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Previously...

Learning
Decision tree learning



Brains

10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains” of electrical potential
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McCulloch-Pitts “unit”

Output is a “squashed” linear function of the inputs:
a; <— g(in;) = g (Ejo’Z-aj)

Bias Weight
a;= g(in;)
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Output

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do



Activation functions

A g(in;)
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(a) is a step function or threshold function
(b) is a sigmoid function 1/(1 +e™")

Changing the bias weight 1/, ; moves the threshold location



Implementing logical functions
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AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented



Network structures

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (17, ; = W ;)
g(x)=sign(x), a;= + 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.



Feed-forward example

Was

Feed-forward network = a parameterized family of nonlinear functions:

as = g(Wss-as+ Wis-as)
= gWs5-g(Wis-a1+Wag-ag) +Wys-g(Wig- a1+ Ways-as))

Adjusting weights changes the function: do learning this way!



Single-layer perceptrons
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Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff



Expressiveness of perceptrons

Consider a perceptron with ¢ = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:
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Minsky & Papert (1969) pricked the neural network balloon



Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

1 1
b= §E7”7”2 =5y - hrw (x))”
Perform optimization search by gradient descent:
OF OFErr 0 n
oW = Lrr X oW, = Err X oW, (y — g(ZjZOWj:Ej))

= —FErr x ¢'(in) X x;
Simple weight update rule:
W; — W, +ax Errx ¢ (in) X x;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs



Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set
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Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it



Multilayer perceptrons

Layers are usually fully connected,;

numbers of hidden units typically chosen by hand
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Output units

Hidden units
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Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers
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Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)



Back-propagation learning

Output layer: same as for single-layer perceptron,
Wii—Wii+axa; x A

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:
A; = ¢'(in;) %WNAZ- .

Update rule for weights in hidden layer:
Wij—Wij+axa,xA;.

(Most neuroscientists deny that back-propagation occurs in the brain)



Back-propagation derivation

The squared error on a single example is defined as

1
E= -3y —a;),
270
where the sum is over the nodes in the output layer.
oW R az)awjﬂ = W oW

(%m

= —(yi —ai)g (zni)awj,i = — (i — ai)g (i) 5

= —(yi — a;)g'(ini)a; = —a;A;



Back-propagation derivation

8E aai




Back-propagation learning

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit
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Typical problems: slow convergence, local minima



Back-propagation learning

Learning curve for MLP with 4 hidden units:

correct on test set

S 0.6 {: Decision tree
£ ’ Multilayer network  ==--=------

O 10 20 30 40 50 60 70 80 90 100
Training set size - RESTAURANT data

MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily



Handwritten digit recognition
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3-nearest-neighbor = 2.4% error

400-300-10 unit MLP = 1.6% error

LeNet: 768-192-30—10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) ~ 0.6% error




Summary

Most brains have lots of neurons; each neuron =2 linear—threshold unit (?7)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged



