

Artificial Intelligence, CS, Nanjing University Spring, 2017, Yang Yu

Lecture 14: Learning 3

http://cs.nju.edu.cn/yuy/course_ai17.ashx

Previously...

Learning Decision tree learning Neural networks

Question: *why we can learn?*

Classification

what can be observed:

on examples/training data: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}$ $y_i = f(\boldsymbol{x}_i)$

e.g. training error $\epsilon_t = \frac{1}{m} \sum_{i=1}^m I(h(\boldsymbol{x}_i) \neq y_i)$

what is expected:

over the whole distribution: generalization error

$$\epsilon_g = \mathbb{E}_x [I(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))]$$
$$= \int_{\mathcal{X}} p(x) I(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))] dx$$

Regression

what can be observed:

on examples/training data: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}$ $y_i = f(\boldsymbol{x}_i)$

e.g. training mean square error/MSE

$$\epsilon_t = \frac{1}{m} \sum_{i=1}^m (h(\boldsymbol{x}_i) - y_i)^2$$

what is expected:

over the whole distribution: generalization MSE

$$\epsilon_g = \mathbb{E}_x (h(\boldsymbol{x}) \neq f(\boldsymbol{x}))^2$$
$$= \int_{\mathcal{X}} p(x) (h(\boldsymbol{x}) - f(\boldsymbol{x}))^2 dx$$

The version space algorithm an abstract view of learning algorithms

remove the hypothesis that are inconsistent with the data, select a hypothesis according to learner's bias

Theories

The i.i.d. assumption:

all training examples and future (test) examples are drawn *independently* from an *identical distribution*, the label is assigned by a *fixed ground-truth function*

unknown but fixed distribution *D*

Bias-variance dilemma

Suppose we have 100 training examples but there can be different training sets

Start from the expected training MSE:

$$E_D[\epsilon_t] = E_D\left[\frac{1}{m}\sum_{i=1}^m (h(\boldsymbol{x}_i) - y_i)^2\right] = \frac{1}{m}\sum_{i=1}^m E_D\left[(h(\boldsymbol{x}_i) - y_i)^2\right]$$

(assume no noise)

$$E_{D} \left[(h(\boldsymbol{x}) - f(\boldsymbol{x}))^{2} \right]$$

= $E_{D} \left[(h(\boldsymbol{x}) - E_{D}[h(\boldsymbol{x})] + E_{D}[h(\boldsymbol{x})] - f(\boldsymbol{x}))^{2} \right]$
= $E_{D} \left[(h(\boldsymbol{x}) - E_{D}[h(\boldsymbol{x})])^{2} \right] + E_{D} \left[(E_{D}[h(\boldsymbol{x})] - f(\boldsymbol{x}))^{2} \right]$
+ $E_{D} \left[2(h(\boldsymbol{x}) - E_{D}[h(\boldsymbol{x})])(E_{D}[h(\boldsymbol{x})] - f(\boldsymbol{x})) \right]$
= $E_{D} \left[(h(\boldsymbol{x}) - E_{D}[h(\boldsymbol{x})])^{2} \right] + E_{D} \left[(E_{D}[h(\boldsymbol{x})] - f(\boldsymbol{x}))^{2} \right]$
variance bias^2

hypothesis space

Bias-variance dilemma $E_D \left[(h(\boldsymbol{x}) - E_D[h(\boldsymbol{x})])^2 \right] \quad E_D \left[(E_D[h(\boldsymbol{x})] - f(\boldsymbol{x}))^2 \right]$ variance bias^2

smaller hypothesis space => smaller variance but higher bias

hypothesis space

Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space $\{y = a + bx \mid a, b \in \mathbb{R}\}$

higher polynomials: moderate training error, moderate space $\{y = a + bx + cx^2 + dx^3 \mid a, b, c, d \in \mathbb{R}\}$ even higher order: no training error, large space $\{y = a + bx + cx^2 + dx^3 + ex^4 + fx^5 \mid a, b, c, d, e, f \in \mathbb{R}\}$

Overfitting and bias-variance dilemma $E_D \left[(h(\boldsymbol{x}) - E_D[h(\boldsymbol{x})])^2 \right] \quad E_D \left[(E_D[h(\boldsymbol{x})] - f(\boldsymbol{x}))^2 \right]$ variance bias^2

assume i.i.d. examples, and the ground-truth hypothesis is a box

the error of picking a consistent hypothesis:

with probability at least $1 - \delta$ $\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$

smaller generalization error:

more examplessmaller hypothesis space

for one *h*

What is the probability of

h is consistent $\epsilon_g(h) \ge \epsilon$

assume *h* is **bad**: $\epsilon_g(h) \ge \epsilon$

h is consistent with 1 example:

$$P \le 1 - \epsilon$$

h is consistent with *m* example:

$$P \le (1 - \epsilon)^m$$

h is consistent with *m* example:

There are *k* consistent hypotheses –

Probability of choosing a bad one: h_1 is chosen and h_1 is bad $P \le (1 - \epsilon)^m$ h_2 is chosen and h_2 is bad $P \le (1 - \epsilon)^m$

 h_k is chosen and h_k is bad $P \leq (1-\epsilon)^m$

overall:

 $\exists h: h \text{ can be chosen (consistent) but is bad}$

*h*₁ is chosen and *h*₁ is bad $P \le (1 - \epsilon)^m$ *h*₂ is chosen and *h*₂ is bad $P \le (1 - \epsilon)^m$... *h_k* is chosen and *h_k* is bad $P \le (1 - \epsilon)^m$ overall:

∃*h*: *h* can be chosen (consistent) but is bad

Union bound: $P(A \cup B) \le P(A) + P(B)$

 $P(\exists h \text{ is consistent but bad}) \leq k \cdot (1 - \epsilon)^m \leq |\mathcal{H}| \cdot (1 - \epsilon)^m$

$P(\exists h \text{ is consistent but bad}) \leq k \cdot (1 - \epsilon)^m \leq |\mathcal{H}| \cdot (1 - \epsilon)^m$ $\bigvee P(\epsilon_g \geq \epsilon) \leq \frac{|\mathcal{H}| \cdot (1 - \epsilon)^m}{\delta}$

with probability at least $1 - \delta$ $\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$

Inconsistent hypothesis

What if the ground-truth hypothesis is NOT a box: non-zero training error

with probability at least $1 - \delta$ $\epsilon_g < \epsilon_t + \sqrt{\frac{1}{m}(\ln|\mathcal{H}| + \ln\frac{1}{\delta})}$

more examples
ror: smaller hypothesis space
smaller training error

Hoeffding's inequality

X be an i.i.d. random variable X_1, X_2, \ldots, X_m be m samples

$$X_i \in [a, b]$$

 $\frac{1}{m} \sum_{i=1} X_i - \mathbb{E}[X] \leftarrow \text{ difference between sum and expectation}$

$$P(\frac{1}{m}\sum_{i=1}^{m} X_i - \mathbb{E}[X] \ge \epsilon) \le \exp\left(-\frac{2\epsilon^2 m}{(b-a)^2}\right)$$

for one
$$h$$

 $X_i = I(h(x_i) \neq f(x_i)) \in [0, 1]$
 $\frac{1}{m} \sum_{i=1}^m X_i \to \epsilon_t(h)$ $\mathbb{E}[X_i] \to \epsilon_g(h)$
 $P(\epsilon_t(h) - \epsilon_g(h) \ge \epsilon) \le \exp(-2\epsilon^2 m)$
 $P(\epsilon_t - \epsilon_g \ge \epsilon)$
 $\le P(\exists h \in |\mathcal{H}| : \epsilon_t(h) - \epsilon_g(h) \ge \epsilon) \le |\mathcal{H}| \exp(-2\epsilon^2 m)$
with probability at least $1 - \delta$
 $\epsilon_g < \epsilon_t + \sqrt{\frac{1}{2m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})}$

Generalization error: Summary

assume i.i.d. examples consistent hypothesis case:

> with probability at least $1 - \delta$ $\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$

inconsistent hypothesis case:

with probability at least $1-\delta$

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{m}(\ln|\mathcal{H}| + \ln\frac{1}{\delta})}$$

generalization error:

number of examples mtraining error ϵ_t hypothesis space complexity $\ln |\mathcal{H}|$

PAC-learning

Probably approximately correct (PAC): with probability at least $1 - \delta$

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{2m}} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$

PAC-learnable: [Valiant, 1984]

A concept class C is PAC-learnable if exists a learning algorithm A such that for all $f \in C$, $\epsilon > 0, \delta > 0$ and distribution D $P_D(\epsilon_g \le \epsilon) \ge 1 - \delta$ using $m = poly(1/\epsilon, 1/\delta)$ examples and polynomial time.

Leslie Valiant Turing Award (2010) EATCS Award (2008) Knuth Prize (1997) Nevanlinna Prize (1986)

Learning algorithms revisit

Decision Tree

the possibility of trees grows very fast with *d*

The overfitting phenomena

-- the divergence between infinite and finite samples

To make decision tree less complex

Pre-pruning: early stop
minimum data in leaf
maximum depth
maximum accuracy

Post-pruning: prune full grown DT

reduced error pruning

Reduced error pruning

1. Grow a decision tree

evaluate the error

- 2. For every node starting from the leaves
- 3. Try to make the node leaf, if does not increase the error, keep as the leaf

DT boundary visualization

decision stump

max depth=2

max depth=12

choose a linear combination in each node:

axis parallel: $X_1 > 0.5$

oblique: $0.2 X_1 + 0.7 X_2 + 0.1 X_3 > 0.5$

was hard to train

