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Previously...

Uninformed search 

Informed search

Depth-first, breadth first, uniform-cost search

Best-first, A* search

Path-based search



Adversarial search

Competitive environments: Game

the agents’ goals are in conflict

We consider: 
* two players 
* zero-sum games

Type of games: 
* deterministic v.s. chance 
* perfect v.s. partially observable information



Example

两⼈轮流在⼀有九格⽅盘上划加字或圆圈, 谁先把
三个同⼀记号排成横线、直线、斜线, 即是胜者



Definition of a game
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Games, unlike most of the toy problems studied in Chapter 3, are interesting because
they are too hard to solve. For example, chess has an average branching factor of about 35,
and games often go to 50 moves by each player, so the search tree has about 35 100 or 10154

nodes (although the search graph has “only” about 1040 distinct nodes). Games, like the real
world, therefore require the ability to make some decision even when calculating the optimal
decision is infeasible. Games also penalize inefficiency severely. Whereas an implementation
of A∗ search that is half as efficient will simply take twice as long to run to completion, a chess
program that is half as efficient in using its available time probably will be beaten into the
ground, other things being equal. Game-playing research has therefore spawned a number of
interesting ideas on how to make the best possible use of time.

We begin with a definition of the optimal move and an algorithm for finding it. We
then look at techniques for choosing a good move when time is limited. Pruning allows usPRUNING

to ignore portions of the search tree that make no difference to the final choice, and heuristic
evaluation functions allow us to approximate the true utility of a state without doing a com-
plete search. Section 5.5 discusses games such as backgammon that include an element of
chance; we also discuss bridge, which includes elements of imperfect information becauseIMPERFECT

INFORMATION

not all cards are visible to each player. Finally, we look at how state-of-the-art game-playing
programs fare against human opposition and at directions for future developments.

We first consider games with two players, whom we call MAX and MIN for reasons that
will soon become obvious. MAX moves first, and then they take turns moving until the game
is over. At the end of the game, points are awarded to the winning player and penalties are
given to the loser. A game can be formally defined as a kind of search problem with the
following elements:

• S0: The initial state, which specifies how the game is set up at the start.
• PLAYER(s): Defines which player has the move in a state.
• ACTIONS(s): Returns the set of legal moves in a state.
• RESULT(s, a): The transition model, which defines the result of a move.
• TERMINAL-TEST(s): A terminal test, which is true when the game is over and falseTERMINAL TEST

otherwise. States where the game has ended are called terminal states.TERMINAL STATES

• UTILITY(s, p): A utility function (also called an objective function or payoff function),
defines the final numeric value for a game that ends in terminal state s for a player p. In
chess, the outcome is a win, loss, or draw, with values +1, 0, or 1

2
. Some games have a

wider variety of possible outcomes; the payoffs in backgammon range from 0 to +192 .
A zero-sum game is (confusingly) defined as one where the total payoff to all players
is the same for every instance of the game. Chess is zero-sum because every game has
payoff of either 0 + 1, 1 + 0 or 1

2
+ 1

2
. “Constant-sum” would have been a better term,

but zero-sum is traditional and makes sense if you imagine each player is charged an
entry fee of 1

2
.

The initial state, ACTIONS function, and RESULT function define the game tree for theGAME TREE

game—a tree where the nodes are game states and the edges are moves. Figure 5.1 shows
part of the game tree for tic-tac-toe (noughts and crosses). From the initial state, MAX has
nine possible moves. Play alternates between MAX’s placing an X and MIN’s placing an O

two players: MAX and MIN



Tic-tac-toe search tree
Game tree (2-player, deterministic, turns)
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Optimal decision in gamesMinimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:
MAX

3 12 8 642 14 5 2

MIN

3

A 1 A 3A 2

A 13A 12A 11 A 21 A 23A 22 A 33A 32A 31

3 2 2
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MAX A

B C D
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Figure 5.2 A two-ply game tree. The △ nodes are “MAX nodes,” in which it is MAX’s
turn to move, and the ▽ nodes are “MIN nodes.” The terminal nodes show the utility values
for MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root
is a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,
because it leads to the state with the lowest minimax value.

MIN, then MAX’s moves in the states resulting from every possible response by MIN to those
moves, and so on. This is exactly analogous to the AND–OR search algorithm (Figure 4.11)
with MAX playing the role of OR and MIN equivalent to AND. Roughly speaking, an optimal
strategy leads to outcomes at least as good as any other strategy when one is playing an
infallible opponent. We begin by showing how to find this optimal strategy.

Even a simple game like tic-tac-toe is too complex for us to draw the entire game tree
on one page, so we will switch to the trivial game in Figure 5.2. The possible moves for MAX

at the root node are labeled a1 , a2 , and a3 . The possible replies to a1 for MIN are b1 , b2 ,
b3 , and so on. This particular game ends after one move each by MAX and MIN. (In game
parlance, we say that this tree is one move deep, consisting of two half-moves, each of which
is called a ply.) The utilities of the terminal states in this game range from 2 to 14.PLY

Given a game tree, the optimal strategy can be determined from the minimax valueMINIMAX VALUE

of each node, which we write as MINIMAX(n). The minimax value of a node is the utility
(for MAX) of being in the corresponding state, assuming that both players play optimally
from there to the end of the game. Obviously, the minimax value of a terminal state is just
its utility. Furthermore, given a choice, MAX prefers to move to a state of maximum value,
whereas MIN prefers a state of minimum value. So we have the following:

MINIMAX(s) =
⎧
⎨

⎩

UTILITY(s) if TERMINAL-TEST(s)

maxa∈Actions(s) MINIMAX(RESULT(s, a)) if PLAYER(s) = MAX

mina∈Actions(s) MINIMAX(RESULT(s, a)) if PLAYER(s) = MIN

Let us apply these definitions to the game tree in Figure 5.2. The terminal nodes on the bottom
level get their utility values from the game’s UTILITY function. The first MIN node, labeled
B, has three successor states with values 3, 12, and 8, so its minimax value is 3. Similarly,
the other two MIN nodes have minimax value 2. The root node is a MAX node; its successor
states have minimax values 3, 2, and 2; so it has a minimax value of 3. We can also identify



Minimax algorithmMinimax algorithm

function Minimax-Decision(state) returns an action
inputs: state, current state in game

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v←−∞
for a, s in Successors(state) do v←Max(v, Min-Value(s))
return v

function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v←∞
for a, s in Successors(state) do v←Min(v, Max-Value(s))
return v
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Properties of Minimax
Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exact solution completely infeasible

But do we need to explore every path?

Chapter 6 12



Multiple players
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function MINIMAX-DECISION(state) returns an action
return argmaxa ∈ ACTIONS(s) MIN-VALUE(RESULT(state,a))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ←−∞
for each a in ACTIONS(state) do

v ← MAX(v , MIN-VALUE(RESULT(s , a)))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ←∞
for each a in ACTIONS(state) do

v ← MIN(v , MAX-VALUE(RESULT(s , a)))
return v

Figure 5.3 An algorithm for calculating minimax decisions. It returns the action corre-
sponding to the best possible move, that is, the move that leads to the outcome with the
best utility, under the assumption that the opponent plays to minimize utility. The functions
MAX-VALUE and MIN-VALUE go through the whole game tree, all the way to the leaves,
to determine the backed-up value of a state. The notation argmaxa∈ S f(a) computes the
element a of set S that has the maximum value of f(a).

to move
A

B

C

A

(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,1) (5,1,1) (1, 5, 2) (7, 7,1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (1, 5, 2) (5, 4, 5)

(1, 2, 6) (1, 5, 2)

(1, 2, 6)

X

Figure 5.4 The first three plies of a game tree with three players (A, B, C). Each node is
labeled with values from the viewpoint of each player. The best move is marked at the root.

vector of the successor state with the highest value for the player choosing at n. Anyone
who plays multiplayer games, such as Diplomacy, quickly becomes aware that much more
is going on than in two-player games. Multiplayer games usually involve alliances, whetherALLIANCE

formal or informal, among the players. Alliances are made and broken as the game proceeds.
How are we to understand such behavior? Are alliances a natural consequence of optimal
strategies for each player in a multiplayer game? It turns out that they can be. For example,
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its utility. Furthermore, given a choice, MAX prefers to move to a state of maximum value,
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⎩
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level get their utility values from the game’s UTILITY function. The first MIN node, labeled
B, has three successor states with values 3, 12, and 8, so its minimax value is 3. Similarly,
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a vector                 is used for 3 players
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the minimax decision at the root: action a1 is the optimal choice for MAX because it leads toMINIMAX DECISION

the state with the highest minimax value.
This definition of optimal play for MAX assumes that MIN also plays optimally—it

maximizes the worst-case outcome for MAX. What if MIN does not play optimally? Then it is
easy to show (Exercise 5.7) that MAX will do even better. Other strategies against suboptimal
opponents may do better than the minimax strategy, but these strategies necessarily do worse
against optimal opponents.

5.2.1 The minimax algorithm

The minimax algorithm (Figure 5.3) computes the minimax decision from the current state.MINIMAX ALGORITHM

It uses a simple recursive computation of the minimax values of each successor state, directly
implementing the defining equations. The recursion proceeds all the way down to the leaves
of the tree, and then the minimax values are backed up through the tree as the recursion
unwinds. For example, in Figure 5.2, the algorithm first recurses down to the three bottom-
left nodes and uses the UTILITY function on them to discover that their values are 3, 12, and
8, respectively. Then it takes the minimum of these values, 3, and returns it as the backed-
up value of node B. A similar process gives the backed-up values of 2 for C and 2 for D.
Finally, we take the maximum of 3, 2, and 2 to get the backed-up value of 3 for the root node.

The minimax algorithm performs a complete depth-first exploration of the game tree.
If the maximum depth of the tree is m and there are b legal moves at each point, then the
time complexity of the minimax algorithm is O(b m). The space complexity is O(bm) for an
algorithm that generates all actions at once, or O(m) for an algorithm that generates actions
one at a time (see page 87). For real games, of course, the time cost is totally impractical,
but this algorithm serves as the basis for the mathematical analysis of games and for more
practical algorithms.

5.2.2 Optimal decisions in multiplayer games

Many popular games allow more than two players. Let us examine how to extend the minimax
idea to multiplayer games. This is straightforward from the technical viewpoint, but raises
some interesting new conceptual issues.

First, we need to replace the single value for each node with a vector of values. For
example, in a three-player game with players A, B, and C , a vector ⟨vA, vB , vC⟩ is associated
with each node. For terminal states, this vector gives the utility of the state from each player’s
viewpoint. (In two-player, zero-sum games, the two-element vector can be reduced to a single
value because the values are always opposite.) The simplest way to implement this is to have
the UTILITY function return a vector of utilities.

Now we have to consider nonterminal states. Consider the node marked X in the game
tree shown in Figure 5.4. In that state, player C chooses what to do. The two choices lead
to terminal states with utility vectors ⟨vA =1 , vB = 2 , vC = 6⟩ and ⟨vA = 4 , vB = 2 , vC =3⟩.
Since 6 is bigger than 3, C should choose the first move. This means that if state X is reached,
subsequent play will lead to a terminal state with utilities ⟨vA = 1 , vB =2 , vC =6⟩. Hence,
the backed-up value of X is this vector. The backed-up value of a node n is always the utility



Alpha-Beta pruning
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Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B

has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D

is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node.
If Player has a better choice m either at the parent node of n or at any choice point further up,
then n will never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha–beta pruning gets its name from the
following two parameters that describe bounds on the backed-up values that appear anywhere
along the path:

not all branches are needed



Alpha-Beta pruning
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Player
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Figure 5.6 The general case for alpha–beta pruning. If m is better than n for Player, we
will never get to n in play.

α = the value of the best (i.e., highest-value) choice we have found so far at any choice point
along the path for MAX.

β = the value of the best (i.e., lowest-value) choice we have found so far at any choice point
along the path for MIN.

Alpha–beta search updates the values of α and β as it goes along and prunes the remaining
branches at a node (i.e., terminates the recursive call) as soon as the value of the current
node is known to be worse than the current α or β value for MAX or MIN, respectively. The
complete algorithm is given in Figure 5.7. We encourage you to trace its behavior when
applied to the tree in Figure 5.5.

5.3.1 Move ordering

The effectiveness of alpha–beta pruning is highly dependent on the order in which the states
are examined. For example, in Figure 5.5(e) and (f), we could not prune any successors of D

at all because the worst successors (from the point of view of MIN) were generated first. If
the third successor of D had been generated first, we would have been able to prune the other
two. This suggests that it might be worthwhile to try to examine first the successors that are
likely to be best.

If this can be done,2 then it turns out that alpha–beta needs to examine only O(bm/2)

nodes to pick the best move, instead of O(bm) for minimax. This means that the effective
branching factor becomes

√
b instead of b—for chess, about 6 instead of 35. Put another

way, alpha–beta can solve a tree roughly twice as deep as minimax in the same amount of
time. If successors are examined in random order rather than best-first, the total number of
nodes examined will be roughly O(b3m/4) for moderate b. For chess, a fairly simple ordering
function (such as trying captures first, then threats, then forward moves, and then backward
moves) gets you to within about a factor of 2 of the best-case O(bm/2) result.

2 Obviously, it cannot be done perfectly; otherwise, the ordering function could be used to play a perfect game!
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function ALPHA-BETA-SEARCH(state) returns an action
v ← MAX-VALUE(state,−∞, +∞)
return the action in ACTIONS(state) with value v

function MAX-VALUE(state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ←−∞
for each a in ACTIONS(state) do

v ← MAX(v , MIN-VALUE(RESULT(s ,a), α, β))
if v ≥ β then return v
α← MAX(α, v )

return v

function MIN-VALUE(state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ←+∞
for each a in ACTIONS(state) do

v ← MIN(v , MAX-VALUE(RESULT(s ,a) , α, β))
if v ≤ α then return v
β ← MIN(β, v )

return v

Figure 5.7 The alpha–beta search algorithm. Notice that these routines are the same as
the MINIMAX functions in Figure 5.3, except for the two lines in each of MIN-VALUE and
MAX-VALUE that maintain α and β (and the bookkeeping to pass these parameters along).

Adding dynamic move-ordering schemes, such as trying first the moves that were found
to be best in the past, brings us quite close to the theoretical limit. The past could be the
previous move—often the same threats remain—or it could come from previous exploration
of the current move. One way to gain information from the current move is with iterative
deepening search. First, search 1 ply deep and record the best path of moves. Then search
1 ply deeper, but use the recorded path to inform move ordering. As we saw in Chapter 3,
iterative deepening on an exponential game tree adds only a constant fraction to the total
search time, which can be more than made up from better move ordering. The best moves are
often called killer moves and to try them first is called the killer move heuristic.KILLER MOVES

In Chapter 3, we noted that repeated states in the search tree can cause an exponential
increase in search cost. In many games, repeated states occur frequently because of transpo-
sitions—different permutations of the move sequence that end up in the same position. ForTRANSPOSITION

example, if White has one move, a1, that can be answered by Black with b1 and an unre-
lated move a2 on the other side of the board that can be answered by b2, then the sequences
[a1, b1, a2, b2] and [a2, b2, a1, b1] both end up in the same position. It is worthwhile to store
the evaluation of the resulting position in a hash table the first time it is encountered so that
we don’t have to recompute it on subsequent occurrences. The hash table of previously seen
positions is traditionally called a transposition table; it is essentially identical to the exploredTRANSPOSITION

TABLE



Properties of alpha-beta
Properties of α–β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth

A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)

Unfortunately, 3550 is still impossible!
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The search order is important

it might be worthwhile to try to examine first the 
successors that are likely to be best 
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would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D

is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node.
If Player has a better choice m either at the parent node of n or at any choice point further up,
then n will never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha–beta pruning gets its name from the
following two parameters that describe bounds on the backed-up values that appear anywhere
along the path:



Resource limits 
Resource limits

Standard approach:

• Use Cutoff-Test instead of Terminal-Test
e.g., depth limit (perhaps add quiescence search)

• Use Eval instead of Utility
i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2

⇒ α–β reaches depth 8 ⇒ pretty good chess program
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Evaluation functions 
Evaluation functions

Black to move 

White slightly better

White to move 

Black winning

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.
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list in GRAPH-SEARCH (Section 3.3). Using a transposition table can have a dramatic effect,
sometimes as much as doubling the reachable search depth in chess. On the other hand, if we
are evaluating a million nodes per second, at some point it is not practical to keep all of them
in the transposition table. Various strategies have been used to choose which nodes to keep
and which to discard.

5.4 IMPERFECT REAL-TIME DECISIONS

The minimax algorithm generates the entire game search space, whereas the alpha–beta algo-
rithm allows us to prune large parts of it. However, alpha–beta still has to search all the way
to terminal states for at least a portion of the search space. This depth is usually not practical,
because moves must be made in a reasonable amount of time—typically a few minutes at
most. Claude Shannon’s paper Programming a Computer for Playing Chess (1950) proposed
instead that programs should cut off the search earlier and apply a heuristic evaluation func-
tion to states in the search, effectively turning nonterminal nodes into terminal leaves. InEVALUATION

FUNCTION

other words, the suggestion is to alter minimax or alpha–beta in two ways: replace the utility
function by a heuristic evaluation function EVAL, which estimates the position’s utility, and
replace the terminal test by a cutoff test that decides when to apply EVAL. That gives us theCUTOFF TEST

following for heuristic minimax for state s and maximum depth d:

H-MINIMAX(s, d) =
⎧
⎨

⎩

EVAL(s) if CUTOFF-TEST(s, d)

maxa∈Actions(s) H-MINIMAX(RESULT(s, a), d + 1) if PLAYER(s) = MAX

mina∈Actions(s) H-MINIMAX(RESULT(s, a), d + 1) if PLAYER(s) = MIN.

5.4.1 Evaluation functions

An evaluation function returns an estimate of the expected utility of the game from a given
position, just as the heuristic functions of Chapter 3 return an estimate of the distance to
the goal. The idea of an estimator was not new when Shannon proposed it. For centuries,
chess players (and aficionados of other games) have developed ways of judging the value of
a position because humans are even more limited in the amount of search they can do than
are computer programs. It should be clear that the performance of a game-playing program
depends strongly on the quality of its evaluation function. An inaccurate evaluation function
will guide an agent toward positions that turn out to be lost. How exactly do we design good
evaluation functions?

First, the evaluation function should order the terminal states in the same way as the
true utility function: states that are wins must evaluate better than draws, which in turn must
be better than losses. Otherwise, an agent using the evaluation function might err even if it
can see ahead all the way to the end of the game. Second, the computation must not take
too long! (The whole point is to search faster.) Third, for nonterminal states, the evaluation
function should be strongly correlated with the actual chances of winning.

Digression: Exact values don’t matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

Behaviour is preserved under any monotonic transformation of Eval

Only the order matters:
payoff in deterministic games acts as an ordinal utility function
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Deterministic games in practice 
Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of 443,748,401,247
positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-
game match in 1997. Deep Blue searches 200 million positions per second,
uses very sophisticated evaluation, and undisclosed methods for extending
some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are
too good.

Go: human champions refuse to compete against computers, who are too
bad. In go, b > 300, so most programs use pattern knowledge bases to
suggest plausible moves.
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Stochastic games
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5.5 STOCHASTIC GAMES

In real life, many unpredictable external events can put us into unforeseen situations. Many
games mirror this unpredictability by including a random element, such as the throwing of
dice. We call these stochastic games. Backgammon is a typical game that combines luckSTOCHASTIC GAMES

and skill. Dice are rolled at the beginning of a player’s turn to determine the legal moves. In
the backgammon position of Figure 5.10, for example, White has rolled a 6–5 and has four
possible moves.

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Figure 5.10 A typical backgammon position. The goal of the game is to move all one’s
pieces off the board. White moves clockwise toward 25, and Black moves counterclockwise
toward 0. A piece can move to any position unless multiple opponent pieces are there; if there
is one opponent, it is captured and must start over. In the position shown, White has rolled
6–5 and must choose among four legal moves: (5–10,5–11), (5–11,19–24), (5–10,10–16),
and (5–11,11–16), where the notation (5–11,11–16) means move one piece from position 5
to 11, and then move a piece from 11 to 16.

Although White knows what his or her own legal moves are, White does not know what
Black is going to roll and thus does not know what Black’s legal moves will be. That means
White cannot construct a standard game tree of the sort we saw in chess and tic-tac-toe. A
game tree in backgammon must include chance nodes in addition to MAX and MIN nodes.CHANCE NODES

Chance nodes are shown as circles in Figure 5.11. The branches leading from each chance
node denote the possible dice rolls; each branch is labeled with the roll and its probability.
There are 36 ways to roll two dice, each equally likely; but because a 6–5 is the same as a 5–6,
there are only 21 distinct rolls. The six doubles (1–1 through 6–6) each have a probability of
1/36, so we say P (1–1) = 1/36 . The other 15 distinct rolls each have a 1/18 probability.

backgammon:



Expect-minimaxNondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1
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CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .

1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

...... ......

...

C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

Figure 5.11 Schematic game tree for a backgammon position.

The next step is to understand how to make correct decisions. Obviously, we still want
to pick the move that leads to the best position. However, positions do not have definite
minimax values. Instead, we can only calculate the expected value of a position: the averageEXPECTED VALUE

over all possible outcomes of the chance nodes.
This leads us to generalize the minimax value for deterministic games to an expecti-

minimax value for games with chance nodes. Terminal nodes and MAX and MIN nodes (forEXPECTIMINIMAX

VALUE

which the dice roll is known) work exactly the same way as before. For chance nodes we
compute the expected value, which is the sum of the value over all outcomes, weighted by
the probability of each chance action:

EXPECTIMINIMAX(s) =
⎧
⎪⎪⎨

⎪⎪⎩

UTILITY(s) if TERMINAL-TEST(s)

maxa EXPECTIMINIMAX(RESULT(s, a)) if PLAYER(s)= MAX

mina EXPECTIMINIMAX(RESULT(s, a)) if PLAYER(s)= MIN∑
r P (r)EXPECTIMINIMAX(RESULT(s, r)) if PLAYER(s)= CHANCE

where r represents a possible dice roll (or other chance event) and RESULT(s, r) is the same
state as s, with the additional fact that the result of the dice roll is r.

5.5.1 Evaluation functions for games of chance

As with minimax, the obvious approximation to make with expectiminimax is to cut the
search off at some point and apply an evaluation function to each leaf. One might think that
evaluation functions for games such as backgammon should be just like evaluation functions



Nondeterministic games in practice 
Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20 × (21 × 20)3 ≈ 1.2 × 109

As depth increases, probability of reaching a given node shrinks
⇒ value of lookahead is diminished

α–β pruning is much less effective

TDGammon uses depth-2 search + very good Eval
≈ world-champion level
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Games of imperfect information 

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game∗

Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals∗

Special case: if an action is optimal for all deals, it’s optimal.∗

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average
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Proper analysis 

Proper analysis

* Intuition that the value of an action is the average of its values
in all actual states is WRONG

With partial observability, value of an action depends on the
information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as
♦ Acting to obtain information
♦ Signalling to one’s partner
♦ Acting randomly to minimize information disclosure
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