;ﬁrf Artificial Intelligence, CS, Nanjing University
: Spring, 2017, Yang Yu

NANJING UNIVERSITY

Lecture 2: Search 1

http://lamda.nju.edu.cn/yuy/course_ail7.ashx



http://lamda.nju.edu.cn/yuy/course_ai17.ashx
http://lamda.nju.edu.cn/yuy/course_ai17.ashx

Problem in the lecture

4K KX o KN (3 D
|l Kl pu i 2

Start State Goal State

@ ® @ Java-VGDL: Score:0.0. Ti... |




Agent that searches

a world is a set of states

we first consider a world using atomic representation

atomic representation: state is the basic unit
states that can be factored will be considered later

the big O representation: e.g. O(n)
NP-hardness and NP-completness



Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest



Example: Romania

map:
] Oradea
Neamt
- 87
75 _
] lasi
Arad
Sibi 92
IDIU 99 Fagaras
118 JVaslui
80
. . Rimnicu Vilcea
Timisoara —
142
I ] Lugoj Pitesti 211
]
70 35 98 Hirsova
[dMehadia 101 . Urziceni
Q 36
B 138 Bucharest
Dobreta [ 120 %

ICraiova Eforie

[]1Giurgiu



Problems

A problem is defined by 5 components:
initial state

possible actions (and state associated actions)

transition model
taking an action will cause a state change

goal test
judge if the goal state is found

path cost
constitute the cost of a solution



Problems

] Oradea
71 Neamt
]
dZerind 87
75 151
] lasi
AradY
L 140 Sibi 9
IDIU 99 Fagaras
118 JVaslui
80
Timisoara lemcu Vilcea
142
. . 211
111  Lugoj Pitesti
]
70 35 98 Hirsova
[dMehadia 101 . Urziceni
Q 36
5 138 Bucharest
Dobreta [ 120 %
ICraiova Eforie

[]1Giurgiu



Problems

initial state e.g., “at Arad”

successor function S(x) = set of action—state pairs
e.g., S(Arad) = {(Arad — Zerind, Zerind), ...}

goal test, can be
explicit, e.g., © = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be > 0

A solution is a sequence of actions
leading from the initial state to a goal state



Problems
we assume
observable states (a seen state is accurate)

in partial observable case, states are not accurate

discrete states
there are also continuous state spaces

deterministic transition
there could be stochastic transitions



Example: vacuum world

ER R E L
Y& P : AT

states?7: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost?7: 1 per action (0 for NoOp)




Example: 8-puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test?7: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard|



Search Algorithms on Graphs



Tree search

1. start from the initial state
2. expand the current state

essence of search: following up one option now and
putting the others aside

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strateqy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

all search algorithms share this tree search structure
they vary primarily according to how they choose which
state to expand --- the so-called search strategy



General tree search

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node «+— REMOVE-FRONT(fringe)
if GoAL-TEST(problem, STATE(node)) then return node
fringe < INSERTALL(EXPAND(node, problem), fringe)

note the tima of goal-
test: expanding time
not generatimng time

function EXPAND( node, problem) returns a set of nodes

successors «<— the empty set

for each action, result in SUCCESSOR-FN(problem, STATE[node]) do
s<—a new NODE
PARENT-NODE[s] «+— node; ACTION[s] «— action; STATE|[s] < result
PATH-COST[s] «— PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] < DEPTH[node] + 1
add s to successors

return successors




Example

e
— \ — — -
_— N ——_
_ Sibiu__ Timisoara> _Zerind D
TN — /N /N
-~ N T~ 7\ / N\
- - / AN ~~ - / \\ / N
_ Arad > Fagaras > ( Oradea > (RimnicuVicead ¢ Arad > ¢_Lugoj O _ Arad > Oradea >

R — — — — — - _ :_/ < —
,//!<\\ /K\ /K\ ,//]<\\ N 7 N N /K\

Dobreta ]

Eforie



Example

— ~
—~7 7/ N_. T~ 7\ /N
T _ L I N S~ L N L N
_Arad > < Fagaras > < Oradea > RimnicuVicead < Arad > ¢ _Lugoj > < Arad > ¢ Oradea >

//F\ /K\ /K\ RN //F\ //\\ - ~ /K\

Dobreta ]
Eforie



Example

Dobreta []
Eforie



Example

Dobreta []

Eforie



Graph search

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return node
fringe < INSERTALL(EXPAND(node, problem), fringe)

function GRAPH-SEARCH( problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE([problem]), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)
end




Graph separation property

the frontier (expandable leaf nodes) separates the
visited and the unexplored nodes




State v.S. node

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!
parent, action
A

State || 5 ||| 4 Node depth =6
g=6
6 1 8
= ale
71l 3]l 2 st

The EXPAND function creates new nodes, filling in the various fields and
using the SUCCESSORF'N of the problem to create the corresponding states.



Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated /expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be c0)



Uninformed Search Strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search

lterative deepening search



Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

/ N
~ / \\/"
(B) (C)
/A /A



Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end



Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(4,
(B} (&)
>O B ©® ©



Properties

Complete?? Yes (if b is finite)

Time?? 1+ b+ 0>+ b3+ ...+ b0+ (b’ — 1) = O(b*1), i.e., exp. in d
Space?? O(b?) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB /sec
so 24hrs = 8640GB.



Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

LON
N

v
Qf 9
/ N\ / N\
OEEROEEGEIRO
AN A AN A

GRORORORORORORQ



Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
(A)
>(B) o
/7 \ /7 \
OEERCEERGENRG
/ \ / \ / \ / \

ORORORORORORORQ



Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

/7 \
GEERC
P S D S
H) 1) ) K L) M) N) 0)



Depth-first search

Implementation:
fringe = LIFO queue, i.e., put successors at front

/ N\
ORERCO
A AN A

YO RORCRORORORG



Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

/  \
GEERC
S TPy
) &) L) M) W) ©0)



Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

/ \
GEERC
S TPy
@) &) L) M) ) (0)



Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front




Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

7/ N\
GEERCO
/\ /\

ORORGORO



Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(4)
40



Properties

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces with repeated states avoid

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No




Uniform-cost search

Breadth-first search: First In First Out queue
Depth-first search: Last In First Out queue (stack)
Uniform-cost search: Priority queue (least cost out)

part of the map

Sibiu Fagaras

Rimnicu Vilcea

Pitesti

Bucharest



Uniform-cost search

Breadth-first search: First In First Out queue
Depth-first search: Last In First Out queue (stack)
Uniform-cost search: Priority queue (least cost out)

part of the map

. cost=99
Sibiu 99 Fagaras

cost=80 \ 80

Rimnicu Vilcea

Pitesti

Bucharest



Uniform-cost search

Breadth-first search: First In First Out queue
Depth-first search: Last In First Out queue (stack)
Uniform-cost search: Priority queue (least cost out)

part of the map

. cost=99
ibiu 99 Fagaras

cost=80 \ 80

Rimnicu Vilcea

. . 211
97 Pitesti

cost=177

Bucharest



Uniform-cost search

Breadth-first search: First In First Out queue
Depth-first search: Last In First Out queue (stack)
Uniform-cost search: Priority queue (least cost out)

part of the map

. cost=99
ibiu 99 Fagaras

cost=80 \ 80

Rimnicu Vilcea
cost=310

. . 211
97 Pitesti

cost=177

Bucharest



Uniform-cost search

Breadth-first search: First In First Out queue
Depth-first search: Last In First Out queue (stack)
Uniform-cost search: Priority queue (least cost out)

part of the map

. cost=99
ibiu 99 Fagaras

cost=80 \ 80

Rimnicu Vilcea
cost=310

. . 211
97 Pitesti

cost=177

101

cost=278
Bucharest



Uniform-cost search

Breadth-first search: First In First Out queue

Depth-first search: Last In First Out queue (stack)

Uniform-cost search: Priority queue (least cost out)
Equivalent to breadth-first if step costs all equal

part of the map

. cost=99
ibiu 99 Fagaras

cost=80 Q30

Rimnicu Vilcea
cost=310

Pitesti

/ cost=177

101

cost=278
Bucharest

best path from Sibiu to Bucharest



Properties

Complete?? Yes, if step cost > ¢

Time?? # of nodes with ¢ < cost of optimal solution, O(b/¢"/<l)
where C™ is the cost of the optimal solution

Space?? # of nodes with ¢ < cost of optimal solution, O(b(c*/d)

Optimal?? Yes—
Question: why it is optimal?




Breadth-first v.s. depth-first

Breadth-first: faster, larger memory
Depth-first: less memory, slower

Question: how to better balance time and space?



Depth-limited search

limit the maximum depth of the depth-first search

1.e., nodes at depth [ have no successors

function DEPTH-LIMITED-SEARCH( problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? < false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result «— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure




[terative deepening search

try depth-limited search with increasing limit

restart the search at each time

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution
inputs: problem, a problem

for depth+— 0 to oo do
result «— DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result

end




Example

Limit=0 LON [ ]

0Of Q) 70 ©

(4)
>(8) O

7\ . VAN .
/ > = S
® B @9

v

/ '\ \
Ve >
@0

Aty G &
L WP Y




Properties

Complete?? Yes

Time?? (d+ )" +db' + (d — 1)v* + ... + b = O(b?)
Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50+ 400 + 3,000 + 20, 000 + 100, 000 = 123, 450
N(BFS) = 10+ 100 4 1,000 + 10,000 + 100, 000 4+ 999,990 = 1,111, 100

IDS does better because other nodes at depth d are not expanded

BFS can be modified to apply goal test when a node is generated



Summary

Criterion Breadth-  Uniform-  Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, if | > d Yes
Time pitl plC /el b bl b
Space b+l plC /el bm bl bd
Optimal? Yes* Yes No No Yes*




