P‘--‘iﬂ PA A Data I\/Ilnlng for M.Sc. students, CS, Nanjing University
\u v N '/j
o ool Fall, 2013, Yang Yu

NANJING UNIVERSITY

Lecture 3: Machine Learning |
Supervised Learning & Decision Tree

http://cs.nju.edu.cn/yuy/course_dml3ms.ashx

A2

http://cs.nju.edu.cn/yuy/course_dm12ms.ashx
http://cs.nju.edu.cn/yuy/course_dm12ms.ashx

Position

<o) > |

L<x,f(x) >
| < xz,f(x) > J

F r,f(x) > J

{ < xz,f(x) > J

we are here

The desire of prediction

Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).

Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).

color

<\

weight « — |

shape

Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).

color place of origin

weight « _

shape

/ assortment

__—» transport

—> preservation

\ growing period

weather

Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).

place of origin

color /
shape Y\v\ / assortment
weight « i | __—» transport
—> preservation
- _—— growing period
taste ? \

weather

Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).

color place of origin

weight « _

shape

/ assortment

__—» transport

—> preservation
growing period
taste? / \\
price ? weather

Supervised learning/inductive learning

Find a relation between a set of variables
(features) to target variables (labels)
from finite examples.

~ Classification: label is a nominal feature

Regression: label is a numerical feature

tasks <
Ranking: label is a ordinal feature

Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

A !
(color, weight) — sweet ?
_ el X —{—-1,4+1}
%D l' ~‘\
'qg y ground-truth function f

Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

weight

o® (color, weight) — sweet ?
JJUSTER @ ... © X — {-1,+1}
e O |
@ @ ; ground-truth function f
\~~~ a a /l
e & examples/training data:

> {(wl,y1),--->($maym)}
color i = e

Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

weight

o® (color, weight) — sweet ?
JJUSTER @ ... © X — {-1,+1}
e O |
@ @ ; ground-truth function f
\~~~ a a /l
) " examples/training data:
1 > {(wlayl)w"a(wmaym)}
COI0T yi = f(@;)

learning: find an f* that is close to f

Regression

Features: color, weight
Label: price [0,1]

1 (color, weight) — price
X — |0, +1]
<
'qg ground-truth function f

color

Regression

Features: color, weight
Label: price [0,1]

| @ (color, weight) — price
@ ® @ X — |0, +1]
= 0 |
13 ground-truth function f
2 P ® O
® | ine datas
e ® examples/training data:

> {(wl,y1),--->($maym)}
color i = e

Regression

Features: color, weight
Label: price [0,1]

1 ® (color, weight) — price
@ @ X — |0, +1]

ground-truth function f

weight
O
O

e ® examples/training data:

> {(w1,y1),---7($maym)}
color i = e

learning: find an f* that is close to f

Learning algorithms

Decision tree

Neural networks

Linear classifiers

Bayesian classifiers

Lazy classifiers

Ensemble met]

nods

Handling big c

ata

Why different classifiers?
heuristics
viewpoint

performance

Learning algorithm components

model
(hypothesis space)
AN
task> algorithm [optimization
(classification, / l

regression) | |
scoring function]

Consider a very simple case

color

O 00 N o Ll p W N B

e N o
w N -, O

red
red
half-red
not-red
not-red
half-red
red
not-red
not-red
half-red
red
half-red
not-red

sweet

sweet
not-sweet
not-sweet
not-sweet
not-sweet

sweet
not-sweet
not-sweet
not-sweet

sweet
not-sweet
not-sweet

> taste ?

what the f* would be?

Consider a very simple case

color

O 00 N o Ll p W N B

e N o
w N -, O

red
red
half-red
not-red
not-red
half-red
red
not-red
not-red
half-red
red
half-red
not-red

sweet

sweet
not-sweet
not-sweet
not-sweet
not-sweet

sweet
not-sweet
not-sweet
not-sweet

sweet
not-sweet
not-sweet

> taste ?

what the f* would be?

/

\

sweet,

not-sweet,

color = red
color # red

Consider a very simple case

color

O 00 N o Ll p W N B

e N o
w N -, O

red
red
half-red
not-red
not-red
half-red
red
not-red
not-red
half-red
red
half-red
not-red

sweet
sweet
not-sweet
not-sweet
not-sweet
not-sweet
sweet
not-sweet
not-sweet
not-sweet
sweet
not-sweet
not-sweet

> taste ?

what the f* would be?

/

\

sweet, color = red
not-sweet, color # red
perfect

but not realistic

Consider a very simple case

id | color | taste |
1 red sweet
2 red sweet
3 half-red sweet
4 not-red sweet
5 not-red not-sweet
6 half-red sweet
7 red not-sweet
8 not-red not-sweet
9 not-red sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet
sweet, color
/ -
f' = < sweet, color
not-sweet, color

what the / would be?

red

@

o ©

half-red

¢
©e

not-red

&
© ©

red

not perfect
halt-red but how good?
not-red

Consider a very simple case

red
fsweet, color = red a
"= { sweet, color = half-red @ @
| not-sweet, color = not-red (—)

half-red

not-red

&
© ©

not-sweet

Consider a very simple case

red
fsweet, color = red 9
"= { sweet, color = half-red @ @
| not-sweet, color = not-red (—)
sweet
training error: 1

(1+2+2)/13=0.3846

half-red
©o
S
©

sweet

2

not-red

&
© ©

not-sweet

2

Consider a very simple case

red half-red not-red
(sweet, color = red 9 a a
"= { sweet, color = half-red a 9 Q a 9 a
| not-sweet, color = not-red (—) e e e
sweet sweet not-sweet
& &
training error: 1 2 2

(1+2+2)/13=0.3846

information gain:
entropy before split: H(X) = — Z ratio(class;) Inratio(class;) = 0.6902

entropy after split: I(X;split) = Z ratio(split;) H (split;)

4 4 5
i e = 05623+ - 0.6931 + —=0.6730 = 0.6452
information gain: 30-0023 + 130.6931 4 50.6730 = 0.645

Gain(X; split) = H(X) — I(X;split) = 0.045

A little more complex case

> taste ?

__id | color | weight | taste |

S i what the f* would be?

2 red 105 sweet

3 half-red 100 sweet

CERELC A e e compare features and use

5 not-red 80 not-sweet

6 half-red 98 sweet the better one

7 red 95 not-sweet

8 not-red 102 not-sweet

SR e = E— use color only -> known

10 half-red 90 not-sweet use Welght Only -> ?

11 red 108 sweet

12 half-red 101 not-sweet

13 not-red 89 not-sweet

A little more complex case
|_id | color | weight

1 red 110 sweet

2 red 105 sweet

3 half-red 100 sweet

4 not-red 93 sweet

5 not-red 80 not-sweet
6 half-red 98 sweet

7 red 95 not-sweet
8 not-red 102 not-sweet
9 not-red 98 sweet
10 half-red 90 not-sweet
11 red 108 sweet
12 half-red 101 not-sweet
13 not-red 89 not-sweet

— co—go e —coo—

80 110

A little more complex case

—©

80 not-sweet ' sweel 110

for every split point

training error:
(1+2)/13=0.2307

information gain:
H(X)=-— Z ratio(class;) Inratio(class;) = 0.6902
I(X;split) = Z ratio(split;)H (split;)

D 8
= —0.5004 4+ —0.5623 = 0.5385
130 5004 + 13

Gain(X; split) = H(X) — I(X;split) = 0.1517

A little more complex case

—©

80 not-sweet ' sweel 110

for every split point

training error:
(1+2)/13=0.2307

information gain:
entropy before split: H(X) = — Z ratio(class;) Inratio(class;) = 0.6902

entropy after split: I(X;split) = Y~ ratio(split;)H (split;)
5

8
= —0.5004 + 1—30.5623 = (0.5385

information gain: 13

Gain(X; split) = H(X) — I(X;split) = 0.1517

A little more complex case

> taste ?
L red L] e what the / would be?
2 red 105 sweet
3 half-red 100 sweet ; . .
P T B p— color v.s. best split of weight
5 not-red 80 not-sweet 4 .
6 half-red 98 sweet f, o Sweet, Welght > 99
7 red 95 not-sweet T .
8 not-red 102 not-sweet \HOt—SWGGt, Welght S 95
9 not-red 98 sweet
10 half-red 90 not-sweet
11 red 108 sweet
12 half-red 101 not-sweet
13 not-red 89 not-sweet

A little more complex case

_id | color | weight | taste |
1 red 110 sweet
2 red 105 sweet
3 half-red 100 sweet
4 not-red 93 sweet
5 not-red 80 not-sweet
6 half-red 98 sweet
7 red 95 not-sweet
8 not-red 102 not-sweet
9 not-red 98 sweet
10 half-red 90 not-sweet
11 red 108 sweet
12 half-red 101 not-sweet
13 not-red 89 not-sweet

> taste ?

what t

ne f” would be?

color v.s. best split of weight
o <(Sweet, weight > 95
| not-sweet, weight < 95

\

training

error v.s. info-gain

non-generalizable feature

Training error v.s. Information gain

805450 0000,

training error is less smooth

Training error v.s. Information gain

training error: 4

805450 0000,

training error: 4

training error is less smooth

Training error v.s. Information gain

training error: 4

information gain: 1G = H(X) — 0.5192

2 05 AS° SHRP -

training error: 4

information gain: IG = H(X) — 0.5514

training error is less smooth

Non-generalizable feature

red 110 sweet
red 105 sweet

\rEa o the system may not know
fotred 93 sweet non-generalizable features

ot-red 80 not-sweet

1alf-red 98 sweet
red 95 not-sweet

ot-red 102 not-sweet IG — H(X) — O

‘not-red 98 sweet

O 0o N OO U1 A W N P

[EEY
o

'half-red 90 not-sweet

11 red 108 sweet
12 half-red 101 not-sweet
13 not-red 89 not-sweet

Non-generalizable feature

| id | color | weight | taste |
1 red 110 sweet
2 red 105 sweet
3 half-red 100 sweet the SYStem may IIOt kl’lOW
SN S N non-generalizable features
5 not-red 80 not-sweet
6 1alf-red 98 sweet
7 red 95 not-sweet
8 not-red 102 not-sweet IG — H(X) — O
9 not-red 98 sweet
10 half-red 90 not-sweet
11 red 108 sweet
12 half-red 101 not-sweet
13 not-red 89 not-sweet

(ain ratio as a correction:
H(X) — I(X;split)
IV (split)

Gain ratio(X) =

IV (split) = H (split)

A regression case

color —

_ > PIl ?
weight «— price
“mmm

1 red 110 what the / would be to
2 red 105 10

3 half-red 100 10 minimize:

4 not-red 93 15

5 not-red 80 5 1

6 half-red 98 8 / 2
7 red 95 8 MSE — E Z(f(xz) - f (xz))
8 not-red 102 9 1

9 not-red 98 6

10 half-red 90 7

11 red 108 11

12 half-red 101 12

13 not-red 89 6

A regression case
“mmm for color feature:

1 red 110
2 red 105 10 red
3 half-red 100 10
4 not-red 93 15
5 not-red 80 5
6 half-red 98 8 half-red not-red
7 red 95 8
8 not-red 102 9
9 not-red 98 6
10 half-red 90 7
11 red 108 11
12 half-red 101 12
13 not-red 89 6

what is the prediction value of each color to minimize
the mean square error?

MSE = l Z(f(ﬂi‘z) — f’(fl?z'))2

n =
()

A regression case
“mmm for color feature:

1 red 110
2 red 105 10 red
3 half-red 100 10
4 not-red 93 15
5 not-red 80 5
6 half-red 98 8 half-red not-red
7 red 95 8
8 not-red 102 9
9 not-red 98 6
10 half-red 90 7
11 red 108 11
12 half-red 101 12
13 not-red 89 6

what is the prediction value of each color to minimize
the mean square error?

MSE = 1 Z(f(x’i) — f(x;))? mean value

n =
i

A regression case
N REENEEEEETIES £o1r color feature:

1 red 110 12
2 red 105 10 red
3 half-red 100 10
4 not-red 93 15
5 not-red 80 5
6 half-red 98 8 half-red not-red
7 red 95 8
8 not-red 102 9 10.25
9 not-red 98 6
10 half-red 90 7
11 red 108 11
12 half-red 101 12 9.25 8.2
13 not-red 89 6 .

10.25, color = red

/ .
f'=149.25, color = half-red
8.2, color = not-red

A regression case

for weight feature:
for any split:

DR

110

mean: 8.2 mean: 9.75
o <f9.75, weight > 95
|82, weight <95

MSE: 12.56 MSE: 3.6875
overall MSE: 7.1

choose the split with minimal MSE

Use multiple features

color

shape \ / / assortment

fransport
/ P

place of origin

weight

—3) preservation

~ ~
taste ? / \

price ? weather

growing period

find a model by find the best feature/best split

but only one feature/split is used

Use multiple features

one feature model: decision stump

not red red
(not sweet (sweet)

hierarchical model uses many features: decision tree

feature -------""""""
¢’7
¢¢¢‘V >=100g
decision . J
preservation
bad good

not
sweet
sweet

Decision tree model

A

g ' sweet

= :

o0 not poTmmmmees

= sweet !
' Nnot
 sweet
: >

color

Decision tree model

weight
g0
=
=
e
S

find a decision tree that matches the data

Top-down induction

not red &ed

function construct-node(data) :

1. feature, value «<split-criterion (data)

2. if feature is valid

3. subdatal] « split(data, feature, value)
4. for each branch i

5. construct-node (subdatali))

6. else

7. Mmake a leaf

3. return divide and conquer

Decision tree learning algorithms

ID3: information gain

C4.5: gain ratio, handling
missing values

Ross Quinlan

CART: gini index

Leo Breiman 1928-2005 Jerome H. Friedman

Gini index

Gini index (CART)
Gini: Gini(X) =1 — sz
Gini after split: j:zft Gini(left) + #;iﬁlt Gini(right)

1G = H()—05192 IG=H(X —06132
Gini = 0.3438 Gint = 0. 4427

e e & Bane

IG = H(X) — 0.5514
Gini = 0.3667

Split-criterion: stop

preservatiora

bad good

Stop criterion: swee

no feature to use
Classification: examples are pure of class

Regression: MSE small enough

DT boundary visualization

decision stump max depth=2 max depth=12

Oblique decision tree

choose a linear combination in each node:

axis parallel:
X1>0.5

oblique:
0.2 Xi+ 0.7 Xo+ 0.1 X3 > 0.5

hard to train

Advantages

Fast to train

samples: m training time:

features: n one node: O(mkn)
feature splits: k .
depth: d<n d depth tree: O(2mkn)

. 2
Fast to test full tree: O(m~kn)

not all features are tested

Regression/Classification 2°tred

Multi-class
Comprehensibility

Nominal and numerical features
Non-parametric, non-metric

>=100g

Pruning

To make decision tree less complex

Pre-pruning: early stop
» minimum data in leaf

» maximum depth
» maximum accuracy

Post-pruning: prune full grown DT

reduced error pruning

Reduced error pruning

1. Grow a decision tree

2. For every node starting from the leaves

3. Try to make the node leaf, if does not increase the error,
keep as the leaf

not red

>=100g

preservatiorg

could split a validation set out bad \g()()d
from the training set to

evaluate the error [sweet j
sweet

~J el

mEFINEmREES=RRIMEIINZIRE?
XK, FYIGEEREARN, RRMFIFE

O —EREIRFOJIGERER? (PREFEER: WP TeE

[IF AR A ARIC AR [E S5

REMZIBEEAHTBINGFFERITEA
(normalization)?

