

Data Mining for M.Sc. students, CS, Nanjing University Fall, 2013, Yang Yu

Lecture 3: Machine Learning I Supervised Learning & Decision Tree

http://cs.nju.edu.cn/yuy/course_dm13ms.ashx

The desire of prediction

The desire of prediction

Supervised learning/inductive learning

Find a relation between a set of variables (features) to target variables (labels) *from finite examples*.

Classification: label is a nominal feature Regression: label is a numerical feature Ranking: label is a ordinal feature

tasks -

Classification

Features: color, weight **Label**: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ? $\mathcal{X} \rightarrow \{-1, +1\}$

ground-truth function f

Classification

Features: color, weight **Label**: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ? $\mathcal{X} \rightarrow \{-1, +1\}$

ground-truth function f

examples/training data: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}\$ $y_i = f(\boldsymbol{x}_i)$

Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ? $\mathcal{X} \rightarrow \{-1, +1\}$

ground-truth function f

examples/training data: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}\$ $y_i = f(\boldsymbol{x}_i)$

learning: <u>find</u> an f' that is <u>close</u> to f

Features: color, weight **Label**: price [0,1]

Features: color, weight Label: price [0,1]

(color, weight) \rightarrow price $\mathcal{X} \rightarrow [0, +1]$

ground-truth function f

examples/training data: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}\$ $y_i = f(\boldsymbol{x}_i)$

Features: color, weight Label: price [0,1]

learning: <u>find</u> an f' that is <u>close</u> to f

Learning algorithms

Decision tree

Neural networks

Linear classifiers

Bayesian classifiers

Lazy classifiers

Why different classifiers? heuristics viewpoint performance

Ensemble methods Handling big data

1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

$f' = \langle$	sweet,	color = red
	not-sweet,	$\operatorname{color} \neq \operatorname{red}$

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	n a d	aveat
7	red	sweet
8	not-red	not-sweet
8	not-red	not-sweet
8 9	not-red not-red	not-sweet not-sweet
8 9 10	not-red not-red half-red	not-sweet not-sweet not-sweet

$$f' = \begin{cases} \text{sweet}, & \text{color} = \text{red} \\ \text{not-sweet}, & \text{color} \neq \text{red} \end{cases}$$

perfect but not realistic

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
0	wat rad	not-sweet
8	not-red	not-sweet
8 9	not-red	not-sweet
•		
9	not-red	not-sweet
9 10	not-red half-red	not-sweet not-sweet

Consider a very simple case

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	sweet
4	not-red	sweet
5	not-red	not-sweet
6	half-red	sweet
7	red	not-sweet
8	not-red	not-sweet
9	not-red	sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the *f* would be? red

 $f' = \begin{cases} \text{sweet}, & \text{color} = \text{red} \\ \text{sweet}, & \text{color} = \text{half-red} \\ \text{not-sweet}, & \text{color} = \text{not-red} \end{cases}$

not perfect but how good?

Consider a very simple case $f' = \begin{cases} \text{sweet, } \text{color} = \text{red} \\ \text{sweet, } \text{color} = \text{half-red} \\ \text{not-sweet, } \text{color} = \text{not-red} \end{cases} \quad \begin{array}{c} \text{red} \\ \textcircled{l} \\ \end{array}{}$

(1+2+2)/13=0.3846

Consider a very simple case half-red not-red red $f' = \begin{cases} \text{sweet}, & \text{color} = \text{red} \\ \text{sweet}, & \text{color} = \text{half-red} \\ \text{not-sweet}, & \text{color} = \text{not-red} \end{cases}$ sweet not-sweet sweet training error:

(1+2+2)/13=0.3846

information gain: entropy before split: $H(X) = -\sum_{i} ratio(class_{i}) \ln ratio(class_{i}) = 0.6902$ entropy after split: $I(X; split) = \sum_{i} ratio(split_{i})H(split_{i})$ information gain: $= \frac{4}{13}0.5623 + \frac{4}{13}0.6931 + \frac{5}{13}0.6730 = 0.6452$ Gain(X; split) = H(X) - I(X; split) = 0.045

id	color weight		taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	half-red	98	sweet
7	red	95	not-sweet
8	not-red 102		not-sweet
9	not-red 98		sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	not-red 89	

color

weight

what the *f* would be?

compare features and use the <u>better</u> one

use color only -> known use weight only -> ?

A little more complex case

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	half-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

for every split point

training error: (1+2)/13=0.2307

information gain:

$$H(X) = -\sum_{i} ratio(class_{i}) \ln ratio(class_{i}) = 0.6902$$
$$I(X; \text{split}) = \sum_{i} ratio(split_{i})H(split_{i})$$
$$= \frac{5}{13}0.5004 + \frac{8}{13}0.5623 = 0.5385$$

Gain(X; split) = H(X) - I(X; split) = 0.1517

for every split point

training error: (1+2)/13=0.2307

information gain: entropy before split: $H(X) = -\sum_{i} ratio(class_{i}) \ln ratio(class_{i}) = 0.6902$ entropy after split: $I(X; split) = \sum_{i} ratio(split_{i})H(split_{i})$ $= \frac{5}{13}0.5004 + \frac{8}{13}0.5623 = 0.5385$ information gain: Gain(X; split) = H(X) - I(X; split) = 0.1517

id	color weight		taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	half-red	98	sweet
7	red	95	not-sweet
8	not-red	not-red 102	
9	not-red	not-red 98	
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	half-red 101	
13	not-red	not-red 89	

what the f' would be? **color v.s. best split of weight** $f' = \begin{cases} \text{sweet}, & \text{weight} > 95 \\ \text{not-sweet}, & \text{weight} \le 95 \end{cases}$

id	color weight		taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	half-red	98	sweet
7	red	95	not-sweet
8	not-red 102		not-sweet
9	not-red	not-red 98	
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	not-red 89	

what the *f* would be? color v.s. best split of weight $f' = \begin{cases} \text{sweet}, & \text{weight} > 95\\ \text{not-sweet}, & \text{weight} \le 95 \end{cases}$

training error v.s. info-gain non-generalizable feature

Training error v.s. Information gain

training error is less smooth

Training error v.s. Information gain

training error: 4

training error is less smooth

training error: 4

information gain: IG = H(X) - 0.5192

training error: 4 information gain: IG = H(X) - 0.5514

training error is less smooth

Non-generalizable feature

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	half-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

the system may not know non-generalizable features

IG = H(X) - 0

Non-generalizable feature

id	col	or ۱	weight	taste
1	re	d	110	sweet
2	re	d	105	sweet
3	half-	red	100	sweet
4	not-	red	93	sweet
5	not-	red	80	not-sweet
6	half-	red	98	sweet
7	re	d	95	not-sweet
8	not-	red	102	not-sweet
9	not-	red	98	sweet
10	half-	red	90	not-sweet
11	re	d	108	sweet
12	half-	red	101	not-sweet
13	not-	red	89	not-sweet

the system may not know non-generalizable features

$$IG = H(X) - 0$$

Gain ratio as a correction: Gain ratio $(X) = \frac{H(X) - I(X; \text{split})}{IV(\text{split})}$ IV(split) = H(split)

id	color	weight	price
1	red	110	12
2	red	105	10
3	half-red	100	10
4	not-red	93	15
5	not-red	80	5
6	half-red	98	8
7	red	95	8
8	not-red	102	9
9	not-red	98	6
10	half-red	90	7
11	red	108	11
12	half-red	101	12
13	not-red	89	6

what the *f* would be to minimize:

$$MSE = \frac{1}{n} \sum_{i} (f(x_i) - f'(x_i))^2$$

id	color	weight	price
1	red	110	12
2	red	105	10
3	half-red	100	10
4	not-red	93	15
5	not-red	80	5
6	half-red	98	8
7	red	95	8
8	not-red	102	9
9	not-red	98	6
10	half-red	90	7
11	red	108	11
12	half-red	101	12
13	not-red	89	6

what is the prediction value of each color to minimize the mean square error?

$$MSE = \frac{1}{n} \sum_{i} (f(x_i) - f'(x_i))^2$$

color	weight	price
red	110	12
red	105	10
half-red	100	10
not-red	93	15
not-red	80	5
half-red	98	8
red	95	8
not-red	102	9
not-red	98	6
half-red	90	7
red	108	11
half-red	101	12
not-red	89	6
	red red half-red not-red half-red half-red half-red half-red	red 110 red 105 half-red 100 not-red 93 not-red 93 half-red 98 half-red 95 not-red 98 half-red 98 half-red 98 not-red 98 half-red 98 half-red 102 not-red 103 half-red 108 half-red 101

what is the prediction value of each color to minimize the mean square error?

$$MSE = \frac{1}{n} \sum_{i} (f(x_i) - f'(x_i))^2 \qquad \text{mean value}$$

id	color	weight	price
1	red	110	12
2	red	105	10
3	half-red	100	10
4	not-red	93	15
5	not-red	80	5
6	half-red	98	8
7	red	95	8
8	not-red	102	9
9	not-red	98	6
10	half-red	90	7
11	red	108	11
12	half-red	101	12
13	not-red	89	6

$$f' = \begin{cases} 10.25, & \text{color} = \text{red} \\ 9.25, & \text{color} = \text{half-red} \\ 8.2, & \text{color} = \text{not-red} \end{cases}$$

for *weight* feature: **for any split**:

choose the split with minimal MSE

find a model by find the best feature/best split

but only one feature/split is used

find a decision tree that matches the data

Top-down induction

function construct-node(data) :

- 1. *feature*, *value* \leftarrow **split-criterion** (*data*)
- 2. if feature is valid
- 3. *subdata*[] \leftarrow split(*data*, *feature*, *value*)
- 4. for each branch *i*
- 5. **construct-node** (*subdata*[*i*])
- 6. else
- 7. make a leaf
- 8. return

divide and conquer

Decision tree learning algorithms

ID3: information gain

C4.5: gain ratio, handling missing values

Ross Quinlan

CART: gini index

Leo Breiman 1928-2005

Jerome H. Friedman

Gini index

Gini index (CART): Gini: $Gini(X) = 1 - \sum p_i^2$ **Gini after split:** $\frac{\# \text{left}}{\# \text{all}} Gini(\text{left}) + \frac{\# \text{right}}{\# \text{all}} Gini(\text{right})$ IG = H(X) - 0.6132IG = H(X) - 0.5192Gini = 0.4427Gini = 0.3438IG = H(X) - 0.5514Gini = 0.3667

Classification: examples are pure of class

Regression: MSE small enough

DT boundary visualization

decision stump

max depth=2

max depth=12

choose a linear combination in each node:

axis parallel: $X_1 > 0.5$

oblique: $0.2 X_1 + 0.7 X_2 + 0.1 X_3 > 0.5$

hard to train

Advantages

Fast to test

Fast to train samples: *m* features: *n* feature splits: *k* depth: *d*<*n*

training time: one node: O(mkn) d depth tree: $O(2^dmkn)$ full tree: $O(m^2kn)$

To make decision tree less complex

Pre-pruning: early stop
minimum data in leaf
maximum depth
maximum accuracy

Post-pruning: prune full grown DT

reduced error pruning

Reduced error pruning

- 1. Grow a decision tree
- 2. For every node starting from the leaves
- 3. Try to make the node leaf, if does not increase the error, keep as the leaf

could split a validation set out from the training set to evaluate the error

监督学习的目标是否是最小化训练误差?

对于分类问题,当训练数据没有冲突时,决策树学习算法 是否一定能取得O训练错误率? (冲突样本:两个完全相 同的样本却被标记为不同类别)

决策树学习算法是否需要训练样本规范化 (normalization)?