

Artificial Intelligence, CS, Nanjing University Spring, 2017, Yang Yu

Lecture 16: Learning 5

http://cs.nju.edu.cn/yuy/course_ai17.ashx

How can we improve an algorithm

for free

one classifier with error 0.49

three independent classifiers each with error 0.49

two out of three are wrong: 0.367353 three of them are wrong: 0.117649 majority of the three are wrong: 0.485002

Motivation theories

for binary classification, what if the classifiers give *independent* output and are little bit better than random guess?

each classifier has error 0.49 error of combining *T* classifiers:

$$\sum_{t=\lceil T/2\rceil}^{T} \binom{T}{t} \cdot 0.49^{t} \cdot 0.51^{T-t}$$
$$\leq \frac{1}{2} e^{-2T(0.5-0.49)^{2}}$$

but independent classifiers are not achievable

The importance of diversity

not useful to combine identical base learners

The importance of diversity

good to combine different learners

Ensemble learning

combination of multiple classifiers/regressors

base learner

combined learner

Ensemble methods

Parallel ensemble

create diverse base learners by introducing randomness

Sequential ensemble

create base learners by complementarity

Diversity generating categories:

Data Sample Manipulation bootstrap sampling/Bagging
Input Feature Manipulation random subspace
Output Representation Manipulation flipping output/output smearing
Learning Parameter Manipulation random initialization Random Forests

combine two or more categories

Base classifiers should be sensitive to sampling » decision tree, neural network are good » NB, linear classifier are not Good for handling large data set

Data Sample Manipulation: Bagging

Input: *D*: Data set $\{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\};$ \mathfrak{L} : Base learning algorithm; *T*: Number of base learners.

Process:

1. for t = 1, ..., T: 2. $h_t = \mathfrak{L}(D, \mathcal{D}_{bs}) \ \% \mathcal{D}_{bs}$ is the bootstrap distribution 3. end

Output:
$$H(\boldsymbol{x}) = \max_{y \in \mathcal{Y}} \sum_{t=1}^{T} \mathbb{I}(h_t(\boldsymbol{x}) = y)$$

sample with replacement

Base classifiers should be sensitive to sampling
> decision tree, neural network are good
> NB, linear classifier are not
Good for handling large data set

Leo Breiman 1928-2005

Data should be rich in features Good for handling high dimensional data

Input Feature Manipulation: Random subspace

Input: D: Data set { $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$ }; \mathfrak{L} : Base learning algorithm; T: Number of base learners; d: Dimension of subspaces. Process: 1. for $t = 1, \dots, T$: 2. $\mathcal{F}_t = RS(D, d)$ % \mathcal{F}_t is a set of d randomly selected features; 3. $D_t = Map_{\mathcal{F}_t}(D)$ % D_t keeps only the features in \mathcal{F}_t 4. $h_t = \mathfrak{L}(D_t)$ % Train a learner 5. end Output: $H(x) = \max_{y \in \mathcal{Y}} \sum_{t=1}^{T} \mathbb{I}(h_t (Map_{\mathcal{F}_t} (x)) = y)$

Data should be rich in features Good for handling high dimensional data

Output Representation Manipulation: Output flipping

May drastically reduce the accuracy of base learners

Learning Parameter Manipulation: Random forest

Randomized decision tree

at each node

- 1. randomly select a subset of features
- 2. use select a feature (and split point) from the subset to split the data

decision tree: select the best split from ALL features/splits

(other variants are available)

every run produce a different tree

Parallel ensemble methods Learning Parameter Manipulation: Random forest $H(\boldsymbol{x}) =$ $\frac{1}{T}\sum_{t=1}^{I}h_t(\boldsymbol{x})$ (regression) $h_T()$ $\arg\max\sum I(h_t(\boldsymbol{x})=y)$ (classification) randomly randomized decision tree sample data

Bagging of randomized decision tree

Random forest

decision boundary of single decision tree

decision boundary of random forest

Diversity generating categories:

Data Sample Manipulation bootstrap sampling/Bagging
Input Feature Manipulation random subspace
Output Representation Manipulation flipping output/output smearing
Learning Parameter Manipulation random initialization Random Forests

obtain diversity by randomization

Simple combination:

model-weighted combination: better model has higher weight

$$\frac{1}{T} \sum_{t=1}^{T} w_t h_t(\boldsymbol{x}) \quad \text{(simple average for regression)}$$
$$\arg \max_{y} \sum_{t=1}^{T} w_t I(h_t(\boldsymbol{x}) = y) \quad \text{(majority vote for classification)}$$

instance-weighted combination: weight by the confidence of the model decision tree: the purity of the leave node

 $\frac{1}{T} \sum_{t=1}^{T} w_t(\boldsymbol{x}) h_t(\boldsymbol{x}) \quad \text{(simple average for regression)}$ $\arg \max_{y} \sum_{t=1}^{T} w_t(\boldsymbol{x}) I(h_t(\boldsymbol{x}) = y) \text{ (majority vote for classification)}$

Sequential ensemble methods

Generate learners sequentially, focus on previous errors

so that the combination of learners will have a high accuracy

AdaBoost

Input: Data set $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\};$ Base learning algorithm $\mathfrak{L};$ Number of learning rounds T.

Process:

1. $\mathcal{D}_1(\boldsymbol{x}) = 1/m$. % Initialize the weight distribution

2. for t = 1, ..., T: 3. $h_t = \mathfrak{L}(D, \mathcal{D}_t)$; % Train a classifier h_t from D under distribution \mathcal{D}_t 4. $\epsilon = P_t - \epsilon (h_t(x) \neq f(x))$; % Evaluate the error of h_t

- 4. $\epsilon_t = P_{\boldsymbol{x} \sim \mathcal{D}_t}(h_t(\boldsymbol{x}) \neq f(\boldsymbol{x})); \ \%$ Evaluate the error of h_t
- 5. if $\epsilon_t > 0.5$ then break
- 6. $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$; % Determine the weight of h_t

7.
$$\mathcal{D}_{t+1}(\boldsymbol{x}) = \frac{\mathcal{D}_t(\boldsymbol{x})}{Z_t} \times \begin{cases} \exp(-\alpha_t) \text{ if } h_t(\boldsymbol{x}) = f(\boldsymbol{x}) \\ \exp(\alpha_t) \text{ if } h_t(\boldsymbol{x}) \neq f(\boldsymbol{x}) \end{cases}$$

 $= \frac{\mathcal{D}_{t}(\boldsymbol{x}) \exp(-\alpha_{t} f(\boldsymbol{x}) h_{t}(\boldsymbol{x}))}{Z_{t}}$ % Update the distribution, where % Z_{t} is a normalization factor which % enables \mathcal{D}_{t+1} to be a distribution

8. **end**

Output:
$$H(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\boldsymbol{x})\right)$$

AdaBoost

About the distribution:

 $\mathcal{D}_1(\boldsymbol{x}) = 1/m.$

maintain a array to record the distribution

 $h_t = \mathfrak{L}(D, \mathcal{D}_t)$; % Train a classifier h_t from D under distribution \mathcal{D}_t $\epsilon_t = P_{\boldsymbol{x} \sim \mathcal{D}_t}(h_t(\boldsymbol{x}) \neq f(\boldsymbol{x}))$; % Evaluate the error of h_t

sample a training set according to the distribution

if random < 0.7, get an x1 else get an x2

AdaBoost

fit an additive model, sequentially

$$H(\boldsymbol{x}) = \sum_{t=1}^{T} \alpha_t h_t(\boldsymbol{x})$$

to minimize exponential loss

fit an additive model, sequentially T

$$H(\boldsymbol{x}) = \sum_{t=1}^{I} \alpha_t h_t(\boldsymbol{x})$$

to minimize any loss by gradient decent

example: least square regression

$$\min \frac{1}{m} \sum_{i=1}^{m} (H(\boldsymbol{x}_{i}) - y_{i})^{2}$$

1. fit the first base regressor

$$\min \frac{1}{m} \sum_{i=1}^{m} (h_1(\boldsymbol{x}_i) - y_i)^2$$

then how to train the second base regressor?

$$\min \frac{1}{m} \sum_{i=1}^{m} (h_1(\boldsymbol{x}_i) + h_2(\boldsymbol{x}_i) - y_i)^2$$

gradient descent in function space

gradient descent in function space

$$h_{\text{new}} \leftarrow -\frac{\partial (H-f)^2}{\partial H} = -2(H-f)$$

this function is not directly operable

operate through data

$$\forall \boldsymbol{x}_i : \hat{y}_i = -2(H(\boldsymbol{x}_i) - y_i)$$

fit *h*² point-wisely

$$h_{\text{new}} = \arg\min_{h} \frac{1}{m} \sum_{i=1}^{m} (h(\boldsymbol{x}_{i}) - \hat{y}_{i})^{2}$$

Gradient boosting (for least square regression)

1.
$$h_0 = 0, H_0 = h_0$$

2. For
$$t = 1$$
 to T

3. let
$$\forall x_i : y_i = -2(H_{t-1}(x_i) - y_i)$$

4. solve
$$h_t = \arg\min_h \frac{1}{m} \sum_{i=1}^m (h(x_i) - y_i)^2$$

(by some least square regression algorithm)

5.
$$H_t = H_{t-1} + \eta h_t$$
 (usually set $\eta = 0.01$)
6. next for

Output
$$H_T = \sum_{t=1}^T h_t$$

Gradient boosting (for classification)

 $0-1 \log s$ $\min I(yH(\boldsymbol{x}) \le 0)$ logistic regression $\min\log(1+e^{-yH(\boldsymbol{x})})$ perceptron $\min\max\{-yH(\boldsymbol{x}),0\}$ hinge loss $\min\max\{1-yH(\boldsymbol{x}),0\}$ exponential loss $\min e^{-yH(\boldsymbol{x})}$

More about ensemble

Hansen and Salamon [PAMI'90] reported an observation that combination of multiple BP-NN is better than the best single BP-NN

More about ensemble

for regression task: mean error of base regressors

error of ensemble = a mean error of base regressors – mean difference base regressors to the ensemble

accurate and diverse

More about ensemble

for classification task:

parallel ensemble: reduce variance use unpruned decision trees

sequential ensemble: reduce bias and variance

More about ensemble Boosting: is weak learnable class equals strong learnable class? L. Valiant Turing Award 2010 yes! The proof is the boosting algorithm AdaBoost (Gödel Prize 2003) AdaBoost is the first **R.** Schapire practical boosting algorithm

Applications

KDDCup: data mining competition organized by ACM SIGKDD

KDDCup 2009: to estimate the churn, appetency and up-selling probability of customers.

KDDCup 2010: to predict student performance on mathematical problems from logs of student interaction with Intelligent Tutoring Systems.

An Ensemble of Three Classifiers for KDD Cup 2009: Expanded Linear Model, Heterogeneous Boosting, and Selective Naïve Bayes

Hung-Yi Lo, Kai-Wei Chang, Shang-Tse Chen, Tsung-Hsien Chiang, Chun-Sung Ferng, Cho-Jui Hsieh, Yi-Kuang Ko, Tsung-Ting Kuo, Hung-Che Lai, Ken-Yi Lin, Chia-Hsuan Wang, Hsiang-Fu Yu, Chih-Jen Lin, Hsuan-Tien Lin, Shou-de Lin {D96023, B92084, B95100, B93009, B95108, B92085, B93038, D97944007, R97028, R97117, B94B02009, B93107, CJLIN, HTLIN, SDLIN}@CSIE.NTU.EDU.TW Department of Computer Science and Information Engineering, National Taiwan University Taipei 106, Taiwan

JMLR: Workshop and Conference Proceedings 1: 1-16

KDD Cup 2010

Feature Engineering and Classifier Ensemble for KDD Cup \$2010\$

Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-Kai Lou, Todd G. McKenzie, Jung-Wei Chou, Po-Han Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan Wei, Jui-Yu Weng, En-Syu Yan, Che-Wei Chang, Tsung-Ting Kuo, Yi-Chen Lo, Po Tzu Chang, Chieh Po, Chien-Yuan Wang, Yi-Hung Huang, Chen-Wei Hung, Yu-Xun Ruan, Yu-Shi Lin, Shou-de Lin, Hsuan-Tien Lin, Chih-Jen Lin Department of Computer Science and Information Engineering, National Taiwan University Taipei 106, Taiwan

KDDCup 2011, KDDCup 2012, and foreseeably, 2013, 2014 ...

Applications

Netflix Price: if one participating team improves Netflix's own movie recommendation algorithm by 10% accuracy, they would win the grand prize of \$1,000,000.

