% Artificial Intelligence, CS, Nanjing University
: Spring, 2017, Yang Yu

NANJING UNIVERSITY

Lecture 13: Learning 2

http://cs.nju.edu.cn/yuy/course_ail7.ashx

Previously...

Learning
Decision tree learning

Brains

10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axonal arborization

\ Axon from another cell

Synapse

Dendrite

Nucleus (/

Synapses

Cell body or Soma

McCulloch-Pitts “unit”

Output is a “squashed” linear function of the inputs:
a; <— g(in;) = g (Ejo’Z-aj)

Bias Weight
a;= g(in;)

Input Input Activation Outout
Links Function Function utpu Links

Output

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Activation functions

A g(in;)

+1

. .
ini inl-

(a) (b)

(a) is a step function or threshold function
(b) is a sigmoid function 1/(1 +e™")

Changing the bias weight 1/, ; moves the threshold location

Implementing logical functions

W0 0.5 WO——OS

Wl\C} Wl\C}

AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented

Network structures

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (17, ; = W ;)
g(x)=sign(x), a;= + 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.

Feed-forward example

Was

Feed-forward network = a parameterized family of nonlinear functions:

as = g(Wss-as+ Wis-as)
= gWs5-g(Wis-a1+Wag-ag) +Wys-g(Wig- a1+ Ways-as))

Adjusting weights changes the function: do learning this way!

Single-layer perceptrons

Perceptron output /;’j;’;l,;;’,;;’:;’,’;rf, 77
1
L i
08 | T
_ 7
| i
06 g
04 1 '%%WW
| ZZning
02 ’5’5/5//’%////’7 L4
0 L 20 - o 2
I Output : SR
np ut W uipu ! T
. . l 4

Units LY Units

Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff

Expressiveness of perceptrons

Consider a perceptron with ¢ = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:

EjoCEj>O or W-x>0

X1y X1y X1y
1 O ® 1 @ ® |l @ @
?
00O O— 0 0 O0———eo—
0 1 X 0 1 X 0 1 X
(a) x; and x, (b) x; of Xy (c) x; xor x5

Minsky & Papert (1969) pricked the neural network balloon

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

1 1
b= §E7”7”2 =5y - hrw (x))”
Perform optimization search by gradient descent:
OF OFErr 0 n
oW = Lrr X oW, = Err X oW, (y — g(ZjZOWj:Ej))

= —FErr x ¢'(in) X x;
Simple weight update rule:
W; — W, +ax Errx ¢ (in) X x;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs

Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set

© ©

@ 1 ; o 1 ; -

%) ? P o A

209 209 i

c c R

208 | 2081 F

8 JURCE UL S S 3 :

o7 - 071

S S

S 0.6 5 Perlcepiron —_— g 0.6 - /—’V\A'\/

9o ecision tree ----x----- Q

t 05 II = 0.5 ; Perceptron

3 a Decision treg ==

°co 44— o4

o 0 10 20 30 40 50 60 70 80 90100 o 0 10 20 30 40 50 60 70 80 90 100
Training set size - MAJORITY on 11 inputs Training set size - RESTAURANT data

Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it

Multilayer perceptrons

Layers are usually fully connected,;

numbers of hidden units typically chosen by hand

3

Output units

Hidden units

73

Input units

Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

. y hy(x,, x,)
1 .
// Az
0.8 i
o /// ////’//’ 77
7/ '’
0.4 2
' i >
O 2 ’t////////////////// o
0
X2

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)

Back-propagation learning

Output layer: same as for single-layer perceptron,
Wii—Wii+axa; x A

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:
A; = ¢'(in;) %WNAZ- .

Update rule for weights in hidden layer:
Wij—Wij+axa,xA;.

(Most neuroscientists deny that back-propagation occurs in the brain)

Back-propagation derivation

The squared error on a single example is defined as

1
E= -3y —a;),
270
where the sum is over the nodes in the output layer.
oW R az)awjﬂ = W oW

(%m

= —(yi —ai)g (zni)awj,i = — (i — ai)g (i) 5

= —(yi — a;)g'(ini)a; = —a;A;

Back-propagation derivation

8E aai

Back-propagation learning

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

—_ =k
o N B

Total error on training set

o N b~ OO

—_—

0O 50 100 150 200 250 300 350 400
Number of epochs

Typical problems: slow convergence, local minima

Back-propagation learning

Learning curve for MLP with 4 hidden units:

correct on test set

S 0.6 {: Decision tree
£ ’ Multilayer network ==--=------

O 10 20 30 40 50 60 70 80 90 100
Training set size - RESTAURANT data

MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily

Handwritten digit recognition

0

/

>

S

w

5

i’

(

)

7

4

9)

&
6

¥
q

A |

3-nearest-neighbor = 2.4% error

400-300-10 unit MLP = 1.6% error

LeNet: 768-192-30—10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) ~ 0.6% error

Summary

Most brains have lots of neurons; each neuron =2 linear—threshold unit (?7)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged

