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Predictive modeling

Find a relation between a set of variables 
(features) to target variables (labels).
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Predictive modeling

Find a relation between a set of variables 
(features) to target variables (labels).

color
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weight

place of origin
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growing period
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Supervised learning/inductive learning

Find a relation between a set of variables 
(features) to target variables (labels) 
from finite examples.

tasks

Classification: label is a nominal feature

Regression: label is a numerical feature

Ranking: label is a ordinal feature

...
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yi = f(xi)

examples/training data:
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learning: find an fˊ that is close to f
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Features: color, weight
Label: price [0,1] 

color

w
ei

g
h

t

ground-truth function



f

X ! [0,+1]

Regression

(color, weight) → price

Features: color, weight
Label: price [0,1] 

color

w
ei

g
h

t

ground-truth function

{(x1, y1), . . . , (xm, ym)}
yi = f(xi)

examples/training data:



f

X ! [0,+1]

Regression

(color, weight) → price

Features: color, weight
Label: price [0,1] 
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ground-truth function

{(x1, y1), . . . , (xm, ym)}
yi = f(xi)

examples/training data:

learning: find an fˊ that is close to f



Learning algorithms

Decision tree

Neural networks

Linear classifiers

Bayesian classifiers

Lazy classifiers

Ensemble methods

Handling big data

Why different classifiers?

  heuristics

  viewpoint

  performance



      algorithm

Learning algorithm components

task

model
(hypothesis space)

optimization

scoring function

(classification, 
regression)



Consider a very simple case

color taste ?

what the fˊ would be?
id color taste
1 red sweet
2 red sweet
3 half-­‐red not-­‐sweet
4 not-­‐red not-­‐sweet
5 not-­‐red not-­‐sweet
6 half-­‐red not-­‐sweet
7 red sweet
8 not-­‐red not-­‐sweet
9 not-­‐red not-­‐sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet
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(
sweet, color = red

not-sweet, color 6= red

Consider a very simple case

color taste ?

what the fˊ would be?

perfect
but not realistic

id color taste
1 red sweet
2 red sweet
3 half-­‐red not-­‐sweet
4 not-­‐red not-­‐sweet
5 not-­‐red not-­‐sweet
6 half-­‐red not-­‐sweet
7 red sweet
8 not-­‐red not-­‐sweet
9 not-­‐red not-­‐sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet
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sweet, color = red

sweet, color = half-red

not-sweet, color = not-red

Consider a very simple case

what the fˊ would be?id color taste
1 red sweet
2 red sweet
3 half-­‐red sweet
4 not-­‐red sweet
5 not-­‐red not-­‐sweet
6 half-­‐red sweet
7 red not-­‐sweet
8 not-­‐red not-­‐sweet
9 not-­‐red sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet

+
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red

half-red not-red

– –
–

not perfect
but how good?
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sweet, color = red
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not-sweet, color = not-red

Consider a very simple case
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sweet sweet not-sweet
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training error: 1            2            2
(1+2+2)/13=0.3846

H(X) = �
X

i

ratio(classi) ln ratio(classi) = 0.6902

I(X; split) =
X

i
ratio(spliti)H(spliti)

=
4

13
0.5623 +

4

13
0.6931 +

5

13
0.6730 = 0.6452

Gain(X; split) = H(X)� I(X; split) = 0.045

information gain:
entropy before split:

entropy after split:

information gain:



A little more complex case

color

taste ?

what the fˊ would be?

weight

id color weight taste
1 red 110 sweet
2 red 105 sweet
3 half-­‐red 100 sweet
4 not-­‐red 93 sweet
5 not-­‐red 80 not-­‐sweet
6 half-­‐red 98 sweet
7 red 95 not-­‐sweet
8 not-­‐red 102 not-­‐sweet
9 not-­‐red 98 sweet
10 half-­‐red 90 not-­‐sweet
11 red 108 sweet
12 half-­‐red 101 not-­‐sweet
13 not-­‐red 89 not-­‐sweet

compare features and use 
the better one 

use color only -> known
use weight only -> ?



A little more complex case
id color weight taste
1 red 110 sweet
2 red 105 sweet
3 half-­‐red 100 sweet
4 not-­‐red 93 sweet
5 not-­‐red 80 not-­‐sweet
6 half-­‐red 98 sweet
7 red 95 not-­‐sweet
8 not-­‐red 102 not-­‐sweet
9 not-­‐red 98 sweet
10 half-­‐red 90 not-­‐sweet
11 red 108 sweet
12 half-­‐red 101 not-­‐sweet
13 not-­‐red 89 not-­‐sweet

– + ––– + ++++– – +
80 110
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Gain(X; split) = H(X)� I(X; split) = 0.1517

A little more complex case
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X
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ratio(classi) ln ratio(classi) = 0.6902

training error:
(1+2)/13=0.2307

information gain:

for every split point

not-sweet sweet
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f 0
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sweet, weight > 95

not-sweet, weight  95

A little more complex case

color

taste ?

what the fˊ would be?

weight

id color weight taste
1 red 110 sweet
2 red 105 sweet
3 half-­‐red 100 sweet
4 not-­‐red 93 sweet
5 not-­‐red 80 not-­‐sweet
6 half-­‐red 98 sweet
7 red 95 not-­‐sweet
8 not-­‐red 102 not-­‐sweet
9 not-­‐red 98 sweet
10 half-­‐red 90 not-­‐sweet
11 red 108 sweet
12 half-­‐red 101 not-­‐sweet
13 not-­‐red 89 not-­‐sweet

color v.s. best split of weight



f 0
=

(
sweet, weight > 95

not-sweet, weight  95

A little more complex case

color

taste ?

what the fˊ would be?

weight

id color weight taste
1 red 110 sweet
2 red 105 sweet
3 half-­‐red 100 sweet
4 not-­‐red 93 sweet
5 not-­‐red 80 not-­‐sweet
6 half-­‐red 98 sweet
7 red 95 not-­‐sweet
8 not-­‐red 102 not-­‐sweet
9 not-­‐red 98 sweet
10 half-­‐red 90 not-­‐sweet
11 red 108 sweet
12 half-­‐red 101 not-­‐sweet
13 not-­‐red 89 not-­‐sweet

color v.s. best split of weight

training error v.s. info-gain
non-generalizable feature



Training error v.s. Information gain
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Training error v.s. Information gain

–+ – – –
– – –– + +++ +– –

–+ – – –
– – –– + +++ +– –

training error: 4

training error: 4

IG = H(X)� 0.5192

IG = H(X)� 0.5514information gain:

information gain:

training error is less smooth



Non-generalizable feature

id color weight taste
1 red 110 sweet
2 red 105 sweet
3 half-­‐red 100 sweet
4 not-­‐red 93 sweet
5 not-­‐red 80 not-­‐sweet
6 half-­‐red 98 sweet
7 red 95 not-­‐sweet
8 not-­‐red 102 not-­‐sweet
9 not-­‐red 98 sweet
10 half-­‐red 90 not-­‐sweet
11 red 108 sweet
12 half-­‐red 101 not-­‐sweet
13 not-­‐red 89 not-­‐sweet

the system may not know 
non-generalizable features

IG = H(X)� 0



Non-generalizable feature

id color weight taste
1 red 110 sweet
2 red 105 sweet
3 half-­‐red 100 sweet
4 not-­‐red 93 sweet
5 not-­‐red 80 not-­‐sweet
6 half-­‐red 98 sweet
7 red 95 not-­‐sweet
8 not-­‐red 102 not-­‐sweet
9 not-­‐red 98 sweet
10 half-­‐red 90 not-­‐sweet
11 red 108 sweet
12 half-­‐red 101 not-­‐sweet
13 not-­‐red 89 not-­‐sweet

the system may not know 
non-generalizable features

IG = H(X)� 0

Gain ratio(X) =

H(X)� I(X; split)

IV (split)

IV (split) = H(split)

Gain ratio as a correction:



A regression case

color

price ?

what the fˊ would be to 

minimize:

weight

id color weight price
1 red 110 12
2 red 105 10
3 half-­‐red 100 10
4 not-­‐red 93 15
5 not-­‐red 80 5
6 half-­‐red 98 8
7 red 95 8
8 not-­‐red 102 9
9 not-­‐red 98 6
10 half-­‐red 90 7
11 red 108 11
12 half-­‐red 101 12
13 not-­‐red 89 6

MSE =
1

n

X

i

(f(xi)� f

0(xi))
2
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A regression case

for color feature:
red

half-red not-red

id color weight price
1 red 110 12
2 red 105 10
3 half-­‐red 100 10
4 not-­‐red 93 15
5 not-­‐red 80 5
6 half-­‐red 98 8
7 red 95 8
8 not-­‐red 102 9
9 not-­‐red 98 6
10 half-­‐red 90 7
11 red 108 11
12 half-­‐red 101 12
13 not-­‐red 89 6

12

10
8

11

10
8 7

12

5

6

15
9 6

what is the prediction value of each color to minimize 
the mean square error? 
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A regression case

for color feature:
red

half-red not-red

id color weight price
1 red 110 12
2 red 105 10
3 half-­‐red 100 10
4 not-­‐red 93 15
5 not-­‐red 80 5
6 half-­‐red 98 8
7 red 95 8
8 not-­‐red 102 9
9 not-­‐red 98 6
10 half-­‐red 90 7
11 red 108 11
12 half-­‐red 101 12
13 not-­‐red 89 6
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what is the prediction value of each color to minimize 
the mean square error? 

mean value
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10.25, color = red

9.25, color = half-red

8.2, color = not-red

A regression case

for color feature:
red

half-red not-red

id color weight price
1 red 110 12
2 red 105 10
3 half-­‐red 100 10
4 not-­‐red 93 15
5 not-­‐red 80 5
6 half-­‐red 98 8
7 red 95 8
8 not-­‐red 102 9
9 not-­‐red 98 6
10 half-­‐red 90 7
11 red 108 11
12 half-­‐red 101 12
13 not-­‐red 89 6
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10.25

9.25 8.2



f 0 =

(
9.75, weight > 95

8.2, weight  95

A regression case

for weight feature:

9
80 110

10
12

107
6

8
11

8
5 156 12

mean: 8.2 mean: 9.75

MSE: 12.56 MSE: 3.6875

overall MSE: 7.1

for any split:

choose the split with minimal MSE



Use multiple features
color

shape

weight

place of origin

assortment

transport

preservation

growing period

weather

taste ?

price ?

find a model by find the best feature/best split

but only one feature/split is used



Use multiple features

color

not sweet

not red red

sweet

one feature model: decision stump

color

weight
not 

sweet

not red red

not 
sweet preservation

<100g >=100g

sweetnot 
sweet

goodbad

hierarchical model uses many features: decision tree

feature

value range

decision



Decision tree model

color

weight
not 

sweet

not red red

not 
sweet

<100g >=100g

sweet

color
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not 
sweet



Decision tree model

color

weight
not 

sweet

not red red

not 
sweet

<100g >=100g

sweet

color

w
ei

g
h

t sweet

not 
sweet

not 
sweet

find a decision tree that matches the data
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Top-down induction

color

not red red

function construct-node(data) :

1. feature, value ←split-criterion (data)

2. if feature is valid

3.     subdata[] ← split(data, feature, value)

4.     for each branch i

5.           construct-node (subdata[i])

6. else

7.     make a leaf

8. return
divide and conquer



Decision tree learning algorithms

ID3:    information gain

C4.5:   gain ratio, handling 
missing values

CART: gini index

Leo Breiman 1928-2005 Jerome H. Friedman

Ross Quinlan



IG = H(X)� 0.6132

IG = H(X)� 0.5514

Gini(X) = 1�
X

i

p2i

#left

#all
Gini(left) +

#right

#all
Gini(right)

IG = H(X)� 0.5192

Gini = 0.3438 Gini = 0.4427

Gini = 0.3667

Gini index

Gini index (CART):

–+ – – –
– – –– + +++ +– – –+ – – –

– – –– + +++ +– –

–+ – – –
– – –– + +++ +– –

Gini:

Gini after split:



Split-criterion: stop

Stop criterion:
    no feature to use

Classification: examples are pure of class

Regression: MSE small enough

color

weight
not 

sweet

not red red

not 
sweet preservation

<100g >=100g

sweetnot 
sweet

goodbad



DT boundary visualization

decision stump max depth=2 max depth=12



Oblique decision tree

choose a linear combination in each node:

axis parallel:
X1>0.5

oblique:
0.2 X1+ 0.7 X2+ 0.1 X3 > 0.5

hard to train



O(mkn)

O(m2kn)

O(2dmkn)

Advantages

Comprehensibility

Fast to test

Fast to train

not all features are tested
color

weight
not 

sweet

not red red

not 
sweet

<100g >=100g

sweet

samples: m
features: n
feature splits: k 
depth: d<n

training time:

  one node:

  d depth tree:

  full tree:

Nominal and numerical features
Non-parametric, non-metric

Regression/Classification
    Multi-class



Pruning

To make decision tree less complex

Pre-pruning: early stop

Post-pruning: prune full grown DT

‣minimum data in leaf

‣maximum depth

‣maximum accuracy

reduced error pruning



Reduced error pruning

color

weight
not 

sweet

not red red

not 
sweet preservation

<100g >=100g

sweetnot 
sweet

goodbad

1. Grow a decision tree

2. For every node starting from the leaves

3. Try to make the node leaf, if does not increase the error, 
keep as the leaf

could split a validation set out 
from the training set to 
evaluate the error



习题

监督学习的目标是否是最小化训练误差？

对于分类问题，当训练数据没有冲突时，决策树学习算法
是否一定能取得0训练错误率？（冲突样本：两个完全相
同的样本却被标记为不同类别）

决策树学习算法是否需要训练样本规范化
(normalization)？


