

Artificial Intelligence, CS, Nanjing University Spring, 2016, Yang Yu

Lecture 18: About Time-MDP

http://cs.nju.edu.cn/yuy/course_ai16.ashx

Markov process

Copyright © 2002, 2004, Andrew W. Moore

Discounted Rewards

"A reward (payment) in the future is not worth quite as much as a reward now."

- Because of chance of obliteration
- Because of inflation

Example:

Being promised \$10,000 next year is worth only 90% as much as receiving \$10,000 right now.

Assuming payment *n* years in future is worth only $(0.9)^n$ of payment now, what is the AP's Future Discounted Sum of Rewards ?

Copyright $\ensuremath{\mathbb{C}}$ 2002, 2004, Andrew W. Moore

Markov Systems: Slide 3

Discount Factors

People in economics and probabilistic decisionmaking do this all the time.

The "Discounted sum of future rewards" using discount factor γ " is

(reward now) +

 γ (reward in 1 time step) +

- γ^2 (reward in 2 time steps) +
- γ ³ (reward in 3 time steps) +
 - (infinite sum)

Copyright © 2002, 2004, Andrew W. Moore

Copyright © 2002, 2004, Andrew W. Moore

Markov Systems: Slide 4

Computing the Future Rewards of an

- Has a set of states $\{S_1 S_2 \cdots S_N\}$
- Has a transition probability matrix

$$P = \begin{pmatrix} P_{11} P_{12} \cdots P_{1N} \\ P_{21} \\ \vdots \\ P_{N1} \\ \cdots \\ P_{NN} \end{pmatrix} P_{ij} = Prob(Next = S_j | This = S_i)$$

- Each state has a reward. $\{r_1 r_2 \cdot \cdot r_N\}$
- There's a discount factor γ . $0 < \gamma < 1$

On Each Time Step ...

- 0. Assume your state is S_i
- 1. You get given reward r_i
- 2. You randomly move to another state

 $P(NextState = S_j | This = S_i) = P_{ij}$

3. All future rewards are discounted by $\boldsymbol{\gamma}$

Copyright $\ensuremath{\mathbb{C}}$ 2002, 2004, Andrew W. Moore

Copyright © 2002, 2004, Andrew W. Moore

Markov Systems: Slide 6

Value iteration: solve expected reward

Define

 $J^{1}(S_{i})$ = Expected discounted sum of rewards over the next 1 time step. $J^{2}(S_{i})$ = Expected discounted sum rewards during next 2 steps

 $J^{3}(S_{i}) =$ Expected discounted sum rewards during next 3 steps

 $J^{k}(S_{i})$ = Expected discounted sum rewards during next k steps

Value iteration: solve expected reward

Define

- $J^{1}(S_{i})$ = Expected discounted sum of rewards over the next 1 time step.
- $J^{2}(S_{i})$ = Expected discounted sum rewards during next 2 steps
- $J^{3}(S_{i})$ = Expected discounted sum rewards during next 3 steps

- Compute $J^1(S_i)$ for each *j*
- Compute $J^2(S_i)$ for each *j*

• Compute
$$J^{k}(S_{i})$$
 for each j
As $k \rightarrow \infty$ $J^{k}(S_{i}) \rightarrow J^{*}(S_{i})$. Why?
When to stop? When
$$\begin{array}{c|c} Max & J^{k+1}(S_{i}) - J^{k}(S_{i}) & < \xi \\ i & \end{array}$$

•

Markov process -> Markov **decision** process

A Markov decision process (MDP)

1

Markov decision process

An MDP has...

- A set of states $\{s_1 \cdots S_N\}$
- A set of actions $\{a_1 \cdots a_M\}$
- A set of rewards $\{r_1 \cdots r_N\}$ (one for each state)
- A transition probability function

$$P_{ij}^{k} = Prob(Next = j | This = i \text{ and } I \text{ use action } k)$$

On each step:

- 0. Call current state S_i
- 1. Receive reward r_i
- 2. Choose action $\in \{a_1 \cdots a_M\}$
- 3. If you choose action a_k you'll move to state S_j with probability P_{ii}^k
- 4. All future rewards are discounted by γ

Policy

A policy is a mapping from states to actions.

- How many possible policies in our example?
- Which of the above two policies is best?

For every M.D.P. there exists an optimal policy.

It's a policy such that for every possible start state there is no better option than to follow the policy.

(Not proved in this lecture)

Computing the best policy

Idea One: Run through all possible policies. Select the best.

What's the problem ??

Value iteration

Define

 $J^{k}(S_{i}) =$ Maximum possible expected sum of discounted rewards I can get if I start at state S_{i} and I live for *k* time steps.

Note that $J^{1}(S_{i}) = r_{i}$

S Example You run a startup Poor & N1/2 company. Unknown А 1/2 +0 In every state you must 1/2 choose 1/2 1/2 between Saving s /A . 1/2 money or Rich & Advertising. 1/2 S Unknown Let's compute $J^k(S_i)$ for the startup example /1/2 \ +10

 $\gamma = 0.9$

А

1

A/

Poor &

Famous

+0

S

Rich &

Famous

+10

1/2/

1/2

1

k	J ^k (PU)	J ^k (PF)	J ^k (RU)	J ^k (RF)
I	0	0	10	10
2	0	4.5	14.5	19
3	2.03	8.55	16.53	25.08
4	4.76	12.20	18.35	28.72

Bellman's equation

$$\mathbf{J}^{n+1}(\mathbf{S}_i) = \max_k \left[r_i + \gamma \sum_{j=1}^N \mathbf{P}_{ij}^k \mathbf{J}^n(\mathbf{S}_j) \right]$$

Value Iteration for solving MDPs

- Compute J¹(S_i) for all i
- Compute J²(S_i) for all i

```
•
```

Compute Jⁿ(S_i) for all i

.....until converged

converged when $\max_{i} |J^{n+1}(S_i) - J^n(S_i)| \langle \xi |$

...Also known as

Dynamic Programming

Copyright $\ensuremath{\mathbb{C}}$ 2002, 2004, Andrew W. Moore

Find the optimal policy

- Compute J*(S_i) for all i using Value Iteration (a.k.a. Dynamic Programming)
- 2. Define the best action in state S_i as

$$\arg\max_{k} \left[r_{i} + \gamma \sum_{j} P_{ij}^{k} J^{*}(S_{j}) \right]$$

(Why?)

Reinforcement learning

Game playing

Game playing

- What are you doing when you're learning a game?
- Supervised learning:
 - teacher (ie desired output) giving detailed feedbaci in each situation
 - infeasible for cor which chess mov given board posi
- Reinforcement leari
 - no teacher; only whether you wo
 - computer could games to explor

Value Iteration for solving Markov Systems

- Compute $J^1(S_i)$ for each *j*
- Compute $J^2(S_i)$ for each j
- Compute $J^k(S_i)$ for each *j*

As $k \rightarrow \infty J^k(S_i) \rightarrow J^*(S_i)$. Why?

This is faster than matrix inversion (N³ style)

MDP

Recall Markov Decision Processes

• An MDP is defined by:

states: $\{s_1, \ldots, s_N\}$

- initial state: S_0
 - actions: $\{a_1, \ldots, a_M\}$
 - rewards: $R(s) = \{r_1, \ldots, r_N\}$

transitions:

$$T(s, a, s') = P(s_{t+1} = s' | a_t = a, s_t$$

discount: γ

• Value iteration:

$$V_{i+1}(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') V_i(s')$$
$$V^*(s) = \lim_{i \to \infty} V_i(s)$$

• Optimal policy:

$$\pi^*(s) = \arg\max_a \left[R(s) + \gamma \sum_{s'} T(s, a, s') V^*(s') \right]$$

i	V _i (PU)	V _i (PF)	V _i (RU)	V _i (RF)
Ι	0	0	10	10
2	0	4.5	14.5	19
3	2.03	6.53	25.08	18.55
4	3.852	12.20	29.63	19.26
5	7.22	15.07	32.00	20.40
6	10.03	17.65	33.58	22.43

The 4x3 grid world from R&N Chap. 17

R(s) = -0.040.8 actions 3 +| 0.1 0.1 2 $T(s, a, s') = P(s_{t+1}|a_t, s_t)$ start 2 3 4

- Here, the agent has a complete model of the fully-observable world
- The reward function R(s) and the transition model T(s,a,s') are also known.
- In this example, there is no discounting
- How does the agent maximize reward? Value (or policy) iteration.

The optimal policy

With weak negative reward, best policy is to avoid -1 when possible and seek +1

R(s) = -0.04

0.8 actions

Another optimal policy

• With strong negative reward, best policy is to always seek end states

- Now: don't know environment, transition model, or reward function
- Need to explore the world. At each state the agent:
 - I. selects one of the available actions
 - 2. receives reward
 - 3. observes resulting state
 - 4. repeat until a terminal state

In reinforcement learning, the objective is to find an optimal policy from these observations.

Model estimation

$$\begin{aligned} R(s) &= \text{ reward for state s} \\ \hat{T}(s, a, s') &\approx \frac{\# \text{ transitions } s \to s' \text{ for action } a}{\# \text{ times } a \text{ selected at state } s} \end{aligned}$$

- Observe statistics for actions from each state.
- Eg, for 10 "up" actions from state (1,1) we observe next state is
 - s₁ = (1,2) 8 times & R= -0.04
 - s₂ = (2,1) 2 times & R= -0.04

•
$$\Rightarrow$$
 T(s, Up, s₁) = 8/10 = 0.8

 $T(s, Up, s_2) = 2/10 = 0.2$

 $R(s_1) = R(s_2) = 0.04$

- Could use Bayesian estimates here
- Continued exploration of the grid world will give increasingly accurate estimates of T(s,a,s') and R(s).

Model-based reinforcement learning

- With estimates of T(s,a,s') and R(s), we can just treat it like an MDP.
- Compute the expected value of each state as:

$$V_{i+1}(s) = \hat{R}(s) + \gamma \max_{a} \sum_{s'} \hat{T}(s, a, s') V_i(s')$$
$$V^*(s) = \lim_{i \to \infty} V_i(s)$$

• And the optimal policy (with value iteration) is:

$$\pi^*(s) = \arg\max_a \left[\hat{R}(s) + \gamma \sum_{s'} \hat{T}(s, a, s') V^*(s') \right]$$

- This is called *Certainty Equivalent* learning.
- Issues and caveats:
 - Could be a very inefficient way to explore the world.
 - When do we stop and estimate the policy?
 - Solving for V*(s) every time could be expensive.

Model-free reinforcement learning

And there are more methods that do not estimate the MDP model.

R. Sutton. Introduction to Reinforcement Learning.