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Bayes rule

classification using posterior probability

for binary classification

in general
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f(x) = argmax

y
P (x | y)P (y)

P (x | y) = P (x1, x2, . . . , xn | y)
= P (x1 | y) · P (x2 | y) · . . . P (xn | y)
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Naive Bayes

estimation the a priori by frequency:

assume features are conditional independence given 
the class (naive assumption):

decision function:



P (x | y) =
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P (xi | y)
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y
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Naive Bayes

graphic representation

no assumption:

naive Bayes assumption:

xi



P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...



f(y | color = 3, weight = 3) !
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P (color = 3 | y = no)P (weight = 3 | y = no)P (y = no) = 0.33⇥ 0.33⇥ 0.6 = 0.06

P (color = 3 | y = yes)P (weight = 3 | y = yes)P (y = yes) = 0.5⇥ 0.5⇥ 0.4 = 0.1

f(y | color = 3, weight = 3) !

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

P (color = 0 | y = yes)P (weight = 1 | y = yes)P (y = yes) = 0

P (color = 0 | y = no)P (weight = 1 | y = no)P (y = no) = 0

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...

f(y | color = 0, weight = 1) !



P (color = 0 | y = yes) = (0 + 1)/(2 + 4)

P (y = yes) = (2 + 1)/(5 + 2)

P (color = 0 | y = no)P (weight = 1 | y = no)P (y = no) =
2

7
⇥ 1

8
⇥ 4

7
= 0.02

P (color = 0 | y = yes)P (weight = 1 | y = yes)P (y = yes) =
1

6
⇥ 1

7
⇥ 3

7
= 0.01

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

+

color sweet?

0 yes

1 yes

2 yes

3 yes

smoothed (Laplacian correction) probabilities:

f(y | color = 0, weight = 1) !

for counting frequency, 
assume every event 
has happened once. 



O(mn)

O(n)

Naive Bayes

advantages:

disadvantages:

very fast: 
    scan the data once, just count:
    store class-conditional probabilities: 
    test an instance:            (c the number of classes) 

good accuracy in many cases
parameter free
output a probability
naturally handle multi-class

O(cn)
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Naive Bayes

advantages:

disadvantages:

very fast: 
    scan the data once, just count:
    store class-conditional probabilities: 
    test an instance:            (c the number of classes) 

good accuracy in many cases
parameter free
output a probability
naturally handle multi-class

O(cn)

the strong assumption may harm the accuracy
does not handle numerical features naturally



Relaxation of naive Bayes assumption

assume features are conditional 
independence given the class

if the assumption holds, naive Bayes 
classifier will have excellence performance

if the assumption does not hold ...



Relaxation of naive Bayes assumption

assume features are conditional 
independence given the class

if the assumption holds, naive Bayes 
classifier will have excellence performance

if the assumption does not hold ...

‣ Naive Bayes classifier may also have good 
performance

‣ Reform the data to satisfy the assumption

‣ Invent algorithms to relax the assumption



Reform the data

clustering to generate data with subclasses
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clustering the 
data in each class

form a new data set 
with subclasses

2-class

4-class



Semi-naive Bayes classifiers

TreeNB

color

w
ei

g
h

t

NB1

NB2

NB3

train an NB classifier in each leaf node of a 
rough decision tree



Semi-naive Bayes classifiers

TAN (Tree Augmented NB)
extends NB by allowing every feature to 
have one more parent feature other than 
the class, which forms a tree structure

y

xi

y

xi

fully connected TAN
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Semi-naive Bayes classifiers

TAN (Tree Augmented NB)
xi xi

fully connected graph 
among features

weights assigned

mutual information 
for every node pair

maximum 
weighted 
spanning tree

wij

xi

and 
choose 
a root

xi

connect to the 
class node

y



f(x) = argmax

y

X

i

I(count(xi � m)) · ˜P (y) · ˜P (xi | y) ·
Y

j

˜

P (xj | xi, y)

P (x | y) = P (x2, . . . , xn | x1, y)P (x1 | y)

= P (x1 | y)
Y

i

P (xi | x1, y)

Semi-naive Bayes classifiers

AODE (average one-dependent estimators)

P (x | y) =
Y

i

P (xi | y)

compare with NB:expand a posterior probability 
with one-dependent estimators

‣the conditional independency is less important

‣harder to estimate (fewer data)

AODE: average ODEs



p(x) =
1p
2⇡�2

e

� (x�µ)2

2�2

p(x1, . . . , xn) =
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Handling numerical features

Discretization

     recall what we have talked about in Lecture 2

Estimate probability density (P(X) → p(x))

Gaussian model:

training: calculate mean and covariance
test: calculate density



Bayesian networks

inference in a graphic model representation
a model simplified by conditional independence
a clear description of how things are going

Judea Pearl
Turing Award 2011

“for fundamental contributions 
to artificial intelligence through 
the development of a calculus 
for probabilistic and causal 
reasoning”



xt

↵,�

✓

z

w

Bayesian networks/Graphic models

Hidden Markov Model (HMM)
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习题

朴素贝叶斯假设是指数据的属性之间相互独立？

朴素贝叶斯假设不满足时，朴素贝叶斯的性能一定不好？


