

Lecture 19: Learning 8

http://cs.nju.edu.cn/yuy/course_ai17.ashx

How to train a dog?

PHASE 1 DOWN

How to train a dog?

dog learns from rewards to adapt to the environment can computers do similarly?

Reinforcement learning setting

<A, S, R, P>

Action space: A

State space: S

Reward: $R: S \times A \times S \rightarrow \mathbb{R}$

Transition: $P: S \times A \rightarrow S$

Reinforcement learning setting

Action space: A

State space: S

Reward: $R: S \times A \times S \rightarrow \mathbb{R}$

Transition: $P: S \times A \rightarrow S$

Agent:

Policy:
$$\pi: S \times A \to \mathbb{R}$$
, $\sum_{a \in A} \pi(a|s) = 1$

Policy (deterministic): $\pi:S\to A$

Agent's view:
$$s_0, a_0, r_1, s_1, a_2, r_2, s_2, a_3, r_3, s_3, \ldots$$
 $\pi(s_0)$ $\pi(s_1)$ $\pi(s_2)$

Reinforcement learning setting

Action space: *A*

State space: S

Reward: $R: S \times A \times S \rightarrow \mathbb{R}$

Transition: $P: S \times A \rightarrow S$

Agent: Policy:
$$\pi: S \times A \to \mathbb{R}$$
, $\sum_{a \in A} \pi(a|s) = 1$

Policy (deterministic): $\pi: S \to A$

Agent's goal:

learn a policy to maximize long-term total reward

T-step:
$$\sum_{t=1}^{T} r_t$$

T-step:
$$\sum_{t=1}^{T} r_t$$
 discounted: $\sum_{t=1}^{\infty} \gamma^t r_t$

all RL tasks can be defined by maximizing total reward

Reward examples

NAN ALIS

shortest path:

- · every node is a state, an action is an edge out
- reward function = the negative edge weight
- optimal policy leads to the shortest path

Reward examples

general binary space problem $\max_{x \in \{0,1\}^n} f(x)$

$$\max_{x \in \{0,1\}^n} f(x)$$

solving the optimal policy is NP-hard!

Difference between RL and planning?

what if we use planning/search methods to find actions that maximize total reward

Planing: find an optimal solution

RL: find an optimal policy from samples

planning: shortest-path

RL: shortest-path policy without knowing the graph

Difference between RL and SL?

NANA 1902

supervised learning also learns a model ...

supervised learning

learning from labeled data open loop passive data

reinforcement learning

learning from delayed reward closed loop explore environment

Applications

Deepmind Deep Q-learning on Atari

[Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540): 529-533, 2015]

Applications

learning robot skills

https://www.youtube.com/watch?v=VCdxqnOfcnE

More applications

机器学习

本页含商业批广信息。请注意可能的风险,

www.ang.on 2016-08 + V2 - 連合 - 海州州

■区 ~ ○ 七夕祭花早出北

超人学涨隔心打造机器学习项目,企业者师全职授课,企业级实线项目,让你足不出户即可学

Search
Recommendation system
Stock prediction

every decision changes the world

essential mathematical model for RL

Markov Process

(finite) state space S, transition matrix P

a process s_0, s_1, \dots is Markov if

has no memory

$$P(s_{t+1} \mid s_t, ..., s_0) = P(s_{t+1} \mid s_t)$$
 discrete s -> Markov chain

$$oldsymbol{s}_{t+1} = oldsymbol{s}_t P = oldsymbol{s}_0 P^{t+1}$$

Markov Process

horizontal view

stationary distribution: s == sP sampling from a Markov process:

introduce reward function R

how to calculate the long-term total reward?

$$V(\text{sunny}) = E[\sum_{t=1}^{T} r_t | s_0 = \text{sunny}]$$

$$V(\text{sunny}) = E[\sum_{t=1}^{\infty} \gamma^t r_t | s_0 = \text{sunny}]$$

value function

horizontal view: consider T steps

recursive definition:

$$V(\text{sunny}) = P(\mathbf{s}|\mathbf{s})[R(\mathbf{s}) + V(\mathbf{s})] = \sum_{s} P(s|\text{sunny})(R(s) + V(s))$$
$$+ P(\mathbf{c}|\mathbf{s})[R(\mathbf{c}) + V(\mathbf{c})]$$
$$+ P(\mathbf{r}|\mathbf{s})[R(\mathbf{r}) + V(\mathbf{r})]$$

horizontal view: consider T steps

T-1

V(s) = 0

backward calculation

 $V(s) = \sum_{s'} P(s'|s) \left(R(s') + V(s') \right)$

horizontal view: consider discounted infinite steps

backward calculation

repeat until converges

$$V(s) = 0$$

$$V(s) = \sum_{s'} P(s'|s) \left(R(s') + \gamma V(s') \right)$$

horizontal view

horizontal view of the game of Go

goal-directed

stationary distribution

MDP
$$\langle S, A, R, P \rangle$$
 (often with γ)

essential model for RL but not all of RL

policy

stochastic

$$\pi(a|s) = P(a|s)$$

deterministic

$$\pi(s) = \arg\max_{a} P(a|s)$$

 $|A|^{|S|}$ deterministic policies

tabular representation

 $\pi =$

S	0	0.3
	1	0.7
С	0	0.6
	1	0.4
r	0	0.1
	1	0.9

Expected return

similar with the Markov Reward Process

MRP:

$$V(s) = \sum_{s'} P(s'|s) \left(R(s') + V(s') \right)$$

MDP:

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) (R(s, a, s') + V^{\pi}(s'))$$

expectation over actions with respect to the policy

Q-function

state value function

$$V^{\pi}(s) = E[\sum_{t=1}^{T} r_t | s]$$

state-action value function

$$Q^{\pi}(s, a) = E[\sum_{t=1}^{T} r_t | s, a] = \sum_{s'} P(s' | s, a) (R(s, a, s') + V^{\pi}(s'))$$

consequently,

$$V^{\pi}(s) = \sum_{a} \pi(a|s)Q(s,a)$$

Q-function => policy

Optimality

there exists an optimal policy π^*

$$\forall \pi, \forall s, V^{\pi^*}(s) \ge V^{\pi}(s)$$

optimal value function

$$\forall s, V^*(s) = V^{\pi^*}(s)$$
$$\forall s, \forall a, Q^*(s, a) = Q^{\pi^*}(s, a)$$

60		400
S	0	0.3
	4	0.7
C	0	0.6
	19 1 2	0.4
r	0	0.1
	1	0.9

Bellman optimality equations

$$V^*(s) = \max_a Q^*(s, a)$$

from the relation between V and Q

$$Q^*(s, a) = \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V^*(s'))$$

we have

$$Q^*(s, a) = \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma \max_{a} Q^*(s', a) \right)$$

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V^*(s'))$$

the unique fixed point is the optimal value function

idea:

how is the current policy policy evaluation improve the current policy policy improvement

policy evaluation: backward calculation

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V^{\pi}(s'))$$

policy improvement: from the Bellman optimality equation

$$V(s) \leftarrow \max_{a} Q^{\pi}(s, a)$$

policy improvement: from the Bellman optimality equation

$$V(s) \leftarrow \max_{a} Q^{\pi}(s, a)$$

let π' be derived from this update

$$V^{\pi}(s) \leq Q^{\pi}(s, \pi'(s))$$

$$= \sum_{s'} P(s'|s, \pi'(s))(R(s, \pi'(s), s') + \gamma V^{\pi}(s'))$$

$$\leq \sum_{s'} P(s'|s, \pi'(s))(R(s, \pi'(s), s') + \gamma Q^{\pi}(s', \pi'(s)))$$

$$= \dots$$

$$= V^{\pi'}$$

so the policy is improved

Policy iteration algorithm:

loop until converges

policy evaluation: calculate V

policy improvement: choose the action greedily

$$\pi_{t+1}(s) = \arg\max_{a} Q^{\pi_t}(s, a)$$

converges: $V^{\pi_{t+1}}(s) = V^{\pi_t}(s)$

$$Q^{\pi_{t+1}}(s,a) = \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma \max_{a} Q^{\pi_t}(s',a) \right)$$

recall the optimal value function about Q

embed the policy improvement in evaluation Value iteration algorithm:

$$V_0=0$$
 for $t=0,\,1,\,\ldots$ for all s <- synchronous v.s. asynchronous $V_{t+1}(s)=\max_a\sum_{s'}P(s'|s,a)\big(R(s,a,s')+\gamma V_t(s)\big)$ end for break if $||V_{t+1}-V_t||_{m{\infty}}$ is small enough end for

recall the optimal value function about V

$$Q^{\pi_{t+1}}(s,a) = \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma \max_{a} Q^{\pi_t}(s',a) \right)$$

$$V_{t+1}(s) = \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_t(s'))$$

Dynamic programming

R. E. Bellman 1920-1984

Complexity

needs $\Theta(|S|\cdot |A|)$ iterations to converge on deterministic MDP

[O. Madani. Polynomial Value Iteration Algorithms for Deterministic MDPs. UAI'02]

curse of dimensionality: Go board 19x19, $|S|=2.08x10^{170}$

[https://github.com/tromp/golegal]

from MDP to reinforcement learning

 $\mathsf{MDP}\ <\!\!S,\!A,\!R,\!P\!\!>$

R and P are unknown

Methods

A: learn R and P, then solve the MDP

model-based

B: learn policy without R or P

model-free

MDP is the model

Model-free RL

NA BA

explore the environment and learn policy at the same time

Monte-Carlo method

Temporal difference method

Monte Carlo RL - evaluation

Q, not V

expected total reward $Q^{\pi}(s,a) = E[\sum_{t=1}^{T} r_t | s,a]$

expectation of trajectory-wise rewards

sample trajectory m times, approximate the expectation by average

$$Q^{\pi}(s,a) = rac{1}{m} \sum_{i=1}^{m} R(au_i)$$
 au_i is sample by following π after s,a

Monte Carlo RL - evaluation+improvement

```
Q_0 = 0
for i=0, 1, ..., m
    generate trajectory \langle s_0, a_0, r_1, s_1, ..., s_T \rangle
   for t=0, 1, ..., T-1
       R = sum of rewards from t to T
        Q(s_t, a_t) = (c(s_t, a_t) Q(s_t, a_t) + R)/(c(s_t, a_t) + 1)
       c(s_t, a_t) + +
    end for
    update policy \pi(s) = \arg \max Q(s, a)
                                                  improvement?
end for
```

Monte Carlo RL

problem: what if the policy takes only one path?

cannot improve the policy no exploration of the environment

needs exploration!

Exploration methods

one state MDP: a.k.a. bandit model

maximize the long-term total reward

- exploration only policy: try every action in turn waste many trials
- exploitation only policy: try each action once, follow the best action forever risk of pick a bad action
 balance between exploration and exploitation

Exploration methods

←greedy:

follow the best action with probability $1-\epsilon$ choose action randomly with probability ϵ

€ should decrease along time

softmax:

probability according to action quality

$$P(k) = e^{Q(k)/\theta} / \sum_{i=1}^{K} e^{Q(i)/\theta}$$

upper confidence bound (UCB): choose by action quality + confidence

$$Q(k) + \sqrt{2\ln n/n_k}$$

Action-level exploration

←-greedy policy:

given a policy π

$$\pi_{\epsilon}(s) = \begin{cases} \pi(s), \text{with prob. } 1 - \epsilon \\ \text{randomly chosen action, with prob. } \epsilon \end{cases}$$

ensure probability of visiting every state > 0

exploration can also be in other levels

Monte Carlo RL

```
Q_0 = 0
for i=0, 1, ..., m
    generate trajectory \langle s_0, a_0, r_1, s_1, ..., s_T \rangle by \pi_{\epsilon}
    for t=0, 1, ..., T-1
        R = sum of rewards from t to T
        Q(s_t, a_t) = (c(s_t, a_t) Q(s_t, a_t) + R)/(c(s_t, a_t) + 1)
        c(s_t, a_t) + +
    end for
    update policy \pi(s) = \arg \max Q(s, a)
end for
```

Monte Carlo RL - on/off-policy

what if we want to evaluate π ? off-policy

importance sampling:

$$E[f] = \int_x p(x)f(x)\mathrm{d}x = \int_x q(x)\frac{p(x)}{q(x)}f(x)\mathrm{d}x$$

$$\downarrow \text{sample from } p \qquad \downarrow \text{sample from } q$$

$$\frac{1}{m}\sum_{i=1}^m f(x) \qquad \frac{1}{m}\sum_{i=1}^m \frac{p(x)}{q(x)}f(x)$$

Monte Carlo RL -- off-policy

```
Q_0 = 0
for i=0, 1, ..., m
     generate trajectory \langle s_0, a_0, r_1, s_1, ..., s_T \rangle by \pi_{\epsilon}
     for t=0, 1, ..., T-1
           R = sum of rewards from t to T \times \prod_{i=t+1}^{T-1} \frac{\pi(x_i, a_i)}{p_i}
           Q(s_t, a_t) = (c(s_t, a_t) Q(s_t, a_t) + R) / (c(s_t, a_t) + 1)
           c(s_t, a_t) + +
     end for
     update policy \pi(s) = \arg \max Q(s, a)
end for
                                         p_i = \begin{cases} 1 - \epsilon + \epsilon/|A|, a_i = \pi(s_i), -\epsilon/|A|, a_i \neq \pi(s_i) \end{cases}
```

Monte Carlo RL

summary

Monte Carlo evaluation: approximate expectation by sample average

action-level exploration

on-policy, off-policy: importance sampling

Monte Carlo RL:

evaluation + action-level exploration + policy improvement (on/off-policy)

Incremental mean

$$Q(s_t, a_t) = (c(s_t, a_t) Q(s_t, a_t) + R) / (c(s_t, a_t) + 1)$$

$$\mu_t = \frac{1}{t} \sum_{i=1}^t x_i = \frac{1}{t} (x_t + \sum_{i=1}^{t-1} x_i) = \frac{1}{t} (x_t + (t-1)\mu_{t-1})$$

$$= \mu_{t-1} + \frac{1}{t}(x_t - \mu_{t-1})$$

In general, $\mu_t = \mu_{t-1} + \alpha(x_t - \mu_{t-1})$

Monte-Carlo update:

$$Q(s_t, a_t) \Leftarrow Q(s_t, a_t) + \alpha (R - Q(s_t, a_t))$$
MC error

Temporal-Difference Learning - evaluation

update policy online

learn as you go

TD Evaluation

Monte-Carlo update:

$$Q(s_t, a_t) \Leftarrow Q(s_t, a_t) + \alpha (R - Q(s_t, a_t))$$
MC error

TD update:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(\underline{r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)})$$
TD error

Temporal-Difference Learning - example

Temporal-Difference Learning - backups

SARSA

On-policy TD control

```
Q_0 = 0, initial state
for i=0, 1, ...
    a = \pi_{\epsilon}(s)
    s', r = do action a
    a' = \pi_{\epsilon}(s')
   Q(s,a) += \alpha(r + \gamma Q(s',a') - Q(s,a))
    \pi(s) = \arg\max Q(s, a)
    s=s
end for
```

Q-learning

Off-policy TD control

```
Q_0 = 0, initial state
for i=0, 1, ...
    a = \pi_{\epsilon}(s)
    s', r = do action a
    a' = \pi(s')
    Q(s,a) += \alpha(r + \gamma Q(s',a') - Q(s,a))
    \pi(s) = \arg\max Q(s, a)
    s=s'
end for
```


SARSA v.s. Q-learning

Episodes

we can do RL now! ... in (small) discrete state space

RL in continuous state space

 $\mathsf{MDP}\ <\!\!S,\!A,\!R,\!P\!\!>$

S (and A) is in \mathbb{R}^n

Value function approximation

tabular representation

very powerful representation can be all possible policies!

linear function approx.

$$\hat{V}(s) = w^{\top} \phi(s)$$

$$\hat{Q}(s, a) = w^{\top} \phi(s, a)$$

$$\hat{Q}(s, a_i) = w_i^{\top} \phi(s)$$

 ϕ is a feature mapping w is the parameter vector may not represent all policies!

Value function approximation

to approximate Q and V value function least square approximation

$$J(w) = E_{s \sim \pi} [(Q^{\pi}(s, a) - \hat{Q}(s, a))^{2}]$$

online environment: stochastic gradient on single sample

$$\Delta w_t = \theta(Q^{\pi}(s_t, a_t) - \hat{Q}(s_t, a_t)) \nabla_w \hat{Q}(s_t, a_t) - \dots$$

Recall the errors:

replace

MC update: $Q(s_t, a_t) + = \alpha(\underline{R} - \underline{Q(s_t, a_t)})$

TD update:
$$Q(s_t, a_t) + = \alpha(r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$$

target

model

Value function approximation

MC update:

$$\Delta w_t = \theta(R - \hat{Q}(s_t, a_t)) \nabla_w \hat{Q}(s_t, a_t)$$

TD update:

$$\Delta w_t = \theta(r_{t+1} + \gamma \hat{Q}(s_{t+1}, a_{t+1}) - \hat{Q}(s_t, a_t)) \nabla_w \hat{Q}(s_t, a_t)$$

eligibility traces

$$E_t = \gamma \lambda E_{t-1} + \nabla_w \hat{Q}(s_t, a_t)$$

Q-learning with function approximation

```
w=0, initial state
for i=0, 1, ...
    a=\pi_{\epsilon}(s)
    s', r = \text{do action } a
    a'=\pi(s')
    w + = \theta(r + \gamma \hat{Q}(s, a) - \hat{Q}(s, a)) \nabla_w \hat{Q}(s_t, a_t)
    \pi(s) = \arg\max \hat{Q}(s, a)
    s=s'
end for
```

Approximation model

Linear approximation $\hat{Q}(s,a) = w^{\top}\phi(s,a)$

$$\nabla_w \hat{Q}(s, a) = \phi(s, a)$$

coarse coding: raw features

discretization: tide with indicator features

kernelization:

$$\hat{Q}(s,a) = \sum_{i=1}^m w_i K((s,a),(s_i,a_i))$$
 (s_i,a_i) can be randomly sampled

Approximation model

Nonlinear model approximation $\hat{Q}(s,a)=f(s,a)$

neural network: differentiable model

recall the TD update:

$$\Delta w_t = \theta(r_{t+1} + \gamma \hat{Q}(s_{t+1}, a_{t+1}) - \hat{Q}(s_t, a_t)) \nabla_w \hat{Q}(s_t, a_t)$$

follow the BP rule to pass the gradient

Batch RL methods

gradient on single sample introduces large variance

collect trajectory and history data

$$D = \{(s_1, V_1^{\pi}), (s_2, V_2^{\pi}), \dots, (s_m, V_m^{\pi})\}$$

solve batch least square objective

$$J(w) = E_D[(V^{\pi} - \hat{V}(s))^2]$$

linear function: closed form

neural networks: batch update/repeated stochastic update

LSMC, LSTD, LSTD(λ)

Batch RL methods

gradient on single sample introduces large variance

Batch mode policy iteration: LSPI

$$Q_0=0$$
, initial state for $i=0,\ 1,\ \dots$ collect data D
$$w=\arg\min_{w}\sum_{(s,a)\in D}(r+\gamma\hat{Q}(s,\pi(s))-\hat{Q}(s,a))\phi(s,a)$$
 $\forall s,\pi(s)=\arg\max_{a}Q(s,a)$ end for

Robot Motor Skill Coordination with EM-based Reinforcement Learning

Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell

Italian Institute of Technology