
Lecture	
 9:	
 Machine	
 Learning	
 VII
Neural	
 Networks	
 and	
 Nearest	
 Neighbors

http://cs.nju.edu.cn/yuy/course_dm13ms.ashx

Data Mining for M.Sc. students, CS, Nanjing University
Fall, 2013, Yang Yu

http://cs.nju.edu.cn/yuy/course_dm12ms.ashx
http://cs.nju.edu.cn/yuy/course_dm12ms.ashx

Neural networks

f(
X

i

wixi) =
X

i

wixi

f(
X

i

wixi) =
1

1 + e

�⌃

f(
X

i

wixi) = I(
X

i

wixi > 0)

Neuron / perceptron

output a function of sum of
input

linear function:

sigmoid function:

threshold function:

X

i

wixi

f(⌃)

x1

x2

x3

x4

x5

w1
w2
w3
w4
w5

x0
w0

Limitation of single neuron

[Minsky and Papert, Perceptrons, 1969]

Marvin Minsky
Turing Award 1969 AI Winter

Multi-layer perceptrons

feed-forward network

x3

x2

x4

x1

...

y

input
layer

hidden
layer

hidden
layer

output
layer

sigmoid network with one hidden layer can approximate
arbitrary function [Cybenko 1989]

ŷ = F (x)

Back-propagation algorithm

[Rumelhart, Hinton, Williams, Nature 1986]

gradient descent

E(w) = (F (x)� y)2error:

w f(
X

i

wixi) =
1

1 + e

�⌃

ŷ = F (x)

Back-propagation algorithm

[Rumelhart, Hinton, Williams, Nature 1986]

gradient descent

E(w) = (F (x)� y)2error:

�wi,j = �⌘
@E(w)

@wi,j
update one weight:

w f(
X

i

wixi) =
1

1 + e

�⌃

ŷ = F (x)

Back-propagation algorithm

[Rumelhart, Hinton, Williams, Nature 1986]

gradient descent

E(w) = (F (x)� y)2error:

�wi,j = �⌘
@E(w)

@wi,j
update one weight:

w

@E(w)

@wi,j
=

@E(w)

@F (x)

@F (x)

@wi,j

weight of the laster layer

f(
X

i

wixi) =
1

1 + e

�⌃

ŷ = F (x)

Back-propagation algorithm

[Rumelhart, Hinton, Williams, Nature 1986]

gradient descent

E(w) = (F (x)� y)2error:

�wi,j = �⌘
@E(w)

@wi,j
update one weight:

w

@E(w)

@wi,j
=

@E(w)

@F (x)

@F (x)

@wi,j

weight of the laster layer

@E(w)

@wi,j
=

@E(w)

@F (x)

@F (x)

@HL2

@HL2

@HL1

@HL1

@wi,j

weight of the first layer

f(
X

i

wixi) =
1

1 + e

�⌃

Back-propagation algorithm

[Rumelhart, Hinton, Williams, Nature 1986]

For each given training example (x, y), do�

1. Input the instance x to the NN and compute the output value ou of every output
unit u of the network�

2. For each network output unit k, calculate its error term δk�

3. For each hidden unit k, calculate its error term δh�

4. Update each network weight wji which is the weight associated with the i-th
input value to the unit j�

Advantage and disadvantages

Smooth and nonlinear
decision boundary

Slow convergence

Many local optima

Best network structure unknown

Hard to handle nominal features

Deep network

[Hinton and Salakhutdinov, Science 2006]

autoencoder:

Nearest neighbor

what looks similar are similar

Nearest neighbor

1-nearest neighbor: k-nearest neighbor:

Predict the label as that of the NN
or the (weighted) majority of the k-NN

for classification:

Nearest neighbor

1-nearest neighbor: k-nearest neighbor:

Predict the label as that of the NN
or the (weighted) average of the k-NN

for regression:

Search for the nearest neighbor

Linear search

...

n times of distance calculations
O(nk)

Nearest neighbor

for retrieval:

Nearest neighbor classifier

Nearest neighbor classifier

‣ as classifier, asymptotically less than 2 times of
the optimal Bayes error
‣ naturally handle multi-class
‣ no training time
‣ nonlinear decision boundary

‣ slow testing speed for a large training data set
‣ have to store the training data
‣ sensitive to similarity function

Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

construction:
alternatively choose one dimension,
make a split by the median value.

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

linear search on k-d tree:
 search(node,x):
 1. if node is a leave, return the distance and the instance
 2. compare search(left branch,x) and search(right branch,x)
 3. return the instance with smaller distance

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

 search(node,x):
 1. if node is a leave, return the distance and the instance
 2. if out-of-best-range, return infinity distance
 2. compare search(left branch,x) and search(right branch,x)
 3. return the instance with smaller distance

a smarter search on k-d tree:

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Accelerate NN search: hashing

hashing
objects:

buckets:

value
hash function

Accelerate NN search: hashing

hashing
objects:

buckets:

value

locality sensitive hashing:
 similar objects in the same bucket

hash function

Accelerate NN search: hashing

hashing
objects:

buckets:

value

locality sensitive hashing:
 similar objects in the same bucket

hash function

A LSH function family has the
following properties for any x1,x2 2 S

if kx1 � x2k  r, then Ph2H(h(x1) = h(x2)) � P1

if kx1 � x2k � cr, then Ph2H(h(x1) = h(x2))  P2

H(c, r, P1, P2)

similar objects should be hashed in the same bucket with high probability

dissimilar objects should be hashed in the same bucket with low probability

k110101001, 110001100kH = 3

Accelerate NN search: hashing

Binary vectors in Hamming space

objects: (1100101101)
Hamming distance: count the number of positions
with different elements

k110101001, 110001100kH = 3

Accelerate NN search: hashing

Binary vectors in Hamming space

objects: (1100101101)
Hamming distance: count the number of positions
with different elements

h2 h5 h9

LSH functions: where
hi(x) = xiH = {h1, . . . , hn}

110101001
110010100
000110110
111001001
000011101

1 0 1
1 1 0
0 1 0
1 0 1
0 1 1

k110101001, 110001100kH = 3

Accelerate NN search: hashing

Binary vectors in Hamming space

objects: (1100101101)
Hamming distance: count the number of positions
with different elements

h2 h5 h9

LSH functions: where
hi(x) = xiH = {h1, . . . , hn}

110101001
110010100
000110110
111001001
000011101

1 0 1
1 1 0
0 1 0
1 0 1
0 1 1

P (hi(x1) = hi(x2)) = 1� kx1 � x2k
d

frequency in the same bucket for
a sample of hashing functions

hr(x) = sign(r>x)

r1

r2
P (hr(x1) = hr(x2)) = 1� ✓(x1,x2)

⇡

✓(x1,x2) = arccos

x

>
1 x2

kx1kkx2k

Accelerate NN search: hashing

Real vectors with angle similarity

LSH functions: whereH = {hr}(r 2 Bn)

frequency in the same bucket for
a sample of hashing functions

习题

多层神经网络为何能实现非线性分类？

BP算法能否收敛到全局最优解？

k近邻分类算法是否需要训练预测模型？

