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How can we improve an algorithm

for free

one classifier with error 0.49

three independent classifiers each with error 0.49

two out of three are wrong: 0.367353 
three of them are wrong: 0.117649 
majority of the three are wrong: 0.485002
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Motivation theories

for binary classification, what if the classifiers give 
independent output and are little bit better than 
random guess?

each classifier has error 0.49 
error of combining T classifiers:

T

error

but independent classifiers 
are not achievable



h1 h2 h3

The importance of diversity

combined

not useful to combine identical base learners



h1 h2 h3

The importance of diversity

combined

good to combine different learners
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Ensemble methods

Parallel ensemble

Sequential ensemble

create diverse base learners by introducing 
randomness

create base learners by complementarity



Parallel ensemble methods

Data Sample Manipulation 
bootstrap sampling/Bagging  

Input Feature Manipulation 
random subspace 

Output Representation Manipulation 
flipping output/output smearing 

Learning Parameter Manipulation 
random initialization 
Random Forests

combine two or more categories

Diversity generating categories:
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Parallel ensemble methods

Data Sample Manipulation: Bagging
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Base classifiers should be sensitive to sampling 
》decision tree, neural network are good 
》NB, linear classifier are not 

Good for handling large data set

(regression)

(classification)

h1()

h2()

· · ·
hT ()

randomly sample data



Parallel ensemble methods

Data Sample Manipulation: Bagging

Base classifiers should be sensitive to sampling 
》decision tree, neural network are good 
》NB, linear classifier are not 

Good for handling large data set

Bagging 51

out-of-bagInput: D: Data set {(x1, y1), (x2, y2), . . . , (xm, ym)};
L: Base learning algorithm;
T : Number of base learners.

Process:
1. for t = 1, . . . , T :
2. ht = L(D,Dbs) % Dbs is the bootstrap distribution
3. end

Output: H(x) = max
y∈Y

∑T
t=1 I(ht(x) = y)

FIGURE 3.1: The Bagging algorithm

that the ith example will occur at least once is 1 − (1/e) ≈ 0.632. In other
words, for each base learner in Bagging, there are about 36.8% original train-
ing examples which have not been used in its training process. Thus, the
goodness of the base learner can be estimated by these out-of-bag exam-
ples, and thereafter the generalization error of the bagged ensemble can be
estimated [Breiman, 1996c, Tibshirani, 1996, Wolpert and Macready, 1999].

To get the out-of-bag estimation, we need to record the training examples
used for each base learner. Denote Hoob(x) as the out-of-bag prediction on
x, where only the learners that have not been trained on x are involved, i.e.,

Hoob(x) = max
y∈Y

T∑

t=1

I(ht(x) = y) · I(x /∈ Dt) . (3.4)

Then, the out-of-bag estimation of the generalization error of Bagging is

erroob =
1

|D|
∑

(x,y)∈D

I(Hoob(x) ̸= y) . (3.5)

The out-of-bag examples can also be used for many other purposes. For
example, when decision trees are used as base classifiers, the posterior prob-
ability of each node of each tree can be estimated using the out-of-bag ex-
amples. If a node does not contain out-of-bag examples, it is marked “un-
counted”. For a test instance, its posterior probability can be estimated by
averaging the posterior probabilities of nodes it falls into while not marked
as “uncounted”.

sample with replacement

Leo Breiman 
1928-2005
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Parallel ensemble methods

Input Feature Manipulation: Random subspace

Data should be rich in features 
Good for handling high dimensional data

(regression)

(classification)
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Parallel ensemble methods

Input Feature Manipulation: Random subspace

Data should be rich in features 
Good for handling high dimensional data

116 INTRODUCTION TO ENSEMBLE METHODS

Output Representation
Manipulation

Flipping Output
Output Smearing

Input: D: Data set {(x1, y1), (x2, y2), · · · , (xm, ym)};
L: Base learning algorithm;
T : Number of base learners;
d: Dimension of subspaces.

Process:
1. for t = 1, . . . , T :
2. Ft = RS(D, d) % Ft is a set of d randomly selected features;
3. Dt = MapFt(D) % Dt keeps only the features in Ft

4. ht = L(Dt) % Train a learner
5. end

Output: H(x) = max
y∈Y

∑T
t=1 I (ht (MapFt (x)) = y)

FIGURE 5.3: The Random Subspace algorithm

Output Representation Manipulation. This mechanism tries to generate
diverse individual learners by using different output representations. For
example, theECOC approach [Dietterich and Bakiri, 1995] uses error-correcting
output codes, the Flipping Output method [Breiman, 2000] randomly changes
the labels of some training instances according, the Output Smearing method
[Breiman, 2000] converts multi-class outputs to multivariate regression out-
puts to constructing individual learners, etc.

In addition to the above popular mechanisms, there are some other at-
tempts. For example, Melville and Mooney [2003] tried to encourage diver-
sity by using artificial training data. They constructed an ensemble in an
iterative way. In each round, a number of artificial examples are generated
based on the model of the data distribution. These artificial examples are
then assigned with the labels which are different maximally from the pre-
dictions of the current ensemble. After that, a new learner is trained from
the original training data together with the artificial training data. If adding
the new learner to the current ensemble increases training error, the new
learner will be discarded and another learner will be generated with anoth-
er set of artificial examples; otherwise, the new learner will be accepted into
to the current ensemble.

Notice that different mechanisms for diversity generation can be used to-
gether. For example, Random Forest [Breiman, 2001] adopts both the mech-
anisms of data sample manipulation and input feature manipulation.



Parallel ensemble methods

Output Representation Manipulation: Output flipping
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randomly modify the label

May drastically reduce the accuracy of base learners



Parallel ensemble methods

Learning Parameter Manipulation: Random forest

Randomized decision tree

at each node 
1. randomly select a subset of features 
2. use select a feature (and split point)  

from the subset to split the data

every run produce a different tree

(other variants are available)

decision tree: 
select the best 
split from ALL 
features/splits
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Parallel ensemble methods

Learning Parameter Manipulation: Random forest

(regression)

(classification)
randomly 
sample data

randomized decision tree

Bagging of randomized decision tree 
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Parallel ensemble methods

Random forest

decision boundary of  
single decision tree

decision boundary of  
random forest



Parallel ensemble methods

Data Sample Manipulation 
bootstrap sampling/Bagging  

Input Feature Manipulation 
random subspace 

Output Representation Manipulation 
flipping output/output smearing 

Learning Parameter Manipulation 
random initialization 
Random Forests

obtain diversity by randomization

Diversity generating categories:
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Parallel ensemble methods

Simple combination:

(simple average for regression)

(majority vote for classification)



Parallel ensemble methods

model-weighted combination:

(simple average for regression)

(majority vote for classification)

better model has higher weight
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Parallel ensemble methods

instance-weighted combination:

(simple average for regression)

(majority vote for classification)

weight by the confidence of the model
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decision tree: the purity of the leave node



Sequential ensemble methods

Generate learners sequentially, 
focus on previous errors

train response 

error emphasized 

train response train 

error emphasized 

so that the combination of learners will have 
a high accuracy



AdaBoost Boosting 27

Input: Data set D = {(x1, y1), (x2, y2), . . . , (xm, ym)};
Base learning algorithm L;
Number of learning rounds T .

Process:
1. D1(x) = 1/m. % Initialize the weight distribution
2. for t = 1, . . . , T :
3. ht = L(D,Dt); % Train a classifier ht from D under distribution Dt

4. ϵt = Px∼Dt(ht(x) ̸= f(x)); % Evaluate the error of ht

5. if ϵt > 0.5 then break
6. αt =

1
2 ln

(
1−ϵt
ϵt

)
; % Determine the weight of ht

7. Dt+1(x) =
Dt(x)
Zt
×
{

exp(−αt) if ht(x) = f(x)
exp(αt) if ht(x) ̸= f(x)

=
Dt(x)exp(−αtf(x)ht(x))

Zt
% Update the distribution, where

% Zt is a normalization factor which
% enables Dt+1 to be a distribution

8. end

Output: H(x) = sign
(∑T

t=1 αtht(x)
)

FIGURE 2.2: The AdaBoost algorithm

using additive weighted combination of weak learners as

H(x) =
T∑

t=1

αtht(x) . (2.2)

The reason of using exponential loss is that it consists with the goal of
minimizing classification error. When the exponential loss is minimized by
H , the partial derivative of the exponential loss for every x is zero, i.e.,

∂e−f(x)H(x)

∂H(x)
= −f(x)e−f(x)H(x) (2.3)

= −e−H(x)P (f(x) = 1 | x) + eH(x)P (f(x) = −1 | x)
= 0 .

Then, by solving (2.3), we have

H(x) =
1

2
ln

P (f(x) = 1 | x)
P (f(x) = −1 | x) , (2.4)



AdaBoost

About the distribution:

Boosting 27

Input: Data set D = {(x1, y1), (x2, y2), . . . , (xm, ym)};
Base learning algorithm L;
Number of learning rounds T .
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1. D1(x) = 1/m. % Initialize the weight distribution
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The reason of using exponential loss is that it consists with the goal of
minimizing classification error. When the exponential loss is minimized by
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The reason of using exponential loss is that it consists with the goal of
minimizing classification error. When the exponential loss is minimized by
H , the partial derivative of the exponential loss for every x is zero, i.e.,

∂e−f(x)H(x)

∂H(x)
= −f(x)e−f(x)H(x) (2.3)

= −e−H(x)P (f(x) = 1 | x) + eH(x)P (f(x) = −1 | x)
= 0 .

Then, by solving (2.3), we have

H(x) =
1
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P (f(x) = 1 | x)
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maintain a array to record the distribution

sample a training set according to the distribution

x1        x2
if random < 0.7, get an x1 
else get an x2



AdaBoost

fit an additive model, sequentially

to minimize exponential loss

min e�yH(x)

yH(x)

0/1 loss

exp loss

Boosting 27

Input: Data set D = {(x1, y1), (x2, y2), . . . , (xm, ym)};
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Number of learning rounds T .

Process:
1. D1(x) = 1/m. % Initialize the weight distribution
2. for t = 1, . . . , T :
3. ht = L(D,Dt); % Train a classifier ht from D under distribution Dt
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The reason of using exponential loss is that it consists with the goal of
minimizing classification error. When the exponential loss is minimized by
H , the partial derivative of the exponential loss for every x is zero, i.e.,

∂e−f(x)H(x)

∂H(x)
= −f(x)e−f(x)H(x) (2.3)

= −e−H(x)P (f(x) = 1 | x) + eH(x)P (f(x) = −1 | x)
= 0 .

Then, by solving (2.3), we have
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by Newton-like method



Gradient boosting

fit an additive model, sequentially

to minimize any loss by gradient decent

Boosting 27
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Gradient boosting

example: least square regression

1. fit the first base regressor

then how to train the second base regressor ?

gradient descent in function space
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mX
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(h1(xi)+h2(xi)� yi)
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8xi : ŷi = �2(H(xi)� yi)

hnew = argmin
h

1

m

mX

i=1
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Gradient boosting

gradient descent in function space

this function is not directly operable

operate through data

fit h2 point-wisely 



h0 = 0, H0 = h0

8xi : yi = �2(Ht�1(xi)� yi)

ht = argmin
h
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m

mX
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(h(xi)� yi)
2

HT =
TX

t=1

ht

⌘ = 0.01

Gradient boosting

Gradient boosting (for least square regression)

1. 

2.  For t = 1 to T 

3.      let 

4.      solve 

(by some least square regression algorithm)

5.  
6.  next for     

Output

Ht = Ht�1 + ⌘ht (usually set            )



min I(yH(x)  0)

min log(1 + e�yH(x)
)

minmax{�yH(x), 0}

minmax{1� yH(x), 0}

min e�yH(x)

yH(x)

Gradient boosting

Gradient boosting (for classification)

0-1 loss

logistic regression

perceptron

hinge loss

exponential loss



More about ensemble

Hansen and Salamon [PAMI’90] reported an observation 
that combination of multiple BP-NN is better than the 
best single BP-NN
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More about ensemble

for regression task:
mean error of base regressors

error of combined regressor

mean difference to the combined regressor

error of ensemble =  
    mean error of base regressors  
    − mean difference base regressors to the ensemble

accurate and diverse



More about ensemble

for classification task:

pairwise diversity

Diversity Regularized Ensemble Pruning 7

Consequently, from (5) and (6) we can find that the number of possible values
of (�, z) is upper-bounded by

�
2md4

p
1/n+ (1� 1/n)(1� q)/✏+ 2e+ 1

�
36(1+lnn)/✏2

,

which completes the proof. ut
Furthermore, based on Theorem 1 we can obtain the relationship between di-
versity and generalization performance of voting, which is given as follows.

Corollary 1 Under the assumptions of Theorem 1, with probability at least 1��,
for any ✓ > 0, every function f 2 F satisfies the following bound

errg(f)  err✓S(f) +
Cp
m

 
lnn ln

�
m
p
1/n+ (1� 1/n)(1� q)

�

✓2
+ ln

1

�

!
1/2

,

where C is a constant.

Proof. Based on Bartlett’s Lemma 4 in [2], we can obtain

errg(f)  err✓S(f) +

s
2

m

✓
lnN1(F , ✏/2, 2m) + ln

2

�

◆
. (7)

By applying Theorem 1 on (7), we can obtain the result. ut
Above results show that, when other factors are fixed, encouraging high diver-

sity among individual classifiers (i.e., large value of q in Theorem 1 and Corollary
1) will make the hypothesis space complexity of voting small, and thus better
generalization performance can be expected.

3.3 Remarks and Discussions

It can be observed from above theoretical analysis that the diversity is directly
related to the hypothesis space complexity of voting, and then a↵ects its general-
ization performance. From the view of statistical learning, controlling ensemble
diversity has a direct impact on the size of hypothesis space of voting, indicating
that it plays a role similar with regularization as in popular statistical learning
methods. In other words, it implies that encouraging diversity can be regarded to
apply regularization on ensemble methods. Also, this result show that encour-
aging diversity is beneficial but not straightforwardly related to the ensemble
accuracy, which coincides with previous study in [16].

To our best knowledge, this work provides the first PAC-style analysis on the
role of diversity in voting. The margin explanation of voting presented in [25] is
also in the PAC-learning framework, but it is obvious that our work is signifi-
cantly di↵erent because diversity is considered explicitly. The hypothesis space
complexity of voting becomes small when the diversity increases, but it is sim-
ply characterized by the VC-dimension of individual classifier in [25]. Intuitively,
due to the diversity, some parts of the hypothesis space of voting are infeasible,
excluding these parts leads to tighter bounds, while assuming the hypothesis
space compact makes the bounds looser.



Bias-variance analysis

f

bias

variance

f

low variance, 
high bias

f

low bias,  
high variance

parallel ensemble: reduce variance 
           use unpruned decision trees 

sequential ensemble: reduce bias and variance



More about ensemble

AdaBoost

L. Valiant 
Turing Award 2010

is weak 
learnable class 
equals strong 

learnable class?

yes! The proof 
is the boosting 

algorithm

R. Schapire
AdaBoost is the first 
practical boosting algorithm 

(Gödel Prize 2003)

Boosting:



Applications

KDDCup: data mining competition organized by ACM SIGKDD

KDDCup 2009: to estimate the 
churn, appetency and up-selling 
probability of customers.

KDDCup 2010: to predict 
student performance on 
mathematical problems from 
logs of student interaction with 
Intelligent Tutoring Systems. 

KDDCup 2011, KDDCup 2012, and foreseeably, 2013, 2014 ...



Applications

Netflix Price: if one participating team improves Netflix’s own 
movie recommendation algorithm by 10% accuracy, they would 
win the grand prize of $1,000,000.


