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Previously...

Learning

Decision tree learning
Neural networks

Why we can learn
Linear models



Nearest Neighbor Classifier



Nearest neighbor

what looks similar are similar

Oodﬁ
O

A

A
AAA




Nearest neighbor

for classification:

1-nearest neighbor: k-nearest neighbor:
0 (f* 0 = o‘k)
O O
JAN JAN
A
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Predict the label as that of the NN
or the (weighted) majority of the k-NN



Nearest neighbor

for regression:

1-nearest neighbor: k-nearest neighbor:
0 (f* 0 = o‘k)
O O
JAN JAN
A
AAA BA A A

Predict the label as that of the NN
or the (weighted) average of the k-NN



Search for the nearest neighbor

Linear search
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n times of distance calculations

O(dn In k)
d is the dimension, n is the number of samples



Nearest neighbor classifier

» as classifier, asymptotically less than 2 times of
the optimal Bayes error

» naturally handle multi-class

» NO training time

» nonlinear decision boundary

» slow testing speed for a large training data set

» have to store the training data
» sensitive to similarity function

nonparametric method



Naive Bayes Classifier



Bayes rule

classification using posterior probability

for binary classification
_|_17 P(y = +1 | ZB)
flz) =< -1, Py =+1| z)

random, otherwise
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in general

f(z) = ATg max P(y | =)



Bayes rule

classification using posterior probability

for binary classification

+1, Ply=+1|z)>Ply=-1|=)
@) =-1,  Ply=-+1]2)<Ply=—1|a
random, otherwise
in general
f(x) = argmax P(y | @)
Y how the
— arg max P(ili y)P(y)/P(w) probabilities be
Yy estimated
— arg max P(ZE y)P(y)

Y



Naive Bayes

f(z) = ATg max Pz | y)P(y)

estimation the a priori by frequency:

P(y) & Ply) = - 3 Ty =)



Consider a very simple case

color
__id | color | taste |
1 red sweet
2 red sweet
3 half-red not-sweet
4 not-red not-sweet
5 not-red not-sweet
6 half-red not-sweet
7 red sweet
8 not-red not-sweet
9 not-red not-sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet

> taste ?

P(red | sweet) =1
P(half-red | sweet) = 0

T

not-red | sweet) = 0
sweet) = 4/13

red | not-sweet) = 0
P(half-red | not-sweet) = 4/9
P(not-red | not-sweet) = 5/9
P(not-sweet) = 9/13
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Consider a very simple case
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red
red
half-red
not-red
not-red
half-red
red
not-red
not-red
half-red
red
half-red
not-red

sweet
sweet
not-sweet
not-sweet
not-sweet
not-sweet
sweet
not-sweet
not-sweet
not-sweet
sweet
not-sweet
not-sweet

what the /* would be?

flz) = arg;naxP(w | y)P(y)



Consider a very simple case

id color taste

1 red sweet

2 red sweet

3 half-red not-sweet
4 not-red not-sweet
5 not-red not-sweet
6 half-red not-sweet
7 red sweet

8 not-red not-sweet
9 not-red not-sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet

what the /* would be?

flz) = arg;naxp(az | y)P(y)

P(red | sweet)P(sweet) = 4/13
P(red | not-sweet) P(not-sweet) = 0



Consider a very simple case

id color taste

1 red sweet

2 red sweet

3 half-red not-sweet
4 not-red not-sweet
5 not-red not-sweet
6 half-red not-sweet
7 red sweet

8 not-red not-sweet
9 not-red not-sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet

what the /* would be?

f(z) = argmax P(z | y)P(y)

P(red | sweet)P(sweet) = 4/13
P(red | not-sweet) P(not-sweet) = 0

Yy

P(half-red | sweet) P(sweet) = 0

P(half-red | not-sweet ) P(not-sweet) =

O~
X
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Consider a very simple case

id color taste

L red sweet what the /* would be?

2 red sweet

3 half-red not-sweet

4 not-red not-sweet _

5 not-red not-sweet f(CC) o arg maXP(w | y)P(y)
6 half-red not-sweet

7 red sweet

8 not-red not-sweet

9 notred  not-sweet P(red | sweet)P(sweet) = 4/13

10 Tl | mereneer P(red | not-sweet) P(not-sweet) = 0
11 red sweet

12 half-red not-sweet

13 not-red not-sweet

P(half-red | sweet) P(sweet) = 0

9 4
X ==
13 13

O W~

P(half-red | not-sweet ) P(not-sweet) =

perfect
but not realistic



Naive Bayes

flx) = ATg max Pz | y)P(y)

estimation the a priori by frequency:

P(y) & Ply) = - 3 Ty =)

assume features are conditional independence given
the class (naive assumption):

P(z|y) = P(x1,72,...,7, | Y)

decision function:

f(z) = argmax P(y) | | P(z: | y)

Y i



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

no P(color =3 |y =yes) =1/2

no

T T
: 4 P(y = yes) = 2/3
2 3 yes P(y =no) =3/5
0 3
3 2
1 4

no



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

BT T T
3 4 yes P(y — yes) — 2/5
2 3 yes P(y:no) 23/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

BT T T
3 4 yes P(y — yes) — 2/5
2 3 yes P(y:no) 23/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —
P(color =3 | y = yes)P(weight =3 | y = yes)P(y = yes) = 0.5 x 0.5 x 0.4 = 0.1
P(color = 3 | y = no) P(weight = 3 | y = no)P(y = no) = 0.33 x 0.33 x 0.6 = 0.06



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

BT T T
3 4 yes P(y — yes) — 2/5
2 3 yes P(y:no) 23/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —
P(color =3 | y = yes)P(weight =3 | y = yes)P(y = yes) = 0.5 x 0.5 x 0.4 = 0.1
P(color = 3 | y = no) P(weight = 3 | y = no)P(y = no) = 0.33 x 0.33 x 0.6 = 0.06

f(y | color = 0,weight =1) —



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

BT T T
3 4 yes P(y — yes) — 2/5
2 3 yes P(y:no) 23/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —
P(color =3 | y = yes)P(weight =3 | y = yes)P(y = yes) = 0.5 x 0.5 x 0.4 = 0.1
P(color = 3 | y = no) P(weight = 3 | y = no)P(y = no) = 0.33 x 0.33 x 0.6 = 0.06

f(y | color =0, weight =1) —

P(color =0 |y = yes)P(weight =1 |y = yes)P(y = yes) =0
P(color =0 |y =no)P(weight =1 |y =no)P(y =no) =0



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}
"o | wege | et .

es
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yes
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no
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smoothed (Laplacian correction) probabilities:

P(color =0 |y =yes) = (0+1)/(2+4) for counting frequency,
assume every event

Py =yes) = (2+1)/(5+2) has happened once.

f(y | color =0, weight =1) —
P(color =0 | y = yes)P(weight =1 | y = yes)P(y = yes) = % X % X g = 0.01
P(color =0 | y = no)P(weight =1 | y = no)P(y = no) = % X % X % = 0.02



Naive Bayes

advantages:
very fast:

scan the data once, just count: O(mn)
store class-conditional probabilities: O(n)
test an instance: O(cn) (c the number of classes)

good accuracy in many cases
parameter free

output a probability
naturally handle multi-class

disadvantages:



Naive Bayes

advantages:
very fast:

scan the data once, just count: O(mn)
store class-conditional probabilities: O(n)
test an instance: O(cn) (c the number of classes)

good accuracy in many cases
parameter free

output a probability
naturally handle multi-class

disadvantages:
the strong assumption may harm the accuracy
does not handle numerical features naturally




