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Start from a sci-fiction series

A SCI FI CHANNEL ORIGINAL SERIES a’
SCIFI.COM/BATTLESTAR - SCl Fl



CAPRICA

TWO FAMILIES. ONE DESTINY.

A SCI FI CHANNEL ORIGINAL SERIES Series Premiere
SCIFI.COM/BATTLESTAR Friday Jan 22 at 9/8¢

syfy.com/caprica
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The hu@g brain contains roughly 100 terabytes of information.
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Not‘much \llvherﬁou get right down to it.
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Thelquestion isn't how to store it. It's how to access it.
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Medical scans, DNA profiles, psych evalua tions,
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CAT scans, genetic typlng
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Synaptic records, security cameras, -
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Test results, shopping r'ecm:ds,
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An abstract view of DM systems
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Data mining

““Data mining is the analysis of (often large)
observational data sets to find unsuspected
relationships and to summarize the data in novel
ways that are both understandable and useful to

)
the data owner. [D. Hand et al., Principles of Data Mining]
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Data mining factors

Large: small data needs no data mining
Unsuspected relationships: correct and significant
Novel: rediscovery of known facts is useless
Understandable: decision maker oriented

Useful: mining results should be useful to the users

Observational data v.s. experimental data
[D. Hand et al., Principles of Data Mining]



Data mining factors
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Data mining factors
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How large can the data be

over 100 PB

11to 100PB
11to10PB
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11t0 100GB
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[KDnuggets Poll, 2012]



How large can the data be

2013 Largest Database Analyze/Data Mined

over 100 PB

11to 100PB
1.1to10PB
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11to 1007TB
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101 MBto 1l GB
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What can data mining do? DM Tasks

Exploratory data analysis

interactive and visualized
how to visualize high dimensional data?

Descriptive modeling

describe a data set
how to characterize general properties of a dataset

Predictive Modeling

perform inference from a data set
how to construct the mapping from the input space to
the output space
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Discovering patterns and rules

find association relationship
how to find high correlated items out of a huge data set
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Retrieval by content |




Example: Mining supermarket transactions

WAL~MART

ALWAYS LOW PRICES.




Example: Mining valuable customers

GSM




Example: mining network intrusion patterns

recognize intrusion accesses




Example: Mining biology data

-

stage (1-3) stage (4-6) stage (7-8)
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stage (9-10) stage (11-12) stage (13-16)

Finding key genes
Identifying gene expression patterns

Identifying gene interactions



Improving diagnosis of
doctors by providing
suggestions based on
historical medical data




Example: Mining financial data

Fraud detection

Stock trends prediction




xample: Mining the web
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amazoncom
Your Recent History (Whats this?)
Recently Viewed Items Continue Shopping: Customers Who Bought items in Your Recent History Also Bought Page 10f9
Principles of Data Mining THE
D.J. Hand ART O
PROGRAMMING
Hardcover e i
& Probabilistic Robotics [rRR—— : a ;
Sebastian Thrun
Hardcover ’ N
.. Simulation-based \%\/ = ,9-
Algorithms for... The Elements of Statistical... ~ Machine Leaming: An Artificial Intelligence: A... Probabilistic Graphical The Art of R Programming: A Pattem Classification (2nd
Hyeong Soo Chang » Trevor Hastie Algorithmic... » Stuart J. Russell Models:.... Tour... Edition)
Paperback Fetririec (46) » Stephen Marsland Fedrdednr (41) » Daphne Koller » Norman S. Matloff » David G. Stork
... Data Mining: Practical Hardcover Foiricr (21) Hardcover Fofricdr (13) Ferinleds (22) Fefrdtyr (33)
Machine... $63.05 Hardcover $121.34 Hardcover Paperback Hardcover
lan H. Witten Fix this recommendation $50.99 Fix this recommendation $82.93 $24.32 $111.47
Paperback Fix this recommendation Fix this recommendation Fix this recommendation Fix this recommendation

» View and edit your browsing history




Example: Mining usage data

Mining usage data to
allow natural human-
computer interaction




Top data mining fields

Industries / Fields where you applied Analytics / Data Mining in 20117
[228 voters]  mm 2011 % of voters mmm 2010 % of voters

CRM/ consumer analytics (57) e 25.0%
e 26.8%
Banking (43) e 18.9%
o 5. 2%
Health care/ HR (38) m 16.7%
m 13.1%
Education (37) m 16.2%
mm 9.9%
Fraud Detection (32) s 14.0%
m 12.7%
Science (31) e 13.6%
mmm 10.3%
Social Networks (30) m 13.2%
mm 6.6%
Credit Scoring (29) m 12.7%
mmm 8.0%
Direct Marketing/ Fundraising (28) m 12.3%
mm 11.3%
Insurance (28) m 12.3%
mm 10.3%
Finance (26) mm 11.4%
mm 11.3%
Telecom / Cable (25) mmm 11.0%
mm 10.8%
Retail (24) mmm 10.5%
mm 8.0%
Medical/ Pharma (22) mm 9.6%
mmm 8.0%
Biotech/Genomics (21) mm 9.2%
mm 5.6%
Government/Military (17) mm 7.5%
mm 6.1%
Travel / Hospitality (17) mm 7.5%

11.4%

[KDnuggets Poll]



Top data mining fields

Industries / Fields where you applied Analytics / Data Mining in 20117
[228 voters]  mm 2011 % of voters mmm 2010 % of voters

Industries / Fields where you applied Analytics / Data Mining in 20127
[196 voters]  mm 2012 % of voters === 2011 % of voters

CRM/ consumer analytics (57) s 25.0% CRM/Consumer analytics (56) N 28.6%
T 26 8% I 25.0%
Banking (43) e 18.9% Health care/ HR (32) N 16.3%
e 19.2% I 16.7%
Health care/ HR (38) m 16.7% Retail (29) N 14.8%
m 13.1% I 10.5%
Education (37) — 16.2% Banking (28) N 14.3%
m 9.9% I 18.9%
Fraud Detection (32) s 14.0% Education (28) I 14.3%
m 12.7% I 16.2%
Science (31) m 13.6% Advertising (26) BN 13.3%
mmm 10.3% B 7.0%
Social Networks (30) m 13.2% Fraud Detection (25) N 12.8%
mm 6.6% I 14.0%
Credit Scoring (29) m 12.7% Social Media / Social Networks (24) N 12.2%
= 8.0% I 13.2%
Direct Marketing/ Fundraising (28) m 12.3% Science (23) N 11.7%
m 11.3% I 13.6%
Insurance (28) m 12.3% Finance (20) B 10.2%
mm 10.3% I 11.4%
Finance (26) m 11.4% Direct Marketing/ Fundraising (19) BN 9.7%
m 11.3% I 12.3%
Telecom / Cable (25) e 11.0% Search / Web content mining (16) B 8.2%
mm 10.8% 53%
Retail (24) mmm 10.5% Biotech/Genomics (15) B 7.7%
= 8.0% BN 9.2%
Medical/ Pharma (22) = 9.6% Insurance (15) B 7.7%
= 8.0% I 12.3%
Biotech/Genomics (21) mmm 9.2% Credit Scoring (14) B 7.1%
mm 5.6% N 12.7%
Government/Military (17) mm 7.5% Manufacturing (14) B 7.1%
mm 6.1% H53%
Travel / Hospitality (17) mm 7.5% Medical/ Pharma (13) B 6.6%
11.4% I 9.6%




Top data mining fields

Industries / Fields where you applied Analytics / Data Mining in 20117
[228 voters]  mm 2011 % of voters mmm 2010 % of voters

Industries / Fields where you applied Analytics / Data Mining in 20127
[196 voters]  mm 2012 % of voters === 2011 % of voters

CRM/ consumer analytics (57) e 25.0% CRM/Consumer analytics (56) N 28.6%
T 26 8% I 25.0%
Banking (43) e 18.9% Health care/ HR (32) N 16.3%
e 19.2% I 16.7%
Health care/ HR (38) m 16.7% Retail (29) N 14.8%
m 13.1% I 10.5%
Education (37) — 16.2% Banking (28) N 14.3%
m 9.9% I 18.9%
Fraud Detection (32) m 14.0% Education (28) N 14.3%
m 12.7% | g T 16.2%
Science (31) m 13.6% Advertising (26) BN 13.3%
mm 10.3% e s . E7.0%
Social Networks (30) s 13.2% Fraud Detection (25) I 12.8%
mm 6.6% T 14.0%
Credit Scoring (29) m 12.7% Social Media / Social Networks (24) N 12.2%
= 8.0% I 13.2%
Direct Marketing/ Fundraising (28) m 12.3% Science (23) N 11.7%
m 11.3% I 13.6%
Insurance (28) m 12.3% Finance (20) BN 10.2%
mm 10.3% I 11.4%
Finance (26) m 11.4% Direct Marketing/ Fundraising (19) BN 9.7%
m 11.3% I 12.3%
Telecom / Cable (25) e 11.0% Search / Web content mining (16) B 8.2%
mm 10.8% 1 53%
Retail (24) mmm 10.5% Biotech/Genomics (15) B 7.7%
mm 8.0% N 9.2%
Medical/ Pharma (22) = 9.6% Insurance (15) B 7.7%
mm 8.0% I 12.3%
Biotech/Genomics (21) s 9.2% Credit Scoring (14) B 7.1%
mm 5.6% I 12.7%
Government/Military (17) mm 7.5% Manufacturing (14) B71%
mm 6.1% 1 53%
Travel / Hospitality (17) mm 7.5% Medical/ Pharma (13) B 6.6%
11.4% I 9.6%




Data types in mining tasks

“Flat” data: vectors and matrix

Show entries

id* words fog kincaid

flesch

angel

animal

aristocracy

art astronomy beauty being cause

chance

change

Search:
citizen constitution

aeschylus-
agamemnon- 14951
1860

aeschylus-
persians- 8372
1782

aeschylus-
prometheus- 10070
2549

aeschylus-
seven-2836 9160

aeschylus-
suppliant- 9339
2642

american-
articles-3758 424

american-
constitution- 4517
4487

american-
declaration- 1337
3934
aquinas-
summa-2292
aristophanes-
achamians- 12954
2166

& — |

2510121

Showing 1 to 10 of 222 entries
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Data types in mining tasks

Text data
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’ hirng B 1230.bishing.com
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Dear Hiring Manager.

1 would like 10 express my interest in a position as editonal assistant for your publishing company. As a recent graduate
with writing, editing, and administrative expenence, | believe | am a strong candidate for 3 position at the 123 Publishing Company

You specey that you are looking for someone with strong writing skills. As an English major, a writing tutor, and an edionial
intem for both a government magazine and a college marketing office, | have become a skilled writer with a vanety of expenence.

Although | am a recent college graduate. my maturity, practical exp . and eage 1o enter the publishing business

will make me an excellent editonal assistant. | would love to begin my career with your company. and am confident that |
Jvould be a beneficial addition to the 123 Publishing Company

| have attached my resume. Thank you so much for your time and consideration

Secuty Got your email. Do
Susan Sharp you Want me to ge!
Sun sy in touch? | was

XYZ Town, NY 11111

Bk s sl con driving before and
Cell: 555-555-5555

this song was on
the radio. aznavour,
isabelle. youtube.
Check your email
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Data types in mining tasks

Structured data
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Data types in mining tasks

Multi-media data




Data types in mining tasks

Temporal and spatial data
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Top mined data

types

What data types you analyzed/mined in the past 12 months? [183 votes]
I % users in 2012 T % users in 2011

table data (fixed n. columns) (133)

I 72.7 %
e ©0.4 Yo

time series (81) R 44.3%
I 4 1.7 %
text, free-form (71) N 38.8%
I 25.7%
itemsets / transactions (60) N 32.8%
I 32.5%
anonymized data (44) — 24.0%
I 21.8%
location/geo/mobile data (34) N 18.6%
I 19.4%
social network data (33) I 18.0%
N 12.6%
web content (23) N 12.6%
I 10.2%
email (20) B 10.9%
I 10.7%
web clickstream (17) N 9.3%
N 8.7%
XML data (17) B 9.3%
I 4.9%
JSON data (16) B 8.7%
NA (not asked in 2011)
other (15) B 8.2%
N 14.1%
images / video (11) B 6.0%
N 6.8%
music / audio (2) 11.1%

H3.4%

[KDnuggets Poll, 2012]



Who needs data mining

Sponsors of ACM SIGKDD 2012 (Companies):
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Who needs data mining
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Who needs data mining
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Who needs data mining
Sponsors of ACM SIGKDD 2012 (Companies):
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Who needs data mining
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Who needs data mining

Sponsors of ACM SIGKDD 2012 (Companies):
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Who needs data mining
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Who needs data mining
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Who needs data mining
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Who needs data mining

Sponsors of ACM SIGKDD 2012 (Companies):
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Who needs data mining
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Who needs data mining
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Who needs data mining
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Who needs data mining

Sponsors of ACM SIGKDD 2012 (Companies):
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Who needs data mining
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Who needs data mining
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Who needs data mining
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Who needs data mining
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Annual salary of data miners

US, Canada Company ——
Gov, University |
Self-employed
AUMNZ Company
Gov, University |
MidEast Company
Gov, University |
W. Europe Company ’—
Gov, University
Self-employed
Asia Company
Gov, University
E. Europe Company

Gov, University

Self-employed

Latin America

Company
Self-employed

[KDnuggets Poll, 2012]
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Annual salary o

[KDnuggets Poll, 201 3]

Region

US/Canada

Australia/NZ

W. Europe

Middle East/

Africa

Latin
America

Asia

E. Europe

Global

Employment 2081:I :r;g.
all 128.8
Comp/Self 131.3
Univ/Gov 112.1
all 108.1
Comp/Self 112.9
Univ/iGov 75.0
all 85.1
Comp/Self 90.4
Univ/Gov 59.6
all 83.5
Comp/Self 90.5
Univ/iGov 45.0
all 68.3
Comp/Self 68.8
Univ/Gov 67.5
all 59.8
Comp/Self 63.3
Univ/Gov 36.7
all 43.9
Comp/Self |47.1
Univ/Gov 32.5
all 109.2

2012 Avg.

Salary
113.9
116.8
85.9
111.8
108.3
127.5
78.1
83.8
55.6

96.4

105
45

43.3

43.3
na

41.3
45.2
29.4
40.8
45

30.7
96.8

%

2013

Change Count

13.1%
12.4%
30.5%
-3.3%
4.2%
na
8.9%
7.9%
7.2%

-13.4%

-13.9%
na

57.7%

58.7%
na
44.9%
39.9%
24.8%
7.5%
4.8%
5.8%
12.8%

223
194
29
8

7

1
75
62
13

13
11

12

23
20

363




Cross-disciplines of data mining

Machine
Learning

High
Performance
Computing



Three perspectives of data mining

[Machine Learningj [ Statistics J

ggil(i;lsciil t%iﬁliques Method with
mathematical validity
[ Data Mining J

A

Data management

[ Database J

|Z.-H. Zhou, AIJ'03]
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Learning from Data: to section 3

Machine Learning Foundation: to section 2



