln ratio(class_{i}) = 0.6902$ entropy after split: $I(X; split) = \sum_{i} ratio(split_{i})H(split_{i})$ $= \frac{5}{13}0.5004 + \frac{8}{13}0.5623 = 0.5385$

Gain(X; split) = H(X) - I(X; split) = 0.1517

Non-generalizable feature

	id	color	weight	taste
	1	red	110	sweet
	2	red	105	sweet
	3	half-red	100	sweet
	4	not-red	93	sweet
	5	not-red	80	not-sweet
	6	half-red	98	sweet
	7	red	95	not-sweet
	8	not-red	102	not-sweet
	9	not-red	98	sweet
	10	half-red	90	not-sweet
	11	red	108	sweet
	12	half-red	101	not-sweet
	13	not-red	89	not-sweet

the system may not know non-generalizable features

$$IG = H(X) - 0$$

Non-generalizable feature

ste reet reet reet
eet
reet
reet
sweet
eet
sweet
sweet
reet
sweet
reet
sweet
sweet

the system may not know non-generalizable features

$$IG = H(X) - 0$$

Gain ratio as a correction: Gain ratio $(X) = \frac{H(X) - I(X; \text{split})}{IV(\text{split})}$ IV(split) = H(split)

Alternative to information: Gini index

Gini index (CART): Gini: $Gini(X) = 1 - \sum_{i} p_i^2$ Gini after split: $\frac{\# \text{left}}{\# \text{all}} Gini(\text{left}) + \frac{\# \text{right}}{\# \text{all}} Gini(\text{right})$

Training error v.s. Information gain

training error is less smooth

Training error v.s. Information gain

training error: 4

training error is less smooth

training error: 4

information gain: IG = H(X) - 0.5192

training error: 4 information gain: IG = H(X) - 0.5514

training error is less smooth

Decision tree learning algorithms

ID3: information gain

C4.5: gain ratio, handling missing values

Ross Quinlan

CART: gini index

Leo Breiman 1928-2005

Jerome H. Friedman

