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The core of all the problems

infinite samples

V.S.

finite samples —_——



Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

weight

o® (color, weight) — sweet ?
JJUSTER @ ... © X — {-1,+1}
e O |
@ @ ; ground-truth function f
\~~~ a a /l
) " examples/training data:
1 > {(wlayl)w"a(wmaym)}
COI0T yi = f(@;)

learning: find an f* that is close to f



Classification

what can be observed:

on examples/training data:

{(®1,91)s s (T, ym) ) i = f@i)

e.g. training error

:_ZI (@) # yi)

what is expected:
over the whole distribution: generalization error

¢ = E[I(h(x) # f(x))
_ /X p(2)I(h(z) # f(x))|dz



Regression

Features: color, weight
Label: price [0,1]

1 ® (color, weight) — price
@ @ X — |0, +1]

ground-truth function f

weight
O
O

e ® examples/training data:

> {(w1,y1),---7($maym)}
color i = e

learning: find an f* that is close to f



Regression

what can be observed:

on examples/training data:
{(mlayl)aa(mmaym)} Yi :f(ZBZ)

e.g. training mean square error/MSE

1 m
€“ = Z(h(mz) — i)
i=1

what is expected:
over the whole distribution: generalization MSE

¢ = B, (h(x) # f(x))?
_ /X p(x) (h(x) — f(x))2da
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The overfitting phenomena

-- the divergence between infinite and
finite samples

red: generalization error
A blue: training error

error

tree depth

why tree depth?



Tree depth and the possibilities

features: n
feature type: binary
depth: d<n

How many different trees?

n!
one-branch: 2¢ ~ 92d

Y SRl

full-tree:  22° H (n — i)

the possibility of trees grows very fast with d
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The version space algorithm

an abstract view of learning algorithms

S: most specific hypothesis

G: most general hypothesis

o® /
= = ® / version space: consistent

hypotheses [Mmitchell, 1997)
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The version space algorithm

an abstract view of learning algorithms

S: most specific hypothesis

G: most general hypothesis

version space: consistent

e —
@ T / : / hypotheses [Mitchell, 1997]

weight
(1)
—Q—
© ©
S
o ©

ey >
© e o a conceptual algorithm:
color 1. for every example, remove
the conflict boxes
selection a hypothesis 2. find S in remaining boxes

according to learner’s bias 3- 1ind G in remaining boxes
4. output the mean of S and G



The version space algorithm

an abstract view of learning algorithms

three components of a learning algorithm

4 )

hypothesis

space scoring search
function algorithm
C%%DC%

#possibility = hypothesis space size




Theories

The i.i.d. assumption:

all training examples and future (test)
examples are drawn independently from
an identical distribution

. unknown but fixed
- S . distribution D

bias-variance dilemma (regression)

generalization bound (classification)



Bias-variance dilemma

Suppose we have 100 training examples
but there can be different 100 training examples

Start from the expected training MSE:

Bpled = Ep |- (h(w:) — )| = — >~ Ep [(h(:) )]

(assume no noise)

— Ep[h ZB) )2} + Ep [(ED

variance

|
+ Ep 2(h(z) — Ep[h(z)])(Ep[h(z)] — f(x))]
|

h(@)] — f())]
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Bias-variance dilemma
Ep [(h(z) — Ep[h(x)])?] Ep [(Eplh(z)] — f(x))?]
variance biasA?2

smaller hypothesis space

f
=> thr 2
smaller variance ) @ g
but higher bias /

hypothesis space
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Bias-variance dilemma
Ep [(h(z) — Ep[h(x)])?] Ep [(Eplh(z)] — f(x))?]

variance biasA?2
high b balanced low b
small v large v
A red: generalization error
blue: training error
—
O
P
—
Q
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Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space
{y=a+bx|abeR}

higher polynomials: moderate training error, moderate space
{y=a+br+cx*+dz’|a,b,c,dcR)

even higher order: no training error, large space

{y:a+b$—|—0$2—|—d$’3—|—€$4‘|—f$5‘aabacadaevfeR}



Generalization error

assume i.i.d. examples, and the ground-truth
hypothesis is a box

.

o °“o .
-0
2l 0 09,
o oo

.




Generalization error

assume i.i.d. examples, and the ground-truth
hypothesis is a box

e
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Generalization error

assume i.i.d. examples, and the ground-truth
hypothesis is a box

1 O
e e e the error of picking a
- ey @ consistent hypothesis:
sl 0 e e
-%D © . with probability at least 1 — 0
z| @ o © 1 1
5 +¥ e < — - (In|H|+1In=)
----------------------- m 0
O @ O
>
color

smaller generalization error:

» more examples
» smaller hypothesis space
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Generalization error

for one h

h 1s consistent

What is the probability of e (h) > e

assume his bad: €¢,(h) > €

h is consistent with 1 example:

P<1-—e€

h is consistent with m example:

P<(1—¢™



Generalization error
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Generalization error

hi is chosen and hyisbad P<(1—-¢™
h> is chosen and h2isbad P<(1—-¢o™

hx is chosen and hxis bad P<(1—-¢e™

overall:
Jh: h can be chosen (consistent) but is bad

Union bound: P(AU B) < P(A) + P(B)

P(3h is consistent but bad) < k- (1 —¢)™ <|H|- (1 —¢)™



Generalization error

P(3h is consistent but bad) < k- (1 —¢)™ < |H|- (1 —¢)™

Pleg>¢) < |H|- (1™

€g < — - -(In|H|+1In-)



Generalization error
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Generalization error

P(3h is consistent but bad) < k- (1 —¢)™ < |H|- (1 —¢)™

Pleg>¢) < |H|- (1™
0

with probability at least 1 — 9

1 1
€g < E'(IHW\JFIHE)



Inconsistent hypothesis

What if the ground-truth hypothesis
is NOT a box: non-zero training error

weight
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Inconsistent hypothesis

What if the ground-truth hypothesis
is NOT a box: non-zero training error

e =
g po===- Py "'5';?' """ g
- a El" a ...~“é
': :'I a a :s‘
o0 o !
V) :\‘ a [}
g a E > N a a'l,
:.g.-:.'.: ...... i
o/ O e
>
/ color

training error



Inconsistent hypothesis

What if the ground-truth hypothesis
is NOT a box: non-zero training error

A
e
%o © "} (+] 9\5\‘ with probability at least 1 — ¢
qg = . a W ;,’l 1 1
- N \/E(”l A+ )
o/ O e

training error



Inconsistent hypothesis

What if the ground-truth hypothesis
is NOT a box: non-zero training error

o®
@ ...
— PR - BTN e
fb e é © O with probability at least 1 — 9
2l o iy 09, 1 1
@0 e c<atry Pty
o/ O e
>

tralning error
5 » more examples

smaller generalization error: » smaller hypothesis space
» smaller training error



Hoetfding's inequality

X be an 1.1.d. random variable
X1,X9,...,X,, be m samples X; € |b—al

1 m
— E X; — E[X] < difference between sum and expectation
m

i=1

p(% i;Xi —E[X] > €) < exp (— (b2€_2232>



Generalization error

for one h

Xi = I(h(z;) # f(z;)) €0,1]
% > X; — e(h) E[X:] — e,(h)
P(et(h) — e4(h) > €) < exp (—2€¢°m)

P(e; — €4 > €)
< P(3h € |H] : e1(h) — €4(h) > €) < |H|exp (—2¢°m)

1 1
eg<et—|—\/2—-(ln|7-[\+ln—)

m )



Generalization error

for one h

X; = I(h(x;) # f(x:)) € [0,1]

P(et(h) — €4(h) > €) < exp (—2¢*m)

P(e; — €4 > €)
< P(3h € |H] : e1(h) — €4(h) > €) < |H|exp (—2¢°m)
6

with probability at least 1 — o

1
5)

1
€g<€t—|—\/%'(lﬂl7‘”—|—ln



Generalization error: Summary

assume i.i.d. examples
consistent hypothesis case:

with probability at least 1 — o

1 1
€g < E‘(lﬂm|+1ﬂg)

inconsistent hypothesis case:

with probability at least 1 — 9

1
5)

1
€ < et—I—\/E(ln\”Hl + In

generalization error:
number of examples m
training error e
hypothesis space complexity In |H|
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Probably approximately correct (PAC):
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PAC-learning

Probably approximately correct (PAC):
with probability at least 1 — 0

1

5)

1
eg<et+\/%-(ln\?ﬂ—l—ln

PAC-learnable: [valiant, 1984]
A concept class C is PAC-learnable if

exists a learning algorithm A such that

for all f € C,e> 0,6 > 0and distribution D
Pp(e, <€) >1-9

using m = poly(1/e,1/6) examples and

polynomial time.



PAC-learning

Probably approximately correct (PAC):
with probability at least 1 — 0

1

5)

1
eg<et—|—\/%-(ln\7{]—|—ln

PAC-learnable: [valiant, 1984] Leslie Valiant
Turing Award (2010)

- ) i EATCS Award (2008)
A concept class C is PAC-learnable if o e

exists a learning algorithm A such that NevarinnaPrize (1950

for all f € C,e> 0,6 > 0and distribution D
Pp(e, <€) >1-9

using m = poly(1/¢,1/6) examples and

polynomial time.



Dimensions of modeling

( < x,f(x) >J @ . }})SS function

< x,f(x) > ~_

£ = @
< xz,f(x) >
B *‘”

optlmlz ation

model
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PAC-learning;z 4 &3t -=

= 3
7|T/\1:;|:|R/\1—_Efx

IMEERIRZE?

BUT P 2 I RR 228 A,
Fi={y=a+bxr+cx?|a,bccR}

Fo={y=a+ax+bx*+ bz’ + (a +b)z* | a,b € R}
B A (overfitting) f1 & Fc (underfitting) &R,

/1

2% Bias-Variance [
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