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Markov process

The Acadgﬁmic Life
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Define:
J, = Expected discounted future rewards startlng in state A
Jg = Expected discounted future rewards starting in state B

J — 13 13 13 (11 13 13 13 T

T

J — 1] 13 13 13 13 13 1] S
S

J — 13 13 13 13 13 13 13 D
D

How do we compute J,, Jg, J1, Jg, Jp ?
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Rewards

“A reward (payment) in the future is not worth quite
as much as a reward now.”

» Because of chance of obliteration
* Because of inflation

Example:

Being promised $10,000 next year is worth only 90% as
much as receiving $10,000 right now.

Assuming payment n years in future is worth only

(0.9)" of payment now, what is the AP’s Future
Discounted Sum of Rewards ?
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Discount factor

People in economics and probabilistic decision-
making do this all the time.

The “Discounted sum of future rewards” using
discount factor y” is

(reward now) +
v (reward in 1 time step) +
vy 2 (reward in 2 time steps) +
y 3 (reward in 3 time steps) +

(infinite sum)
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A Markov process with rewards

« Has aset of states {S, S, - Sy}
* Has a transition probability matrix

P=

( A
Pi1 P Py
Py,

\PN'] I:)NN Y,

P, = Prob(Next = S, | This = S;)

« Each state has areward. {r,r, - ry}
« There'sadiscountfactory. 0<y<1
On Each Time Step ...

0. Assume your state is S;
1. You get given reward r;
2. You randomly move to another state
P(NextState = S;| This =S, ) = P;
3. All future rewards are discounted by vy
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Value iteration: solve expected reward

Define
J1(S;) = Expected discounted sum of rewards over the next 1 time step.

J2(S;) = Expected discounted sum rewards during next 2 steps
J3(S;) = Expected discounted sum rewards during next 3 steps

JX(S,) = Expected discounted sum rewards during next k steps

JI(S) = (what?)
J2(S) = (what?)
JKH(S) = (what?)
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Value iteration: solve expected reward

Define
J1(S,) = Expected discounted sum of rewards over the next 1 time step.

J2(S,) = Expected discounted sum rewards during next 2 steps
J3(S,) = Expected discounted sum rewards during next 3 steps

JX(S;) = Expected discounted sum rewards during next k steps
N = Number of states

JIS) =T, ) (what?)
N
1
J4(S)) = (s JZ:; Py (s;) (what?)
: N
JS) =1+ ) Py (s)) (what?)
=1
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Example
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4.94 -1.44 -11
5 488 | -1.52 | -11.11
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Value iteration: solve expected reward

« Compute J1(S)) for each j
« Compute J%(S)) for each j

« Compute JXS;) for each j
As koo JXS)—J*(S;). Why?
When to stop? When

Max | JK(S) = JKS) | < €
I
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Markov process -> Markov decision process



A Markov decision process (MDP)

You run a

startup Poor & Poor &

company. Unknown Famous

In every +0 +0

state you

must 1/2

choose 1

between

Saving " ’6 n

money or . Rich &

Advertising. Rich & Famous
Unknown

+10 +10
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Markov decision process

An MDP has...

 Asetofstates {s,- Sy}

« Asetofactions {a, - ay}
 Asetofrewards {r,-ry} (one for each state)
« A transition probability function

P, = Prob(Next = j|This =i and I use action k)

On each step:
0. Call current state S,
1. Receive reward r;
2. Choose action € {a, - a,;}
3.

If you choose act|on a, you'll move to state S; with
probability P

4. All future rewards are discounted by vy
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Policy

A policy is a mapping from states to actions.

Examples % @m‘

N STATE — ACTION
()]

o)

> PF A
9 RU S
S

o RF A
& STATE — ACTION
32 PU A
= PF A
Z

z RU A
S

S RF A

[ ]

How many possible policies in our example?
» Which of the above two policies is best?

« How do you compute the optimal policy?
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Facts

For every M.D.P. there exists an optimal
policy.

It's a policy such that for every possible start
state there is no better option than to follow
the policy.

(Not proved in this
lecture)
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Computing the best policy

ldea One:
Run through all possible policies.
Select the best.

What's the problem ??
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Optimal value function

Define J*(S;) = Expected Discounted Future
Rewards, starting from state S,
assuming we use the optimal policy

1

Question

What (by inspection) is
an optimal policy for that
MDP?

(assume y = 0.9)

What is J*(S,) ?
What is J*(S,) ?
What is J*(S3) ?
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Value iteration

Define
JX(S,) = Maximum possible expected
sum of discounted rewards |
can get if | start at state S; and |

live for k time steps.

Note that J'(S)) =r,
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1
You run a E
Example startup or & Poor &
company. Unknown “ Famous
In every +0 +0
tat
EAD!
choose
between
Savi ,
mao\;:gs or h Rich &
Advertising. Unll(cnown Famous
Let’s compute J“(Si) for the startup example 10 +10
k | J<PU) | J<PF) | J4RU) | J4RF)
| 0 0 10 10
2 0 4.5 14.5 19
3 2.03 8.55 16.53 25.08
4 476 12.20 18.35 28.72




Bellman’s equation

(S, = ma){r +y 3 Pk (sj)}

j=1

Value lteration for solving MDPs

Compute J'(S)) for all i
Compute J%(S;) for all i

Compute J"(S)) for all j
..... until converged

X 71(5)-1(s M

{converged when max

...Also known as
Dynamic Programming
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Find the optimal policy

1. Compute J*(S)) for all i using Value
lteration (a.k.a. Dynamic Programming)

2. Define the best action in state S, as

argmax|r+r>PI(s,)
k N J

(Why?)
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Reinforcement learning



Game playing

® What are you doing when you’re
learning a game?

® Supervised learning:

- teacher (ie desired output) giving
detailed feedback of the best move
in each situation

- infeasible for complex games, e.g.
which chess move is best from a
given board position!?

® Reinforcement learning:

= no teacher; only feedback is
whether you won or lost

- computer could simulate many
games to explore space
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MDP

Recall Markov Decision Processes

® An MDP is defined by:
states:  {s1,...,Sn}

initial state: .5y

actions:  {ai,...,apn}
rewards:  R(s) ={r1,...,rn}
transitions:  T'(s,a,s") = P(s¢r1 = §'lay = a, 8¢ = 3)

discount: 7y

® Value iteration:
Vie1(s) = R(s) + vmaXZT(s, a,s V(s

V*(s) = lim V;(s)

1—00

® Optimal policy:

7 (s) = arg max R(s) + ’yZT(s, a,s \V*(s")

S/

e
i

Ak Zap

Rich &
Unknown

+10

12

i | Vi(PU) | Vi(PF) | Vi(RU) | Vi(RF)
| 0 0 10 10

2 0 4.5 14.5 19

3 2.03 6.53 25.08 18.55
4| 3.852 12.20 29.63 19.26
5 7.22 15.07 32.00 20.40
6| 10.03 17.65 33.58 2243




Example

The 4x3 grid world from R&N Chap. |7
R(s) = -0.04

I start

I 2 3 4

actions

0.1

0.8

T

0.1

T(Sa a, S/) — P(St-l-l‘ata St)

® Here, the agent has a complete model of the fully-observable world

® The reward function R(s) and the transition model T(s,a,s’) are also known.

® |n this example, there is no discounting

® How does the agent maximize reward? Value (or policy) iteration.



Example

The optimal policy
R(s) = -0.04

actions 0.8

3| =» | =>»> | => | [+

0.1 0.1

N PERE

T(S7a> S,) — P(St—|—1|ata St)

| 4 | <« | « | «

I 2 3 4

® With weak negative reward, best policy is to avoid -1 when possible and seek +|



Example

Another optimal policy
R(s) = < 1.6285

3 =

1| =

—

2T.—)

-

—

+1

—

t

2

3

4

actions 0.8

T

T(87 a, S/) — P(St—l—llata St)

® W/ith strong negative reward, best policy is to always seek end states



Example

Reinforcement learning: learning from experience
R(s) = ?

actions ?
3 ? ? ? ?
? ?
pl ? ? ? ?
?
? ? ? ?
| ' T(s,a,s')="7
I 2 3 4

® Now: don’t know environment, transition model, or reward function

® Need to explore the world. At each state the agent:

selects one of the available actions

l.

2. receives reward In reinforcement learning, the
3. observes resulting state objective is to find an optimal
4. repeat until a terminal state policy from these observations.




Example

Model estimation

R(s) =? T(s,as’) =?

3
2 S|
| S S2
| 2 3 4
R(s) = reward for state s
. transitions s — s’ for action a
T(s,a,s") = i

# times a selected at state s

Observe statistics for actions from
each state.

Eg, for 10 “up” actions from state
(I,1) we observe next state is

- s; =(I,2) 8 times & R=-0.04
- s2=(2,1) 2 times & R=-0.04
=T(s,Up,s1) =8/10=0.8

T(s,Up,s2) =2/10=0.2
R(s1) = R(s2) = 0.04
Could use Bayesian estimates here

Continued exploration of the grid
world will give increasingly accurate
estimates of T(s,a,s’) and R(s).



Model-based reinforcement learning

® With estimates of T(s,a,s’) and R(s), we can just treat it like an MDP.

® Compute the expected value of each state as:

Viii(s) = é(s)—l—vmaxZT(s,a,s')V};(s’)
V*(s) = lim V;(s)

® And the optimal policy (with value iteration) is:

7*(s) = argmax | R(s) +~ ZT(S, a,s \V*(s')

S

® This is called Certainty Equivalent learning. m
® |[ssues and caveats:

= Could be a very inefficient way to explore the world. _/1
- When do we stop and estimate the policy?

= Solving for V*(s) every time could be expensive.



Model-free reinforcement learning

And there are more methods that do not estimate
the MDP model.

R. Sutton. Introduction to Reinforcement Learning.



