
Lecture	9:	Knowledge	3

Artificial Intelligence, CS, Nanjing University
Spring, 2016, Yang Yu

http://cs.nju.edu.cn/yuy/course_ai16.ashx



Previously...

Propositional Logic

First Order Logic (FOL)

PL-Forward chaining
PL-Backward chaining
PL-Resolution

Instantiation
FOL-Forward chaining
FOL-Backward chaining
FOL-Resolution



x1, x2, . . . , xn

(x1 _ x2 _ x5) (¬x2 _ x3 _ ¬x7)

(x1 _ x2 _ x5) ^ (¬x2 _ x3 _ ¬x7) ^ . . .

SAT problems

Propositional logic, CNF

literals:

clauses:

problem: find an assignment to literals so that the 
conjunction of the clauses is true, or prove unsatisfiable

...

2SAT: every clause has at most 2 literals
P-solvable

3SAT: every clause has at most 3 literals
NP-hard



SAT solvers

SAT problems have many important applications

many SAT solvers are ready for use

DPLL

WalkSAT



DPLL
Section 7.6. Effective Propositional Model Checking 261

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s , a sentence in propositional logic

clauses ← the set of clauses in the CNF representation of s
symbols ← a list of the proposition symbols in s
return DPLL(clauses , symbols ,{ })

function DPLL(clauses , symbols ,model ) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P , value ← FIND-PURE-SYMBOL(symbols , clauses ,model )
if P is non-null then return DPLL(clauses , symbols – P ,model ∪ {P=value})
P , value ← FIND-UNIT-CLAUSE(clauses ,model )
if P is non-null then return DPLL(clauses , symbols – P ,model ∪ {P=value})
P ← FIRST(symbols); rest ← REST(symbols)
return DPLL(clauses , rest ,model ∪ {P=true}) or

DPLL(clauses , rest ,model ∪ {P=false}))

Figure 7.17 The DPLL algorithm for checking satisfiability of a sentence in propositional
logic. The ideas behind FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in
the text; each returns a symbol (or null) and the truth value to assign to that symbol. Like
TT-ENTAILS?, DPLL operates over partial models.

any attempt to prove (by refutation) a literal that is already in the knowledge base will
succeed immediately (Exercise 7.23). Notice also that assigning one unit clause can
create another unit clause—for example, when C is set to false , (C ∨ A) becomes a
unit clause, causing true to be assigned to A. This “cascade” of forced assignments
is called unit propagation. It resembles the process of forward chaining with definiteUNIT PROPAGATION

clauses, and indeed, if the CNF expression contains only definite clauses then DPLL
essentially replicates forward chaining. (See Exercise 7.24.)

The DPLL algorithm is shown in Figure 7.17, which gives the the essential skeleton of the
search process.

What Figure 7.17 does not show are the tricks that enable SAT solvers to scale up to
large problems. It is interesting that most of these tricks are in fact rather general, and we
have seen them before in other guises:

1. Component analysis (as seen with Tasmania in CSPs): As DPLL assigns truth values
to variables, the set of clauses may become separated into disjoint subsets, called com-
ponents, that share no unassigned variables. Given an efficient way to detect when this
occurs, a solver can gain considerable speed by working on each component separately.

2. Variable and value ordering (as seen in Section 6.3.1 for CSPs): Our simple imple-
mentation of DPLL uses an arbitrary variable ordering and always tries the value true
before false. The degree heuristic (see page 216) suggests choosing the variable that
appears most frequently over all remaining clauses.

Davis–Putnam–Logemann–Loveland algorithm

a deep-first search with heuristics



(A _ ¬B) ^ (¬B _ ¬C) ^ (C _A)

(A _ ¬B) with A = true

DPLL heuristics

Pure symbol heuristic: A pure symbol is a symbol that always appears 
with the same “sign” in all clauses.

Unit clause heuristic: A unit clause is a clause with just one literal.

A and B is pure, but not C

is a unit clause



Other tricks

Component analysis : find disjoint subsets

Variable and value ordering : assign most frequent 
variable at first

Intelligent backtracking : remember conflicts

Random restart

Clever indexing 



WalkSAT

Section 7.6. Effective Propositional Model Checking 263

function WALKSAT(clauses ,p,max flips) returns a satisfying model or failure
inputs: clauses , a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically around 0.5
max flips , number of flips allowed before giving up

model ← a random assignment of true/false to the symbols in clauses
for i = 1 to max flips do

if model satisfies clauses then return model
clause ← a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Figure 7.18 The WALKSAT algorithm for checking satisfiability by randomly flipping
the values of variables. Many versions of the algorithm exist.

upon the solution. Alas, if max flips is infinity and the sentence is unsatisfiable, then the
algorithm never terminates!

For this reason, WALKSAT is most useful when we expect a solution to exist—for ex-
ample, the problems discussed in Chapters 3 and 6 usually have solutions. On the other hand,
WALKSAT cannot always detect unsatisfiability, which is required for deciding entailment.
For example, an agent cannot reliably use WALKSAT to prove that a square is safe in the
wumpus world. Instead, it can say, “I thought about it for an hour and couldn’t come up with
a possible world in which the square isn’t safe.” This may be a good empirical indicator that
the square is safe, but it’s certainly not a proof.

7.6.3 The landscape of random SAT problems

Some SAT problems are harder than others. Easy problems can be solved by any old algo-
rithm, but because we know that SAT is NP-complete, at least some problem instances must
require exponential run time. In Chapter 6, we saw some surprising discoveries about certain
kinds of problems. For example, the n-queens problem—thought to be quite tricky for back-
tracking search algorithms—turned out to be trivially easy for local search methods, such as
min-conflicts. This is because solutions are very densely distributed in the space of assign-
ments, and any initial assignment is guaranteed to have a solution nearby. Thus, n-queens is
easy because it is underconstrained.UNDERCONSTRAINED

When we look at satisfiability problems in conjunctive normal form, an undercon-
strained problem is one with relatively few clauses constraining the variables. For example,
here is a randomly generated 3-CNF sentence with five symbols and five clauses:

(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨ ¬B ∨ E)

∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C) .

Sixteen of the 32 possible assignments are models of this sentence, so, on average, it would
take just two random guesses to find a model. This is an easy satisfiability problem, as are

a local search hill-climbing or others.

failure ≠ unsatisfiable



The landscape of random SAT problems 

264 Chapter 7. Logical Agents

most such underconstrained problems. On the other hand, an overconstrained problem has
many clauses relative to the number of variables and is likely to have no solutions.

To go beyond these basic intuitions, we must define exactly how random sentences
are generated. The notation CNFk(m,n) denotes a k-CNF sentence with m clauses and n

symbols, where the clauses are chosen uniformly, independently, and without replacement
from among all clauses with k different literals, which are positive or negative at random. (A
symbol may not appear twice in a clause, nor may a clause appear twice in a sentence.)

Given a source of random sentences, we can measure the probability of satisfiability.
Figure 7.19(a) plots the probability for CNF3(m, 50), that is, sentences with 50 variables
and 3 literals per clause, as a function of the clause/symbol ratio, m/n. As we expect, for
small m/n the probability of satisfiability is close to 1, and at large m/n the probability
is close to 0. The probability drops fairly sharply around m/n = 4.3. Empirically, we find
that the “cliff” stays in roughly the same place (for k = 3) and gets sharper and sharper as n

increases. Theoretically, the satisfiability threshold conjecture says that for every k ≥ 3,
SATISFIABILITY

THRESHOLD

CONJECTURE

there is a threshold ratio rk such that, as n goes to infinity, the probability that CNFk(n, rn)

is satisfiable becomes 1 for all values of r below the threshold, and 0 for all values above.
The conjecture remains unproven.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

P
(s

at
is

fi
ab

le
)

Clause/symbol ratio m/n

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 1 2 3 4 5 6 7 8

R
un

tim
e

Clause/symbol ratio m/n

DPLL
WalkSAT

(a) (b)

Figure 7.19 (a) Graph showing the probability that a random 3-CNF sentence with n =50

symbols is satisfiable, as a function of the clause/symbol ratio m/n. (b) Graph of the median
run time (measured in number of recursive calls to DPLL, a good proxy) on random 3-CNF
sentences. The most difficult problems have a clause/symbol ratio of about 4.3.

Now that we have a good idea where the satisfiable and unsatisfiable problems are, the
next question is, where are the hard problems? It turns out that they are also often at the
threshold value. Figure 7.19(b) shows that 50-symbol problems at the threshold value of 4.3
are about 20 times more difficult to solve than those at a ratio of 3.3. The underconstrained
problems are easiest to solve (because it is so easy to guess a solution); the overconstrained
problems are not as easy as the underconstrained, but still are much easier than the ones right
at the threshold.

Not all SAT instances are hard
under-constraint: a few clauses => easy to enumerate
over-constraint: too many clauses => unsatisfiable



Planning



Language

Section 10.1. Definition of Classical Planning 367

In response to this, planning researchers have settled on a factored representation—
one in which a state of the world is represented by a collection of variables. We use a language
called PDDL, the Planning Domain Definition Language, that allows us to express all 4Tn

2
PDDL

actions with one action schema. There have been several versions of PDDL; we select a
simple version and alter its syntax to be consistent with the rest of the book.1 We now show
how PDDL describes the four things we need to define a search problem: the initial state, the
actions that are available in a state, the result of applying an action, and the goal test.

Each state is represented as a conjunction of fluents that are ground, functionless atoms.
For example, Poor ∧ Unknown might represent the state of a hapless agent, and a state
in a package delivery problem might be At(Truck1,Melbourne) ∧ At(Truck2,Sydney).
Database semantics is used: the closed-world assumption means that any fluents that are not
mentioned are false, and the unique names assumption means that Truck1 and Truck2 are
distinct. The following fluents are not allowed in a state: At(x, y) (because it is non-ground),
¬Poor (because it is a negation), and At(Father (Fred ),Sydney) (because it uses a function
symbol). The representation of states is carefully designed so that a state can be treated
either as a conjunction of fluents, which can be manipulated by logical inference, or as a set
of fluents, which can be manipulated with set operations. The set semantics is sometimesSET SEMANTICS

easier to deal with.
Actions are described by a set of action schemas that implicitly define the ACTIONS(s)

and RESULT(s, a) functions needed to do a problem-solving search. We saw in Chapter 7 that
any system for action description needs to solve the frame problem—to say what changes and
what stays the same as the result of the action. Classical planning concentrates on problems
where most actions leave most things unchanged. Think of a world consisting of a bunch of
objects on a flat surface. The action of nudging an object causes that object to change its lo-
cation by a vector ∆. A concise description of the action should mention only ∆; it shouldn’t
have to mention all the objects that stay in place. PDDL does that by specifying the result of
an action in terms of what changes; everything that stays the same is left unmentioned.

A set of ground (variable-free) actions can be represented by a single action schema.ACTION SCHEMA

The schema is a lifted representation—it lifts the level of reasoning from propositional logic
to a restricted subset of first-order logic. For example, here is an action schema for flying a
plane from one location to another:

Action(Fly(p, from , to),

PRECOND:At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

EFFECT:¬At(p, from) ∧ At(p, to))

The schema consists of the action name, a list of all the variables used in the schema, a
precondition and an effect. Although we haven’t said yet how the action schema convertsPRECONDITION

EFFECT into logical sentences, think of the variables as being universally quantified. We are free to
choose whatever values we want to instantiate the variables. For example, here is one ground

1 PDDL was derived from the original STRIPS planning language(Fikes and Nilsson, 1971). which is slightly
more restricted than PDDL: STRIPS preconditions and goals cannot contain negative literals.

There are many languages description the world
Planning Domain Definition Language
1.2, 2.1, 2.2, 3.0, 3.1

state s
Action(s)
Result(s,a)

368 Chapter 10. Classical Planning

action that results from substituting values for all the variables:

Action(Fly(P1,SFO , JFK ),

PRECOND:At(P1,SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK )

EFFECT:¬At(P1,SFO) ∧At(P1, JFK ))

The precondition and effect of an action are each conjunctions of literals (positive or negated
atomic sentences). The precondition defines the states in which the action can be executed,
and the effect defines the result of executing the action. An action a can be executed in state
s if s entails the precondition of a. Entailment can also be expressed with the set semantics:
s |= q iff every positive literal in q is in s and every negated literal in q is not. In formal
notation we say

(a ∈ ACTIONS(s)) ⇔ s |= PRECOND(a) ,

where any variables in a are universally quantified. For example,

∀ p, from, to (Fly(p, from , to) ∈ ACTIONS(s)) ⇔

s |= (At(p, from) ∧ Plane(p) ∧Airport(from) ∧ Airport(to))

We say that action a is applicable in state s if the preconditions are satisfied by s. WhenAPPLICABLE

an action schema a contains variables, it may have multiple applicable instantiations. For
example, with the initial state defined in Figure 10.1, the Fly action can be instantiated as
Fly(P1,SFO , JFK ) or as Fly(P2, JFK ,SFO), both of which are applicable in the initial
state. If an action a has v variables, then, in a domain with k unique names of objects, it takes
O(vk) time in the worst case to find the applicable ground actions.

Sometimes we want to propositionalize a PDDL problem—replace each action schemaPROPOSITIONALIZE

with a set of ground actions and then use a propositional solver such as SATPLAN to find a
solution. However, this is impractical when v and k are large.

The result of executing action a in state s is defined as a state s
′ which is represented

by the set of fluents formed by starting with s, removing the fluents that appear as negative
literals in the action’s effects (what we call the delete list or DEL(a)), and adding the fluentsDELETE LIST

that are positive literals in the action’s effects (what we call the add list or ADD(a)):ADD LIST

RESULT(s, a) = (s − DEL(a))∪ ADD(a) . (10.1)

For example, with the action Fly(P1,SFO , JFK ), we would remove At(P1,SFO) and add
At(P1, JFK ). It is a requirement of action schemas that any variable in the effect must also
appear in the precondition. That way, when the precondition is matched against the state s,
all the variables will be bound, and RESULT(s, a) will therefore have only ground atoms. In
other words, ground states are closed under the RESULT operation.

Also note that the fluents do not explicitly refer to time, as they did in Chapter 7. There
we needed superscripts for time, and successor-state axioms of the form

F
t+1 ⇔ ActionCausesF t ∨ (F

t ∧ ¬ActionCausesNotF t
) .

In PDDL the times and states are implicit in the action schemas: the precondition always
refers to time t and the effect to time t + 1.

A set of action schemas serves as a definition of a planning domain. A specific problem
within the domain is defined with the addition of an initial state and a goal. The initial



Precondition

368 Chapter 10. Classical Planning

action that results from substituting values for all the variables:

Action(Fly(P1,SFO , JFK ),

PRECOND:At(P1,SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK )

EFFECT:¬At(P1,SFO) ∧At(P1, JFK ))

The precondition and effect of an action are each conjunctions of literals (positive or negated
atomic sentences). The precondition defines the states in which the action can be executed,
and the effect defines the result of executing the action. An action a can be executed in state
s if s entails the precondition of a. Entailment can also be expressed with the set semantics:
s |= q iff every positive literal in q is in s and every negated literal in q is not. In formal
notation we say

(a ∈ ACTIONS(s)) ⇔ s |= PRECOND(a) ,

where any variables in a are universally quantified. For example,

∀ p, from, to (Fly(p, from , to) ∈ ACTIONS(s)) ⇔

s |= (At(p, from) ∧ Plane(p) ∧Airport(from) ∧ Airport(to))

We say that action a is applicable in state s if the preconditions are satisfied by s. WhenAPPLICABLE

an action schema a contains variables, it may have multiple applicable instantiations. For
example, with the initial state defined in Figure 10.1, the Fly action can be instantiated as
Fly(P1,SFO , JFK ) or as Fly(P2, JFK ,SFO), both of which are applicable in the initial
state. If an action a has v variables, then, in a domain with k unique names of objects, it takes
O(vk) time in the worst case to find the applicable ground actions.

Sometimes we want to propositionalize a PDDL problem—replace each action schemaPROPOSITIONALIZE

with a set of ground actions and then use a propositional solver such as SATPLAN to find a
solution. However, this is impractical when v and k are large.

The result of executing action a in state s is defined as a state s
′ which is represented

by the set of fluents formed by starting with s, removing the fluents that appear as negative
literals in the action’s effects (what we call the delete list or DEL(a)), and adding the fluentsDELETE LIST

that are positive literals in the action’s effects (what we call the add list or ADD(a)):ADD LIST

RESULT(s, a) = (s − DEL(a))∪ ADD(a) . (10.1)

For example, with the action Fly(P1,SFO , JFK ), we would remove At(P1,SFO) and add
At(P1, JFK ). It is a requirement of action schemas that any variable in the effect must also
appear in the precondition. That way, when the precondition is matched against the state s,
all the variables will be bound, and RESULT(s, a) will therefore have only ground atoms. In
other words, ground states are closed under the RESULT operation.

Also note that the fluents do not explicitly refer to time, as they did in Chapter 7. There
we needed superscripts for time, and successor-state axioms of the form

F
t+1 ⇔ ActionCausesF t ∨ (F

t ∧ ¬ActionCausesNotF t
) .

In PDDL the times and states are implicit in the action schemas: the precondition always
refers to time t and the effect to time t + 1.

A set of action schemas serves as a definition of a planning domain. A specific problem
within the domain is defined with the addition of an initial state and a goal. The initial

368 Chapter 10. Classical Planning

action that results from substituting values for all the variables:

Action(Fly(P1,SFO , JFK ),

PRECOND:At(P1,SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK )

EFFECT:¬At(P1,SFO) ∧At(P1, JFK ))

The precondition and effect of an action are each conjunctions of literals (positive or negated
atomic sentences). The precondition defines the states in which the action can be executed,
and the effect defines the result of executing the action. An action a can be executed in state
s if s entails the precondition of a. Entailment can also be expressed with the set semantics:
s |= q iff every positive literal in q is in s and every negated literal in q is not. In formal
notation we say

(a ∈ ACTIONS(s)) ⇔ s |= PRECOND(a) ,

where any variables in a are universally quantified. For example,

∀ p, from, to (Fly(p, from , to) ∈ ACTIONS(s)) ⇔

s |= (At(p, from) ∧ Plane(p) ∧Airport(from) ∧ Airport(to))

We say that action a is applicable in state s if the preconditions are satisfied by s. WhenAPPLICABLE

an action schema a contains variables, it may have multiple applicable instantiations. For
example, with the initial state defined in Figure 10.1, the Fly action can be instantiated as
Fly(P1,SFO , JFK ) or as Fly(P2, JFK ,SFO), both of which are applicable in the initial
state. If an action a has v variables, then, in a domain with k unique names of objects, it takes
O(vk) time in the worst case to find the applicable ground actions.

Sometimes we want to propositionalize a PDDL problem—replace each action schemaPROPOSITIONALIZE

with a set of ground actions and then use a propositional solver such as SATPLAN to find a
solution. However, this is impractical when v and k are large.

The result of executing action a in state s is defined as a state s
′ which is represented

by the set of fluents formed by starting with s, removing the fluents that appear as negative
literals in the action’s effects (what we call the delete list or DEL(a)), and adding the fluentsDELETE LIST

that are positive literals in the action’s effects (what we call the add list or ADD(a)):ADD LIST

RESULT(s, a) = (s − DEL(a))∪ ADD(a) . (10.1)

For example, with the action Fly(P1,SFO , JFK ), we would remove At(P1,SFO) and add
At(P1, JFK ). It is a requirement of action schemas that any variable in the effect must also
appear in the precondition. That way, when the precondition is matched against the state s,
all the variables will be bound, and RESULT(s, a) will therefore have only ground atoms. In
other words, ground states are closed under the RESULT operation.

Also note that the fluents do not explicitly refer to time, as they did in Chapter 7. There
we needed superscripts for time, and successor-state axioms of the form

F
t+1 ⇔ ActionCausesF t ∨ (F

t ∧ ¬ActionCausesNotF t
) .

In PDDL the times and states are implicit in the action schemas: the precondition always
refers to time t and the effect to time t + 1.

A set of action schemas serves as a definition of a planning domain. A specific problem
within the domain is defined with the addition of an initial state and a goal. The initial

action a is applicable in state s if the preconditions are 
satisfied by s



Result

368 Chapter 10. Classical Planning

action that results from substituting values for all the variables:

Action(Fly(P1,SFO , JFK ),

PRECOND:At(P1,SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK )

EFFECT:¬At(P1,SFO) ∧At(P1, JFK ))

The precondition and effect of an action are each conjunctions of literals (positive or negated
atomic sentences). The precondition defines the states in which the action can be executed,
and the effect defines the result of executing the action. An action a can be executed in state
s if s entails the precondition of a. Entailment can also be expressed with the set semantics:
s |= q iff every positive literal in q is in s and every negated literal in q is not. In formal
notation we say

(a ∈ ACTIONS(s)) ⇔ s |= PRECOND(a) ,

where any variables in a are universally quantified. For example,

∀ p, from, to (Fly(p, from , to) ∈ ACTIONS(s)) ⇔

s |= (At(p, from) ∧ Plane(p) ∧Airport(from) ∧ Airport(to))

We say that action a is applicable in state s if the preconditions are satisfied by s. WhenAPPLICABLE

an action schema a contains variables, it may have multiple applicable instantiations. For
example, with the initial state defined in Figure 10.1, the Fly action can be instantiated as
Fly(P1,SFO , JFK ) or as Fly(P2, JFK ,SFO), both of which are applicable in the initial
state. If an action a has v variables, then, in a domain with k unique names of objects, it takes
O(vk) time in the worst case to find the applicable ground actions.

Sometimes we want to propositionalize a PDDL problem—replace each action schemaPROPOSITIONALIZE

with a set of ground actions and then use a propositional solver such as SATPLAN to find a
solution. However, this is impractical when v and k are large.

The result of executing action a in state s is defined as a state s
′ which is represented

by the set of fluents formed by starting with s, removing the fluents that appear as negative
literals in the action’s effects (what we call the delete list or DEL(a)), and adding the fluentsDELETE LIST

that are positive literals in the action’s effects (what we call the add list or ADD(a)):ADD LIST

RESULT(s, a) = (s − DEL(a))∪ ADD(a) . (10.1)

For example, with the action Fly(P1,SFO , JFK ), we would remove At(P1,SFO) and add
At(P1, JFK ). It is a requirement of action schemas that any variable in the effect must also
appear in the precondition. That way, when the precondition is matched against the state s,
all the variables will be bound, and RESULT(s, a) will therefore have only ground atoms. In
other words, ground states are closed under the RESULT operation.

Also note that the fluents do not explicitly refer to time, as they did in Chapter 7. There
we needed superscripts for time, and successor-state axioms of the form

F
t+1 ⇔ ActionCausesF t ∨ (F

t ∧ ¬ActionCausesNotF t
) .

In PDDL the times and states are implicit in the action schemas: the precondition always
refers to time t and the effect to time t + 1.

A set of action schemas serves as a definition of a planning domain. A specific problem
within the domain is defined with the addition of an initial state and a goal. The initial

368 Chapter 10. Classical Planning

action that results from substituting values for all the variables:

Action(Fly(P1,SFO , JFK ),

PRECOND:At(P1,SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK )

EFFECT:¬At(P1,SFO) ∧At(P1, JFK ))

The precondition and effect of an action are each conjunctions of literals (positive or negated
atomic sentences). The precondition defines the states in which the action can be executed,
and the effect defines the result of executing the action. An action a can be executed in state
s if s entails the precondition of a. Entailment can also be expressed with the set semantics:
s |= q iff every positive literal in q is in s and every negated literal in q is not. In formal
notation we say

(a ∈ ACTIONS(s)) ⇔ s |= PRECOND(a) ,

where any variables in a are universally quantified. For example,

∀ p, from, to (Fly(p, from , to) ∈ ACTIONS(s)) ⇔

s |= (At(p, from) ∧ Plane(p) ∧Airport(from) ∧ Airport(to))

We say that action a is applicable in state s if the preconditions are satisfied by s. WhenAPPLICABLE

an action schema a contains variables, it may have multiple applicable instantiations. For
example, with the initial state defined in Figure 10.1, the Fly action can be instantiated as
Fly(P1,SFO , JFK ) or as Fly(P2, JFK ,SFO), both of which are applicable in the initial
state. If an action a has v variables, then, in a domain with k unique names of objects, it takes
O(vk) time in the worst case to find the applicable ground actions.

Sometimes we want to propositionalize a PDDL problem—replace each action schemaPROPOSITIONALIZE

with a set of ground actions and then use a propositional solver such as SATPLAN to find a
solution. However, this is impractical when v and k are large.

The result of executing action a in state s is defined as a state s
′ which is represented

by the set of fluents formed by starting with s, removing the fluents that appear as negative
literals in the action’s effects (what we call the delete list or DEL(a)), and adding the fluentsDELETE LIST

that are positive literals in the action’s effects (what we call the add list or ADD(a)):ADD LIST

RESULT(s, a) = (s − DEL(a))∪ ADD(a) . (10.1)

For example, with the action Fly(P1,SFO , JFK ), we would remove At(P1,SFO) and add
At(P1, JFK ). It is a requirement of action schemas that any variable in the effect must also
appear in the precondition. That way, when the precondition is matched against the state s,
all the variables will be bound, and RESULT(s, a) will therefore have only ground atoms. In
other words, ground states are closed under the RESULT operation.

Also note that the fluents do not explicitly refer to time, as they did in Chapter 7. There
we needed superscripts for time, and successor-state axioms of the form

F
t+1 ⇔ ActionCausesF t ∨ (F

t ∧ ¬ActionCausesNotF t
) .

In PDDL the times and states are implicit in the action schemas: the precondition always
refers to time t and the effect to time t + 1.

A set of action schemas serves as a definition of a planning domain. A specific problem
within the domain is defined with the addition of an initial state and a goal. The initial

removing the fluents that appear as negative literals in the action’s effects 
(what we call the delete list or DEL(a)), and adding the fluents that are 
positive literals in the action’s effects (what we call the add list or 
ADD(a))



ExampleSection 10.1. Definition of Classical Planning 371

Init(On(A,Table) ∧ On(B,Table) ∧ On(C, A)

∧ Block (A) ∧ Block (B) ∧ Block (C) ∧ Clear (B) ∧ Clear (C))

Goal (On(A, B) ∧ On(B, C))

Action(Move(b, x, y),

PRECOND: On(b, x) ∧ Clear (b) ∧ Clear (y) ∧ Block (b) ∧ Block (y) ∧
(b ̸=x) ∧ (b ̸=y) ∧ (x̸=y),

EFFECT: On(b, y) ∧ Clear (x) ∧ ¬On(b, x) ∧ ¬Clear (y))

Action(MoveToTable(b, x),

PRECOND: On(b, x) ∧ Clear (b) ∧ Block (b) ∧ (b ̸=x),
EFFECT: On(b,Table) ∧ Clear (x) ∧ ¬On(b, x))

Figure 10.3 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [MoveToTable(C, A),Move(B,Table , C),Move(A,Table , B)].

Start State Goal State

B A

C

A

B

C

Figure 10.4 Diagram of the blocks-world problem in Figure 10.3.

of what other blocks. For example, a goal might be to get block A on B and block B on C

(see Figure 10.4).
We use On(b, x) to indicate that block b is on x, where x is either another block or the

table. The action for moving block b from the top of x to the top of y will be Move(b, x, y).
Now, one of the preconditions on moving b is that no other block be on it. In first-order logic,
this would be ¬∃x On(x, b) or, alternatively, ∀x ¬On(x, b). Basic PDDL does not allow
quantifiers, so instead we introduce a predicate Clear(x) that is true when nothing is on x.
(The complete problem description is in Figure 10.3.)

The action Move moves a block b from x to y if both b and y are clear. After the move
is made, b is still clear but y is not. A first attempt at the Move schema is

Action(Move(b, x, y),

PRECOND:On(b, x) ∧ Clear(b) ∧ Clear(y),

EFFECT:On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y)) .

Unfortunately, this does not maintain Clear properly when x or y is the table. When x is the
Table , this action has the effect Clear(Table), but the table should not become clear; and
when y =Table , it has the precondition Clear(Table), but the table does not have to be clear



Ontology



Up ontology
438 Chapter 12. Knowledge Representation

Anything

AbstractObjects

Sets Numbers RepresentationalObjects Interval Places ProcessesPhysicalObjects

Humans

Categories Sentences Measurements Moments Things Stuff

Times Weights Animals Agents Solid Liquid Gas

GeneralizedEvents

Figure 12.1 The upper ontology of the world, showing the topics to be covered later in
the chapter. Each link indicates that the lower concept is a specialization of the upper one.
Specializations are not necessarily disjoint; a human is both an animal and an agent, for
example. We will see in Section 12.3.3 why physical objects come under generalized events.

use these to define more specific concepts like SpreadsheetWindow. The general framework
of concepts is called an upper ontology because of the convention of drawing graphs withUPPER ONTOLOGY

the general concepts at the top and the more specific concepts below them, as in Figure 12.1.
Before considering the ontology further, we should state one important caveat. We

have elected to use first-order logic to discuss the content and organization of knowledge,
although certain aspects of the real world are hard to capture in FOL. The principal difficulty
is that most generalizations have exceptions or hold only to a degree. For example, although
“tomatoes are red” is a useful rule, some tomatoes are green, yellow, or orange. Similar
exceptions can be found to almost all the rules in this chapter. The ability to handle exceptions
and uncertainty is extremely important, but is orthogonal to the task of understanding the
general ontology. For this reason, we delay the discussion of exceptions until Section 12.5 of
this chapter, and the more general topic of reasoning with uncertainty until Chapter 13.

Of what use is an upper ontology? Consider the ontology for circuits in Section 8.4.2.
It makes many simplifying assumptions: time is omitted completely; signals are fixed and do
not propagate; the structure of the circuit remains constant. A more general ontology would
consider signals at particular times, and would include the wire lengths and propagation de-
lays. This would allow us to simulate the timing properties of the circuit, and indeed such
simulations are often carried out by circuit designers. We could also introduce more inter-
esting classes of gates, for example, by describing the technology (TTL, CMOS, and so on)
as well as the input–output specification. If we wanted to discuss reliability or diagnosis, we
would include the possibility that the structure of the circuit or the properties of the gates
might change spontaneously. To account for stray capacitances, we would need to represent
where the wires are on the board.



Domain ontologySection 12.5. Reasoning Systems for Categories 455

Mammals

JohnMary

Persons

Male

Persons

Female

Persons

1

2

SubsetOf

SubsetOfSubsetOf

MemberOf MemberOf

SisterOf Legs

LegsHasMother

Figure 12.5 A semantic network with four objects (John, Mary, 1, and 2) and four cate-
gories. Relations are denoted by labeled links.

MemberOf

FlyEvents

Fly17

Shankar NewYork NewDelhi Yesterday

Agent

Origin Destination

During

Figure 12.6 A fragment of a semantic network showing the representation of the logical
assertion Fly(Shankar ,NewYork ,NewDelhi ,Yesterday).

mechanism, compared with logical theorem proving, has been one of the main attractions of
semantic networks.

Inheritance becomes complicated when an object can belong to more than one category
or when a category can be a subset of more than one other category; this is called multiple in-
heritance. In such cases, the inheritance algorithm might find two or more conflicting valuesMULTIPLE

INHERITANCE

answering the query. For this reason, multiple inheritance is banned in some object-oriented
programming (OOP) languages, such as Java, that use inheritance in a class hierarchy. It is
usually allowed in semantic networks, but we defer discussion of that until Section 12.6.

The reader might have noticed an obvious drawback of semantic network notation, com-
pared to first-order logic: the fact that links between bubbles represent only binary relations.
For example, the sentence Fly(Shankar ,NewYork ,NewDelhi ,Yesterday) cannot be as-
serted directly in a semantic network. Nonetheless, we can obtain the effect of n-ary asser-
tions by reifying the proposition itself as an event belonging to an appropriate event category.
Figure 12.6 shows the semantic network structure for this particular event. Notice that the
restriction to binary relations forces the creation of a rich ontology of reified concepts.

Reification of propositions makes it possible to represent every ground, function-free
atomic sentence of first-order logic in the semantic network notation. Certain kinds of univer-



Example: Wordnet

[from wikipedia]



Example application


