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The importance of features

features determine the instance distribution
good features lead to better mining results

shape

skin texture



Feature processing

a good feature set is more important
than a good classifier

feature selection

feature extraction



Feature selection

To select a set of good features from
a given feature set

Improve mining performance
reduce classification error

Reduce the time/space complexity of mining

Improve the interpretability
Better data visualization

Saving the cost of observing features



Feature selection

[search methodj(—[ evaluation criterion j

selected features




Evaluation criteria

classifier independent

@

dependency based criteria

information based criteria
distance based criteria

classifier internal weighting
classifier dependent

/
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Dependency based criteria

How a feature set is related with the class

correlation between a feature and the class
correlation between two features
search: select high correlated low redundant features
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Information based criteria

How much a feature set provides
information about the class

Information gain:

Entropy: H(X Z p; In(p;)

Entropy after split: 1(X;split) = Z #pa;z;tﬁon ) f H (partition j)

Information gain: H(X)-I(X; spht)



A simple forward search

sequentially add the next best feature

F' = original feature sets, C' is the class label
S =10
loop
a = the best correlated /informative feature in F
v = the correlation/IG of a
if v < 6 then
break
end if
F = F/{a}
S=5U{a}
. end loop
: return S
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A simple forward search

1: F' = original feature sets, C is the class label

2: S =1

3: loop

4: a = the best correlated /informative feature in F

5: v = the correlation/IG of a

6: if v < 6 then

7: break

8: end if

9: F =F/{a}
10: S=5SuU{a}
11: for Ct, € F do | remove
12: v = the correlation/IG of a’ to a
13: if v > a-v then F = F/{a'} redundant
14: end if features
15: end for

16: end loop
17: return S



Distance based criteria

Examples in the same class should be near
Examples in different classes should be far

: within class distant

select features to optimize the distance



Distance based criteria

Relief: feature weighting based on distance

w =20

1. random select an instance x

2. find the nearest same-class ‘ —
instance u (according to w) ‘

3. find the nearest diff-class ‘«@ _
instance v (according w) _ v /7

4, w=w — |x — u| + |x — v| _ _

5. goto 1 for m times ‘

select the features whose weights are above a threshold



Feature weighting from classifiers

Many classification algorithms perform
feature selection and weighting internally

decision tree: select a set of features by recursive IG

random forest: weight features by the frequency of
using a feature

linear model: a natural feature weighting

select features from these models’ internal feature
weighting
note the difference to FS for classification



Classifier dependent feature selection

<anffw) :;@ Q@

select features to maximize the performance of
the following mining task

slow in speed

hard to search
hard to generalize the selection results

more accurate mining result



Classifier dependent feature selection

Sequential forward search:

add features one-by-one
F' = original feature set

S=10
perf-so-far = the worst performance value
loop
for a € F' do
v(a) = the performance given features S U {a}
end for

ma = the best feature
mv = v(ma)
if mv is worse than perf-so-far then
break
end if
S=5Uma
perf-so-far = mw
end loop
return S



Classifier dependent feature selection

Sequential backward search:
remove features one-by-one

F' = original feature set
perf-so-far = the performance given features F'

loop
for a € F' do
v(a) = the performance given features F'/{a}
end for

ma = the best feature to remove
mv = v(ma)
if mv is worse than perf-so-far then
break
end if
F = F/{ma}
perf-so-far = muv
end loop
return S



Classifier dependent feature selection

2,3,1

forward backward

faster more accurate



Classifier dependent feature selection

random init 1,2,3

backward
forward
backward

combined forward-backward search



Feature extraction

disclosure the inner structure of the data
to support a better mining performance

feature extraction construct new features
commonly followed by a feature selection

usually used for low-level features
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[Linear methods

Principal components analysis (PCA)

rotate the data to align the directions of
the variance




[Linear methods

Principal components analysis (PCA)

the first dimension = the largest variance direction
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[Linear methods

Principal components analysis (PCA)

the first dimension = the largest variance direction
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[Linear methods

Principal components analysis (PCA)

the first dimension = the largest variance direction
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[Linear methods

Principal components analysis (PCA)

the first dimension = the largest variance direction

T
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[Linear methods

Principal components analysis (PCA)

the first dimension = the largest variance direction
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[Linear methods

Principal components analysis (PCA)

the first dimension = the largest variance direction
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[Linear methods

Principal components analysis (PCA)

the first dimension = the largest variance direction

T

Z = W X O
o O
Var(zy) = wiZw; SN
. . y o © 00
find a unit w to maximize the o \
variance O
maxwiZw; — x(wiw; — 1)

W,

23wi — 2w = 0, and therefore Xw; = aw;
WiZwi = awiw; = «
wis the eigenvector with the largest eigenvalue



[Linear methods

Principal components analysis (PCA)

the second dimension = the largest variance
direction orthogonal to the first dimension



[Linear methods

Principal components analysis (PCA)

the second dimension = the largest variance
direction orthogonal to the first dimension
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[Linear methods

Principal components analysis (PCA)

the second dimension = the largest variance
direction orthogonal to the first dimension

nvlvaxwérsz —ax(wiwy —1) - Bwiw; —0)
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[Linear methods

Principal components analysis (PCA)

the second dimension = the largest variance
direction orthogonal to the first dimension

nvlvaxwérsz —ax(wiwy —1) - Bwiw; —0)
2

22Wo — 200wo — Bw; =0
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[Linear methods

Principal components analysis (PCA)

the second dimension = the largest variance
direction orthogonal to the first dimension

nvlvaxwérsz —ax(wiwy —1) - Bwiw; —0)
2
22Wo — 200wo — Bw; =0

=0 2Wor = XW>

w’s are the eigenvectors sorted by the eigenvalues



Second Eigenvector

Linear methods
Optdlglts after PCA
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First Eigenvector from [Intro. ML]



[Linear methods

(a) Scree graph for Optdigits
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Eigenvectors from [Intro. ML]



[Linear methods

Multidimensional Scaling (MDS)

keep the distance into a lower dimensional space

O O

for linear transformation, O o
W is an n*k matrix
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Linear methods
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[Linear methods

Linear Discriminant Analysis (LDA)

find a direction such that the
two classes are well separated -

7z =wlx

m be the mean of a class
s2 be the variance of a class

maximize the criterion

(m; — mp)*
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[Linear methods

Linear Discriminant Analysis (LDA)



[Linear methods

Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)
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[Linear methods

Linear Discriminant Analysis (LDA)
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[Linear methods

Linear Discriminant Analysis (LDA)

(m —my)° = (wim —wlim)?

= wliim —my)(m; —my)'w
_ TSBW
st = Z(w x' — my)°r!

Zw xt—my) (X —mq)Iwr!
t

= wlisw

s? +s5 =wliSyw Sw = S1 +S»

The objective becomes:

T(w) = (my —mp)?>  wiSgw  |wlimi —my)l|°

$? + 85 wiSyw wliSyw



[Linear methods

Linear Discriminant Analysis (LDA)

The objective becomes:
Tow) — (my —my)>  wiSgw  |wl(m —m»)|*

s2+s5  wiSyw wTSyw
T _ T _
w'(m; —my) 2(my —mo) Y (m mz)SWw _ 0
wliSyw wliSyw

Given that w! (m; — m») /w!Sy w is a constant, we have
w = ¢Syt (mp — mp)

just take ¢ = 1 and find w



[Linear methods
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2% from [Intro. ML]



Manifold learning
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Manifold learning

.
..

!! Nm Hn vl
- d_ﬁn b
mﬂ_ _ﬂ_ﬂ_ ﬁ_ Tj_
NEEQEQ
. B u_hﬁ 3
um "B En.

=

Left-right pose

JSVERT Lighting direction

asod umop-dn



Manifold learning

A low intrinsic dimensional data embedded in a
high dimensional space

cause a bad distance measure




Manifold learning

ISOMAP

1. construct a neighborhood
graph (kNN and s-NN)

2. calculate distance matrix
as the shortest path on the
graph

3. apply MDS on the distance
matrix



Manifold learning

Optdigits after Isomap (with neighborhood graph).
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Manifold learning

Local Linear Embedding (LLE):

1. find neighbors for each instance

2. calculate a linear reconstruction for an instance

Z [x" — ZWrSXSr)Hz

3. f1nd low dlmensmnal instances preserving the
reconstruction

Z |z" — ZWrSZSHZ
r s

z space



Manifold learning

1.5
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from [Intro. ML]



Manifold learning

A

more manifold learning examples
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Manifold learning

more manifold learning examples

Bottomn kop articulation

Tap arch artleulatlan




A summary of approaches

( feature processing )

~

(feature selection) ( feature extraction )
1 filter ' %rapper) /
l \ ( PCA )

. search : (
MDS
(COI“]."ElatIOIl) [m ethod SJ l
anormation) ( LDA l
( distance ) (Manifoch
unsupervised L

( classitier ) from [Intro. ML]
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