;ﬁrf Artificial Intelligence, CS, Nanjing University
: Spring, 2017, Yang Yu

NANJING UNIVERSITY

Lecture 4: Search 3

http://cs.nju.edu.cn/yuy/course_ail?7.ashx

http://cs.nju.edu.cn/yuy/course_ai17.ashx
http://cs.nju.edu.cn/yuy/course_ai17.ashx

Previously...

Path-based search
Uninformed search

Depth-first, breadth first, uniform-cost search

Informed search

Best-first, A* search

Adversarial search

Competitive environments: Game

the agents’ goals are in conflict

We consider:
* two players
* Zero-sum games

Type of games:
* deterministic v.s. chance
* perfect v.s. partially observable information

Example

WS RAE — A JUrs T B R~ R B, iR SEat
=AR R SRR S B #HEk, B

>Elu

AT AR

Definition of a game

e So: The initial state, which specifies how the game is set up at the start.
e PLAYER(s): Defines which player has the move in a state.

e ACTIONS(s): Returns the set of legal moves in a state.

e RESULT(s, a): The transition model, which defines the result of a move.

e TERMINAL-TEST(s): A terminal test, which is true when the game is over and false
otherwise. States where the game has ended are called terminal states.

e UTILITY (s, p): A utility function (also called an objective function or payoff function),

F(O_Xaz%

two players: MAX and MIN

Tic-tac-toe search tree

MAX (X)
X X X
MIN (O) X X
x|o x| |o| [x
MAX (X) o
x|lo|x| [x|o X|o
MIN (O) X X
x]o[x] [x]o[x]| [x]o]x
TERMINAL o[x| [o]o]x X
o) x| x]o] [x|o]|o
Utility -1 0 +1

Optimal decision in games

Perfect play for deterministic, perfect-information games

|dea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:
MAX

MIN
MINIMAX(s) =
UTILITY (s) if TERMINAL-TEST(s)
MaX,e Actions(s) MINIMAX(RESULT(s,a)) if PLAYER(s) = MAX
MiNge Actions(s) MINIMAX(RESULT(s,a)) if PLAYER(s) = MIN

Minimax algorithm

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(a, state))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V— —00
for a, sin SUCCESSORS(state) do v+ MAX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
V— 00
for a, sin SUCCESSORS(state) do v+ MIN(v, MAX-VALUE(S))
return v

Properties of Minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(b™)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ~ 35, m =~ 100 for “reasonable” games
= exact solution completely infeasible

Multiple players

a vector (va,vn,vc) is used for 3 players

MIN

to move
A (1,2,6)
B (1.2.6) m
C (1,2,6) 6,1,2) (1,5,2) (5,4,5)
A
(1,2,6) 4,2,3) (6,1,2) (7,4,1) (5,1,1) (1,5,2) (7,7,1) (5,4,5)
MAX

Alpha-Beta pruning

not all branches are needed

(d)

Alpha-Beta pruning

« = the value of the best (i.e., highest-value) choice we have found so far at any choice point
along the path for MAX.

(8 = the value of the best (i.e., lowest-value) choice we have found so far at any choice point
along the path for MIN.

Player
/
\
~
’
Opponent ¢
N\
)
[] P V4
o /
\
~
o \
7’
- -
Player

Opponent

Alpha-Beta pruning

function ALPHA-BETA-SEARCH(state) returns an action
v < MAX-VALUE(state, —00, +00)
return the action in ACTIONS(state) with value v

function MAX-VALUE(state, a, 3) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V— —OO
for each ¢ in ACTIONS(state) do
v +— MAX(v, MIN-VALUE(RESULT(s,a), o, 3))
if v > [then return v
o «— MAX(a, v)
return v

function MIN-VALUE(state, o, 3) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V +— 400
for each ¢ in ACTIONS(state) do
v +— MIN(v, MAX-VALUE(RESULT(s,a) , a, 3))
if v < « then return v
B «— MIN(G, v)
return v

Properties of alpha-beta

Pruning does not affect final result
Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(b"/?)
= doubles solvable depth

A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)

550

Unfortunately, 35°7 is still impossible!

The search order is important

it might be worthwhile to try to examine first the
successors that are likely to be best

() [3,3] A
[[_wf Ve

£A

3 12 8 2 4 5 2

Resource limits

Standard approach:

e Use CUTOFF-TEST instead of TERMINAL-TEST
e.g., depth limit (perhaps add quiescence search)

e Use EVAL instead of UTILITY
I.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10* nodes/second
= 105 nodes per move =z 35%/?
= a—[3 reaches depth 8 = pretty good chess program

Evaluation functions

Black to move White to move

White slightly better Black winning
For chess, typically linear weighted sum of features

Fval(s) = wifi(s) + wafo(s) + ...+ wypful(s)

e.g., w; = 9 with
fi(s) = (number of white queens) — (number of black queens), etc.

H-Minimax

H-MINIMAX(s,d) =
EVAL(s) if CUTOFF-TEST (s, d)
MaXge Actions(s) H-MINIMAX (RESULT(s,a),d + 1) if PLAYER(s) = MAX
MiNge Actions(s) H-MINIMAX(RESULT (s,a),d + 1) if PLAYER(s) = MIN.

MAX

MIN m 1 20
1 2 4 1 20 2 400

Behaviour is preserved under any monotonic transformation of EVAL

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of 443,748,401,247
positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-
game match in 1997. Deep Blue searches 200 million positions per second,
uses very sophisticated evaluation, and undisclosed methods for extending
some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are
too good.

Go: human champions refuse to compete against computers, who are too
bad. In go, b > 300, so most programs use pattern knowledge bases to
suggest plausible moves.

Stochastic games

backgammon:

0 1 2 3 4 5 6 7 8 9 10 11 12

N 4‘» 4‘» L=

vHv

N 4‘» =

i

‘wr"v' N 72 7 ZaN N
>4 “

25 24 23 22 21 20 19 18 17 16 15 14 13

Expect-minimax

In nondeterministic games, chance introduced by dice, card-shuffling
Simplified example with coin-flipping:

MAX

CHANCE

MIN

EXPECTIMINIMAX (s) =

(UTILITY (s) if TERMINAL-TEST(s)
max, EXPECTIMINIMAX (RESULT(s,a)) if PLAYER(s) = MAX
min, EXPECTIMINIMAX (RESULT (s, a)) if PLAYER(s) = MIN

| D, P(r)EXPECTIMINIMAX (RESULT(s,7)) if PLAYER(S) = CHANCE

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon = 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20 x (21 x 20)* ~ 1.2 x 10’

As depth increases, probability of reaching a given node shrinks
= value of lookahead is diminished

a—(pruning is much less effective

TDGAMMON uses depth-2 search + very good EVAL
~ world-champion level

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown
Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game”

ldea: compute the minimax value of each action in each deal,

then choose the action with highest expected value over all deals™

Special case: if an action is optimal for all deals, it's optimal.”

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Proper analysis

* Intuition that the value of an action is the average of its values

in all actual states is WRONG

With partial observability, value of an action depends on the
information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as
> Acting to obtain information
> Signalling to one's partner
> Acting randomly to minimize information disclosure

