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Lecture 6:
Bayesian Methods and Lazy Methods
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Bayes rule

classification using posterior probability

for binary classification
_|_17 P(y = +1 | ZB)
flz) =< -1, Py =+1| z)

random, otherwise

P

y=—1]|x)
P(y

—1]z)
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in general

f(z) = ATg max P(y | =)



Bayes rule

classification using posterior probability

for binary classification

+1, Ply=+1|z)>Ply=-1|=)
@) =-1,  Ply=-+1]2)<Ply=—1|a
random, otherwise
in general
f(x) = argmax P(y | @)
Y how the
— arg max P(ili y)P(y)/P(w) probabilities be
Yy estimated
— arg max P(ZE y)P(y)

Y



Naive Bayes

f(z) = ATg max Pz | y)P(y)

estimation the a priori by frequency:

P(y) & Ply) = - 3 Ty =)

assume features are conditional independence given
the class (naive assumption):

P(z|y) = P(x1,72,...,7, | Y)

decision function:

f(z) = argmax P(y) | | P(z: | y)

Y i



graphic representation
no assumption: x;

naive Bayes assumption:

Plx | y) = HP:UZ\y




Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

no P(color =3 |y =yes) =1/2

no

T T
: 4 P(y = yes) = 2/3
2 3 yes P(y =no) =3/5
0 3
3 2
1 4

no



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

BT T T
3 4 yes P(y — yes) — 2/5
2 3 yes P(y:no) 23/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

BT T T
3 4 yes P(y — yes) — 2/5
2 3 yes P(y:no) 23/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —
P(color =3 | y = yes)P(weight =3 | y = yes)P(y = yes) = 0.5 x 0.5 x 0.4 = 0.1
P(color = 3 | y = no) P(weight = 3 | y = no)P(y = no) = 0.33 x 0.33 x 0.6 = 0.06



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

BT T T
3 4 yes P(y — yes) — 2/5
2 3 yes P(y:no) 23/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —
P(color =3 | y = yes)P(weight =3 | y = yes)P(y = yes) = 0.5 x 0.5 x 0.4 = 0.1
P(color = 3 | y = no) P(weight = 3 | y = no)P(y = no) = 0.33 x 0.33 x 0.6 = 0.06

f(y | color = 0,weight =1) —



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

BT T T
3 4 yes P(y — yes) — 2/5
2 3 yes P(y:no) 23/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —
P(color =3 | y = yes)P(weight =3 | y = yes)P(y = yes) = 0.5 x 0.5 x 0.4 = 0.1
P(color = 3 | y = no) P(weight = 3 | y = no)P(y = no) = 0.33 x 0.33 x 0.6 = 0.06

f(y | color =0, weight =1) —

P(color =0 |y = yes)P(weight =1 |y = yes)P(y = yes) =0
P(color =0 |y =no)P(weight =1 |y =no)P(y =no) =0



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}
oo o [ —
yes Jes

es
Y +

no

yes

yes

w N = O

no

3
2
0
3

yes
1

A N W W s

no

smoothed (Laplacian correction) probabilities:

P(COlO’F — (0 | Yy = yes) — (() + 1)/(2 + 4) for COUl’ltil’lg frequency,
assume every event
Py =yes) = (2+1)/(5+2) has happened once.

f(y | color =0, weight =1) —

1 1 3
P(color =0 | y = yes)P(weight =1 | y = yes)P(y = yes) = e X m X o= 0.01
P(color =0 |y =no)P(weight =1 |y =no)P(y =no) = % X % X % = 0.02



Naive Bayes

advantages:
very fast:

scan the data once, just count: O(mn)
store class-conditional probabilities: O(n)
test an instance: O(cn) (c the number of classes)

good accuracy in many cases
parameter free

output a probability
naturally handle multi-class

disadvantages:



Naive Bayes

advantages:
very fast:

scan the data once, just count: O(mn)
store class-conditional probabilities: O(n)
test an instance: O(cn) (c the number of classes)

good accuracy in many cases
parameter free

output a probability
naturally handle multi-class

disadvantages:
the strong assumption may harm the accuracy
does not handle numerical features naturally




Relaxation of naive Bayes assumption

assume features are conditional
independence given the class

if the assumption holds, naive Bayes
classifier will have excellence performance

if the assumption does not hold ...



Relaxation of naive Bayes assumption

assume features are conditional
independence given the class

if the assumption holds, naive Bayes
classifier will have excellence performance

if the assumption does not hold ...
» Naive Bayes classifier may also have good
performance

» Reform the data to satisfy the assumption

» Invent algorithms to relax the assumption



Reform the data

clustering to generate data with subclasses

original data

reformed data

A

A

class A f

O

O

O

O

clustering the
data in each class

(@)
M “oo

oy

form a new data set
with subclasses




Semi-naive Bayes classifiers

TreeNB

train an NB classifier in each leaf node of a
rough decision tree

A

weight




Semi-naive Bayes classifiers

TAN (Tree Augmented NB)

extends NB by allowing every feature to
have one more parent feature other than
the class, which forms a tree structure

fully connected



Semi-naive Bayes classifiers

TAN (Tree Augmented NB)

mutual information %+
for every node pair
:> Wi
I(Xi, X; |Y EY[I(Xi;Xj)\Y]
= Ey|H H(X; | X;) | Y]
P(xi,z; | y)

fully connected graph _Zyp b3 18 BT Plas )

among features

maximum

weighted
Spanning tre
L
] wz-j
Connect to the
class node

N/

weights assigned

and
choose
a root



Semi-naive Bayes classifiers

AODE (average one-dependent estimators)

expand a posterior probability compare with NB:
with one-dependent estimators
Plx |y) = P(xa,...,xn | x1,y)P(x1 | ) Pz |y) = prz\y

= P(x1 | HP%\CIH,

» the Condltlonal independency is less important
»harder to estimate (fewer data)

AODE: average ODEs

~

f(z) = argmax Y I(count(z; >m))- P(y)- Pz |y)- | [ Pla; | ziy)



Handling numerical features

Discretization

recall what we have talked about in Lecture 2

Estimate probability density (P(X) — p(x))

(Gaussian model:

1 _ (w—g)Q
p— o)
ple) = ot
|

—f(@—p) ' T (z—p)

p(xla R 7xn) — (27T)k/2‘2‘1/26

training: calculate mean and covariance
test: calculate density



Bayesian networks

inference in a graphic model representation
a model simplified by conditional independence
a clear description of how things are going

P(C=T)

P(C=F)

0.8

0.2

P(S=T)

P(S=F)

0.02

0.98

C |PW=TIC) |P(W = FIC)
0.9 0.1
F 0.01 0.99
B |P(A=T|B)|P(A=F|B)
15 0.7 0.3
F 0.1 0.9

S |P(B=T|C,S)|P(B =F|C.S)
T 0.9 0.1

F 0.2 0.8

5 0.9 0.1

F 0.01 0.99

Judea Pearl
Turing Award 2011

“for fundamental contributions
to artificial intelligence through
the development of a calculus
for probabilistic and causal
reasoning”



Bayesian networks/Graphic models

Hidden Markov Model (HMM)

Iy voice

words

Topic Model: Latent Dirichlet Allocation

a, 3 parameters
¢ document

z topic

y w  words




Lazy methods

similarity function S(x1, x-)
training data{(zi,y1),..., (Tm, ym)}

no model is built until meet a test instance x

to predict the label of x
objects that look similar are indeed similar

find similar training instances S
build a model on S

use the model to predict the label of x



Nearest neighbor classifier
1-nearest neighbor: k-nearest neighbor:
© d* 0~ Otk’
O O
A A
A A
AAA A A A




Nearest neighbor classifier

1-nearest neighbor: k-nearest neighbor:
° dﬁ o " d&’
O O
A A
A JAN
AA A A A A

» asymptotically less than 2 times of the optimal Bayes
error

» naturally handle multi-class

» No training time

» nonlinear decision boundary

» slow testing speed for a large training data set

» have to store the training data

» sensitive to similarity function



Locality sensitive hashing

hashing

objects: OOOQOOO

value ™. e

.’
———————
........................................

______

hash function
buckets: I_L‘ I_L‘




Locality sensitive hashing

hashing

objects: OOOOOOO

value ™

...............................

—“'

___________
.........

hash function
buckets: I_L‘ I_L‘

locality sensitive hashing:
similar objects in the same bucket




Locality sensitive hashing

hashing

objects: OOOOOOO

value ™ i 5N

RET
_______
-.-..-,...--..-.--.-,..g..---.a-.. .......

hash function
buckets: I_L‘ I_L‘

locality sensitive hashing:
similar objects in the same bucket

A LSH function family H(c,r, P1, P») has the
following properties for anyxi,x2 € S

if ||331 — QBQH S T, then Phey(h(azl) = h(il?g)) Z P1

similar objects should be hashed in the same bucket with high probability

if le — 332” Z Cr, then Pheq.[(h(ibl) — h(il?g)) S PQ

dissimilar objects should be hashed in the same bucket with low probability




Locality sensitive hashing

Binary vectors in Hamming space

objects: (1100101101)
Hamming distance: count the number of positions
with different elements

1110101001, 110001100 7 = 3



Locality sensitive hashing

Binary vectors in Hamming space

objects: (1100101101)
Hamming distance: count the number of positions
with different elements

1110101001, 110001100]| 7 = 3

LSH functions: H = {h4,...,h,} where h;(z) = z;

ho hs hg
110101001 1 O 1
110010100 1 1 O
000110110 O 1 O
111001001 1 O 1
000011101 O 1 1



Locality sensitive hashing

Binary vectors in Hamming space

objects: (1100101101)
Hamming distance: count the number of positions
with different elements

1110101001, 110001100 7 = 3

LSH functions: H = {h4,...,h,} where h;(z) = z;
ho hs hg

110101001 1 0 1 P(hy(wy) = hi(@s)) = 1 — 121~ 2|
110010100 1 1 0 d
000110110 0 1 O T

111001001 1 0 1

000011101 0 1 1 frequency in the same bucket for

a sample of hashing functions



Locality sensitive hashing

Real vectors with angle similarity

CIZ]—{BQ

|2z |||z |

0(x1,x2) = arccos

LSH functions: # = {h,.}(r € B")where h, (z) = sign(r ' z)

P(hp(@1) = hp(@s)) = 1 — 2ELE

1

frequency in the same bucket for
a sample of hashing functions

T
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