
Lecture	
 11:	
 Data	
 Mining	
 III
In	
 Computer	
 Vision	
 Systems

Data Mining for M.Sc. students, CS, Nanjing University
Fall, 2014, Yang Yu

http://cs.nju.edu.cn/yuy/course_dm14ms.ashx

http://cs.nju.edu.cn/yuy/course_dm12.ashx
http://cs.nju.edu.cn/yuy/course_dm12.ashx

Face detection

find faces in a given photo

sliding window

What is a face?

What is a face?

What is a face?

What is a face?

similar to positive face
rather than negative face

Viola&Jones face features [IJCV’01]

features: simple templates

for each sliding window apply
temples to calculate features

conceptually forms a vector:
(200, 50, 90, )

AdaBoost

final classifier
In V&J’s system, each
classifier is one feature

classifier 1 classifier 2 classifier 3

AdaBoost selects a small
subset of features

X
feature 1 feature 2 feature 3 feature 4 feature 5 ...

face area is smallX
feature 1

false not a face

true = possibly a faceX
feature 2 feature 3 feature 4

false not a face

true = possibly a faceX
...

Viola&Jones face features [IJCV’01]

“15 times faster” than a state-of-the
art while keeping the accuracy”

Viola&Jones face features [IJCV’01]

The data-driven approaches

Viola&Jonse’s work does not only result an efficient
face detector, but also activate the data-driven
approaches in CV.

Object tracking

calculation of similarity?

Support vector tracking

f⇤(·) =
X

i

↵iK(xi, ·)

the optimal function is
in the form of

Support vector tracking

f⇤(·) =
X

i

↵iK(xi, ·)

support vectors

the optimal function is
in the form of

score(I) =
X

i

↵i(K(xi, Iinit)�K(xi, I))
2

Support vector tracking

training images cars/noncars

find the largest score
about the initial guess

score(I) =
X

i

↵iK(xi, I)

score(I) =
X

i

↵i(K(xi, Iinit)�K(xi, I))
2

Support vector tracking

training images cars/noncars

find the largest score
about the initial guess

score(I) =
X

i

↵iK(xi, I)

Pose estimation from depth data

Pose Recognition in Parts [CVPR’11]

Real-Time Human Pose Recognition in Parts from Single Depth Images
Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio

Richard Moore Alex Kipman Andrew Blake
Microsoft Research Cambridge & Xbox Incubation

Abstract
We propose a new method to quickly and accurately pre-

dict 3D positions of body joints from a single depth image,
using no temporal information. We take an object recog-
nition approach, designing an intermediate body parts rep-
resentation that maps the difficult pose estimation problem
into a simpler per-pixel classification problem. Our large
and highly varied training dataset allows the classifier to
estimate body parts invariant to pose, body shape, clothing,
etc. Finally we generate confidence-scored 3D proposals of
several body joints by reprojecting the classification result
and finding local modes.

The system runs at 200 frames per second on consumer
hardware. Our evaluation shows high accuracy on both
synthetic and real test sets, and investigates the effect of sev-
eral training parameters. We achieve state of the art accu-
racy in our comparison with related work and demonstrate
improved generalization over exact whole-skeleton nearest
neighbor matching.

1. Introduction
Robust interactive human body tracking has applica-

tions including gaming, human-computer interaction, secu-
rity, telepresence, and even health-care. The task has re-
cently been greatly simplified by the introduction of real-
time depth cameras [16, 19, 44, 37, 28, 13]. However, even
the best existing systems still exhibit limitations. In partic-
ular, until the launch of Kinect [21], none ran at interactive
rates on consumer hardware while handling a full range of
human body shapes and sizes undergoing general body mo-
tions. Some systems achieve high speeds by tracking from
frame to frame but struggle to re-initialize quickly and so
are not robust. In this paper, we focus on pose recognition
in parts: detecting from a single depth image a small set of
3D position candidates for each skeletal joint. Our focus on
per-frame initialization and recovery is designed to comple-
ment any appropriate tracking algorithm [7, 39, 16, 42, 13]
that might further incorporate temporal and kinematic co-
herence. The algorithm presented here forms a core com-
ponent of the Kinect gaming platform [21].

Illustrated in Fig. 1 and inspired by recent object recog-
nition work that divides objects into parts (e.g. [12, 43]),
our approach is driven by two key design goals: computa-
tional efficiency and robustness. A single input depth image
is segmented into a dense probabilistic body part labeling,
with the parts defined to be spatially localized near skeletal

depth image body parts 3D joint proposals

Figure 1. Overview. From an single input depth image, a per-pixel
body part distribution is inferred. (Colors indicate the most likely
part labels at each pixel, and correspond in the joint proposals).
Local modes of this signal are estimated to give high-quality pro-
posals for the 3D locations of body joints, even for multiple users.

joints of interest. Reprojecting the inferred parts into world
space, we localize spatial modes of each part distribution
and thus generate (possibly several) confidence-weighted
proposals for the 3D locations of each skeletal joint.

We treat the segmentation into body parts as a per-pixel
classification task (no pairwise terms or CRF have proved
necessary). Evaluating each pixel separately avoids a com-
binatorial search over the different body joints, although
within a single part there are of course still dramatic dif-
ferences in the contextual appearance. For training data,
we generate realistic synthetic depth images of humans of
many shapes and sizes in highly varied poses sampled from
a large motion capture database. We train a deep ran-
domized decision forest classifier which avoids overfitting
by using hundreds of thousands of training images. Sim-
ple, discriminative depth comparison image features yield
3D translation invariance while maintaining high computa-
tional efficiency. For further speed, the classifier can be run
in parallel on each pixel on a GPU [34]. Finally, spatial
modes of the inferred per-pixel distributions are computed
using mean shift [10] resulting in the 3D joint proposals.

An optimized implementation of our algorithm runs in
under 5ms per frame (200 frames per second) on the Xbox
360 GPU, at least one order of magnitude faster than exist-
ing approaches. It works frame-by-frame across dramati-
cally differing body shapes and sizes, and the learned dis-
criminative approach naturally handles self-occlusions and

1

sy
nt

he
tic

 (t
ra

in
 &

 te
st

)

Figure 2. Synthetic and real data. Pairs of depth image and ground truth body parts. Note wide variety in pose, shape, clothing, and crop.

simplify the task of background subtraction which we as-
sume in this work. But most importantly for our approach,
it is straightforward to synthesize realistic depth images of
people and thus build a large training dataset cheaply.

2.2. Motion capture data
The human body is capable of an enormous range of

poses which are difficult to simulate. Instead, we capture a
large database of motion capture (mocap) of human actions.
Our aim was to span the wide variety of poses people would
make in an entertainment scenario. The database consists of
approximately 500k frames in a few hundred sequences of
driving, dancing, kicking, running, navigating menus, etc.

We expect our semi-local body part classifier to gener-
alize somewhat to unseen poses. In particular, we need not
record all possible combinations of the different limbs; in
practice, a wide range of poses proves sufficient. Further,
we need not record mocap with variation in rotation about
the vertical axis, mirroring left-right, scene position, body
shape and size, or camera pose, all of which can be added
in (semi-)automatically.

Since the classifier uses no temporal information, we
are interested only in static poses and not motion. Often,
changes in pose from one mocap frame to the next are so
small as to be insignificant. We thus discard many similar,
redundant poses from the initial mocap data using ‘furthest
neighbor’ clustering [15] where the distance between poses
p1 and p2 is defined as maxj kpj1�pj2k2, the maximum Eu-
clidean distance over body joints j. We use a subset of 100k
poses such that no two poses are closer than 5cm.

We have found it necessary to iterate the process of mo-
tion capture, sampling from our model, training the classi-
fier, and testing joint prediction accuracy in order to refine
the mocap database with regions of pose space that had been
previously missed out. Our early experiments employed
the CMU mocap database [9] which gave acceptable results
though covered far less of pose space.

2.3. Generating synthetic data
We build a randomized rendering pipeline from which

we can sample fully labeled training images. Our goals in
building this pipeline were twofold: realism and variety. For
the learned model to work well, the samples must closely
resemble real camera images, and contain good coverage of

the appearance variations we hope to recognize at test time.
While depth/scale and translation variations are handled ex-
plicitly in our features (see below), other invariances cannot
be encoded efficiently. Instead we learn invariance from the
data to camera pose, body pose, and body size and shape.

The synthesis pipeline first randomly samples a set of
parameters, and then uses standard computer graphics tech-
niques to render depth and (see below) body part images
from texture mapped 3D meshes. The mocap is retarget-
ting to each of 15 base meshes spanning the range of body
shapes and sizes, using [4]. Further slight random vari-
ation in height and weight give extra coverage of body
shapes. Other randomized parameters include the mocap
frame, camera pose, camera noise, clothing and hairstyle.
We provide more details of these variations in the supple-
mentary material. Fig. 2 compares the varied output of the
pipeline to hand-labeled real camera images.

3. Body Part Inference and Joint Proposals
In this section we describe our intermediate body parts

representation, detail the discriminative depth image fea-
tures, review decision forests and their application to body
part recognition, and finally discuss how a mode finding al-
gorithm is used to generate joint position proposals.
3.1. Body part labeling

A key contribution of this work is our intermediate body
part representation. We define several localized body part
labels that densely cover the body, as color-coded in Fig. 2.
Some of these parts are defined to directly localize partic-
ular skeletal joints of interest, while others fill the gaps or
could be used in combination to predict other joints. Our in-
termediate representation transforms the problem into one
that can readily be solved by efficient classification algo-
rithms; we show in Sec. 4.3 that the penalty paid for this
transformation is small.

The parts are specified in a texture map that is retargetted
to skin the various characters during rendering. The pairs of
depth and body part images are used as fully labeled data for
learning the classifier (see below). For the experiments in
this paper, we use 31 body parts: LU/RU/LW/RW head, neck,
L/R shoulder, LU/RU/LW/RW arm, L/R elbow, L/R wrist, L/R
hand, LU/RU/LW/RW torso, LU/RU/LW/RW leg, L/R knee,
L/R ankle, L/R foot (Left, Right, Upper, loWer). Distinct

Pose Recognition in Parts [CVPR’11]

Training data from 3D models

Pose Recognition in Parts [CVPR’11]

Features: random subtractions

(a) (b)
𝜃ଵ

𝜃ଶ

𝜃ଵ

𝜃ଶ

Figure 3. Depth image features. The yellow crosses indicates the
pixel x being classified. The red circles indicate the offset pixels
as defined in Eq. 1. In (a), the two example features give a large
depth difference response. In (b), the same two features at new
image locations give a much smaller response.

parts for left and right allow the classifier to disambiguate
the left and right sides of the body.

Of course, the precise definition of these parts could be
changed to suit a particular application. For example, in an
upper body tracking scenario, all the lower body parts could
be merged. Parts should be sufficiently small to accurately
localize body joints, but not too numerous as to waste ca-
pacity of the classifier.

3.2. Depth image features
We employ simple depth comparison features, inspired

by those in [20]. At a given pixel x, the features compute

f✓(I,x) = dI

✓
x+

u

dI(x)

◆
� dI

✓
x+

v

dI(x)

◆
, (1)

where dI(x) is the depth at pixel x in image I , and parame-
ters ✓ = (u,v) describe offsets u and v. The normalization
of the offsets by 1

dI(x)
ensures the features are depth invari-

ant: at a given point on the body, a fixed world space offset
will result whether the pixel is close or far from the camera.
The features are thus 3D translation invariant (modulo per-
spective effects). If an offset pixel lies on the background
or outside the bounds of the image, the depth probe dI(x

0
)

is given a large positive constant value.
Fig. 3 illustrates two features at different pixel locations

x. Feature f✓1 looks upwards: Eq. 1 will give a large pos-
itive response for pixels x near the top of the body, but a
value close to zero for pixels x lower down the body. Fea-
ture f✓2 may instead help find thin vertical structures such
as the arm.

Individually these features provide only a weak signal
about which part of the body the pixel belongs to, but in
combination in a decision forest they are sufficient to accu-
rately disambiguate all trained parts. The design of these
features was strongly motivated by their computational effi-
ciency: no preprocessing is needed; each feature need only
read at most 3 image pixels and perform at most 5 arithmetic
operations; and the features can be straightforwardly imple-
mented on the GPU. Given a larger computational budget,
one could employ potentially more powerful features based
on, for example, depth integrals over regions, curvature, or
local descriptors e.g. [5].

Figure 4. Randomized Decision Forests. A forest is an ensemble
of trees. Each tree consists of split nodes (blue) and leaf nodes
(green). The red arrows indicate the different paths that might be
taken by different trees for a particular input.

3.3. Randomized decision forests
Randomized decision trees and forests [35, 30, 2, 8] have

proven fast and effective multi-class classifiers for many
tasks [20, 23, 36], and can be implemented efficiently on the
GPU [34]. As illustrated in Fig. 4, a forest is an ensemble
of T decision trees, each consisting of split and leaf nodes.
Each split node consists of a feature f✓ and a threshold ⌧ .
To classify pixel x in image I , one starts at the root and re-
peatedly evaluates Eq. 1, branching left or right according
to the comparison to threshold ⌧ . At the leaf node reached
in tree t, a learned distribution Pt(c|I,x) over body part la-
bels c is stored. The distributions are averaged together for
all trees in the forest to give the final classification

P (c|I,x) = 1

T

TX

t=1

Pt(c|I,x) . (2)

Training. Each tree is trained on a different set of randomly
synthesized images. A random subset of 2000 example pix-
els from each image is chosen to ensure a roughly even dis-
tribution across body parts. Each tree is trained using the
following algorithm [20]:

1. Randomly propose a set of splitting candidates � =

(✓, ⌧) (feature parameters ✓ and thresholds ⌧).
2. Partition the set of examples Q = {(I,x)} into left

and right subsets by each �:

Ql(�) = { (I,x) | f✓(I,x) < ⌧ } (3)
Qr(�) = Q \Ql(�) (4)

3. Compute the � giving the largest gain in information:

�?
= argmax

�
G(�) (5)

G(�) = H(Q)�
X

s2{l,r}

|Qs(�)|
|Q| H(Qs(�)) (6)

where Shannon entropy H(Q) is computed on the nor-
malized histogram of body part labels lI(x) for all
(I,x) 2 Q.

4. If the largest gain G(�?
) is sufficient, and the depth in

the tree is below a maximum, then recurse for left and
right subsets Ql(�

?
) and Qr(�

?
).

Figure 3. Depth image features. The yellow crosses indicates the
pixel x being classified. The red circles indicate the offset pixels
as defined in Eq. 1. In (a), the two example features give a large
depth difference response. In (b), the same two features at new
image locations give a much smaller response.

parts for left and right allow the classifier to disambiguate
the left and right sides of the body.

Of course, the precise definition of these parts could be
changed to suit a particular application. For example, in an
upper body tracking scenario, all the lower body parts could
be merged. Parts should be sufficiently small to accurately
localize body joints, but not too numerous as to waste ca-
pacity of the classifier.

3.2. Depth image features
We employ simple depth comparison features, inspired

by those in [20]. At a given pixel x, the features compute

f✓(I,x) = dI

✓
x+

u

dI(x)

◆
� dI

✓
x+

v

dI(x)

◆
, (1)

where dI(x) is the depth at pixel x in image I , and parame-
ters ✓ = (u,v) describe offsets u and v. The normalization
of the offsets by 1

dI(x)
ensures the features are depth invari-

ant: at a given point on the body, a fixed world space offset
will result whether the pixel is close or far from the camera.
The features are thus 3D translation invariant (modulo per-
spective effects). If an offset pixel lies on the background
or outside the bounds of the image, the depth probe dI(x

0
)

is given a large positive constant value.
Fig. 3 illustrates two features at different pixel locations

x. Feature f✓1 looks upwards: Eq. 1 will give a large pos-
itive response for pixels x near the top of the body, but a
value close to zero for pixels x lower down the body. Fea-
ture f✓2 may instead help find thin vertical structures such
as the arm.

Individually these features provide only a weak signal
about which part of the body the pixel belongs to, but in
combination in a decision forest they are sufficient to accu-
rately disambiguate all trained parts. The design of these
features was strongly motivated by their computational effi-
ciency: no preprocessing is needed; each feature need only
read at most 3 image pixels and perform at most 5 arithmetic
operations; and the features can be straightforwardly imple-
mented on the GPU. Given a larger computational budget,
one could employ potentially more powerful features based
on, for example, depth integrals over regions, curvature, or
local descriptors e.g. [5].

…
tree 1 tree 𝑇

(𝐼, x) (𝐼, x)

𝑃்(𝑐)
𝑃ଵ(𝑐)

Figure 4. Randomized Decision Forests. A forest is an ensemble
of trees. Each tree consists of split nodes (blue) and leaf nodes
(green). The red arrows indicate the different paths that might be
taken by different trees for a particular input.

3.3. Randomized decision forests
Randomized decision trees and forests [35, 30, 2, 8] have

proven fast and effective multi-class classifiers for many
tasks [20, 23, 36], and can be implemented efficiently on the
GPU [34]. As illustrated in Fig. 4, a forest is an ensemble
of T decision trees, each consisting of split and leaf nodes.
Each split node consists of a feature f✓ and a threshold ⌧ .
To classify pixel x in image I , one starts at the root and re-
peatedly evaluates Eq. 1, branching left or right according
to the comparison to threshold ⌧ . At the leaf node reached
in tree t, a learned distribution Pt(c|I,x) over body part la-
bels c is stored. The distributions are averaged together for
all trees in the forest to give the final classification

P (c|I,x) = 1

T

TX

t=1

Pt(c|I,x) . (2)

Training. Each tree is trained on a different set of randomly
synthesized images. A random subset of 2000 example pix-
els from each image is chosen to ensure a roughly even dis-
tribution across body parts. Each tree is trained using the
following algorithm [20]:

1. Randomly propose a set of splitting candidates � =

(✓, ⌧) (feature parameters ✓ and thresholds ⌧).
2. Partition the set of examples Q = {(I,x)} into left

and right subsets by each �:

Ql(�) = { (I,x) | f✓(I,x) < ⌧ } (3)
Qr(�) = Q \Ql(�) (4)

3. Compute the � giving the largest gain in information:

�?
= argmax

�
G(�) (5)

G(�) = H(Q)�
X

s2{l,r}

|Qs(�)|
|Q| H(Qs(�)) (6)

where Shannon entropy H(Q) is computed on the nor-
malized histogram of body part labels lI(x) for all
(I,x) 2 Q.

4. If the largest gain G(�?
) is sufficient, and the depth in

the tree is below a maximum, then recurse for left and
right subsets Ql(�

?
) and Qr(�

?
).

Classifier: random forests of 3 trees

Pose Recognition in Parts [CVPR’11]

results:

Figure 5. Example inferences. Synthetic (top row); real (middle); failure modes (bottom). Left column: ground truth for a neutral pose as
a reference. In each example we see the depth image, the inferred most likely body part labels, and the joint proposals show as front, right,
and top views (overlaid on a depth point cloud). Only the most confident proposal for each joint above a fixed, shared threshold is shown.

To keep the training times down we employ a distributed
implementation. Training 3 trees to depth 20 from 1 million
images takes about a day on a 1000 core cluster.

3.4. Joint position proposals
Body part recognition as described above infers per-pixel

information. This information must now be pooled across
pixels to generate reliable proposals for the positions of 3D
skeletal joints. These proposals are the final output of our
algorithm, and could be used by a tracking algorithm to self-
initialize and recover from failure.

A simple option is to accumulate the global 3D centers
of probability mass for each part, using the known cali-
brated depth. However, outlying pixels severely degrade
the quality of such a global estimate. Instead we employ a
local mode-finding approach based on mean shift [10] with
a weighted Gaussian kernel.

We define a density estimator per body part as

fc(ˆx) /
NX

i=1

wic exp

�
����
ˆ

x� ˆ

xi

bc

����
2
!

, (7)

where ˆ

x is a coordinate in 3D world space, N is the number
of image pixels, wic is a pixel weighting, ˆxi is the reprojec-
tion of image pixel xi into world space given depth dI(xi),
and bc is a learned per-part bandwidth. The pixel weighting
wic considers both the inferred body part probability at the
pixel and the world surface area of the pixel:

wic = P (c|I,xi) · dI(xi)
2 . (8)

This ensures density estimates are depth invariant and gave
a small but significant improvement in joint prediction ac-
curacy. Depending on the definition of body parts, the pos-
terior P (c|I,x) can be pre-accumulated over a small set of
parts. For example, in our experiments the four body parts
covering the head are merged to localize the head joint.

Mean shift is used to find modes in this density effi-
ciently. All pixels above a learned probability threshold �c

are used as starting points for part c. A final confidence es-
timate is given as a sum of the pixel weights reaching each
mode. This proved more reliable than taking the modal den-
sity estimate.

The detected modes lie on the surface of the body. Each
mode is therefore pushed back into the scene by a learned
z offset ⇣c to produce a final joint position proposal. This
simple, efficient approach works well in practice. The band-
widths bc, probability threshold �c, and surface-to-interior
z offset ⇣c are optimized per-part on a hold-out validation
set of 5000 images by grid search. (As an indication, this
resulted in mean bandwidth 0.065m, probability threshold
0.14, and z offset 0.039m).

4. Experiments
In this section we describe the experiments performed to

evaluate our method. We show both qualitative and quan-
titative results on several challenging datasets, and com-
pare with both nearest-neighbor approaches and the state
of the art [13]. We provide further results in the supple-
mentary material. Unless otherwise specified, parameters
below were set as: 3 trees, 20 deep, 300k training images
per tree, 2000 training example pixels per image, 2000 can-
didate features ✓, and 50 candidate thresholds ⌧ per feature.
Test data. We use challenging synthetic and real depth im-
ages to evaluate our approach. For our synthetic test set,
we synthesize 5000 depth images, together with the ground
truth body part labels and joint positions. The original mo-
cap poses used to generate these images are held out from
the training data. Our real test set consists of 8808 frames of
real depth images over 15 different subjects, hand-labeled
with dense body parts and 7 upper body joint positions. We
also evaluate on the real depth data from [13]. The results
suggest that effects seen on synthetic data are mirrored in
the real data, and further that our synthetic test set is by far
the ‘hardest’ due to the extreme variability in pose and body
shape. For most experiments we limit the rotation of the
user to ±120

� in both training and synthetic test data since
the user is facing the camera (0�) in our main entertainment
scenario, though we also evaluate the full 360� scenario.
Error metrics. We quantify both classification and joint
prediction accuracy. For classification, we report the av-
erage per-class accuracy, i.e. the average of the diagonal of
the confusion matrix between the ground truth part label and
the most likely inferred part label. This metric weights each

Camera Relocalization

Camera Relocalization in RGB-D Images [CVPR13]

Scene Coordinate Regression Forests
for Camera Relocalization in RGB-D Images

Jamie Shotton Ben Glocker Christopher Zach Shahram Izadi Antonio Criminisi Andrew Fitzgibbon
Microsoft Research, Cambridge, UK

Abstract
We address the problem of inferring the pose of an

RGB-D camera relative to a known 3D scene, given only
a single acquired image. Our approach employs a regres-
sion forest that is capable of inferring an estimate of each
pixel’s correspondence to 3D points in the scene’s world
coordinate frame. The forest uses only simple depth and
RGB pixel comparison features, and does not require the
computation of feature descriptors. The forest is trained
to be capable of predicting correspondences at any pixel,
so no interest point detectors are required. The camera
pose is inferred using a robust optimization scheme. This
starts with an initial set of hypothesized camera poses, con-
structed by applying the forest at a small fraction of image
pixels. Preemptive RANSAC then iterates sampling more
pixels at which to evaluate the forest, counting inliers, and
refining the hypothesized poses. We evaluate on several var-
ied scenes captured with an RGB-D camera and observe
that the proposed technique achieves highly accurate relo-
calization and substantially out-performs two state of the
art baselines.

1. Introduction
This paper presents a new, efficient algorithm for esti-

mating the camera pose from a single RGB-D image, rela-
tive to a known scene (or environment). This has important
applications in robotics (the ‘lost robot’ problem), SLAM,
augmented reality, and navigation. A standard approach for
solving the problem is first to find a set of putative cor-
respondences between image pixels and 3D points in the
scene, and second to optimize the camera pose to mini-
mize some energy function defined over these correspon-
dences. In this work, we first demonstrate how regression
forests can be used to predict the correspondences, and fur-
ther show how to optimize the camera pose efficiently.

Our main contribution is the scene coordinate regression
forest (SCoRe Forest). As illustrated in Fig. 1, the forest is
trained to directly predict correspondences from any image
pixel to points in the scene’s 3D world coordinate frame.
The aim is that, in one go, the forest can remove the need for
the traditional pipeline of feature detection, description, and
matching. A SCoRe Forest is trained on a particular scene,

A
B

C

A

B

C

Input
RGB

Input
Depth

Ground
Truth

Inferred
Inliers

Figure 1. Scene coordinate regression labels. (Top) A 3D rep-
resentation of a scene’s shared world coordinate frame, with over-
laid ground truth camera frusta for the images below. The color
visualization maps scene coordinates to the RGB cube. A scene
coordinate regression forest (SCoRe Forest) is trained to infer the
scene coordinates at any image pixel. (Bottom) Three test frames:
the input RGB and depth images; the ground truth scene coordi-
nate pixel labels; and the inliers inferred by the SCoRe Forest after
camera pose optimization. For this visualization we show all in-
lier pixels, but note that the optimization algorithm only actually
evaluates the forest at a much sparser set of pixels. Fig. 7 shows
example inferred camera poses.

using RGB-D images with known camera poses. The depth
maps and camera poses are sufficient to compute scene co-
ordinate training labels at every pixel. These labels are used
in a standard regression objective to learn the forest. SCoRe
Forests employ only simple RGB and depth image pixel
comparison features which are fast to compute.

Our second contribution is an efficient test-time camera
pose optimization algorithm based on RANSAC; see Fig. 2.

1

Prediction the location
of every pixel

Camera Relocalization in RGB-D Images [CVPR13]

Features: random subtractions

the distribution Pl(m) as a set Ml of modes of the distribu-
tion, which are found using mean shift. The final prediction
of the forest at pixel p is simply the union of these modes
across all trees: M(p) =

S
t Mlt(p).

2.2. Image features

We investigate three variants of regression forests, each
of which uses a different combination of RGB and depth
features. We will refer to the variants as ‘Depth’, ‘Depth-
Adaptive RGB’ (DA-RGB), and ‘Depth-Adaptive RGB +
Depth’ (DA-RGB + D) forests.

All features are based on simple pixel comparisons [18,
31] and so are extremely fast to evaluate. The two types of
feature responses can be computed as follows:

f depth
� (p) = D

✓
p+

�
1

D(p)

◆
�D

✓
p+

�
2

D(p)

◆
(2)

f da-rgb
� (p) = I

✓
p+

�
1

D(p)

, c
1

◆
� I

✓
p+

�
2

D(p)

, c
2

◆

(3)

Here, � indicates a 2D offset, D(p) indicates a depth pixel
lookup, and I(p, c) indicates an RGB pixel lookup in chan-
nel c. Each split node in the forest stores a unique set of pa-
rameters �n ✓ {�

1

, �
2

, c
1

, c
2

, z}, with z 2 {depth, da-rgb}
indicating the type of feature to use. Pixels with undefined
depth and those outside the image boundary are assigned
D = 6m, and are not used as examples for training or test.

These features can implicitly encode contextual informa-
tion, as the offsets can be fairly long range. The division by
D(p) makes the features largely depth invariant, and is sim-
ilar in spirit to [36]. We assume a reasonable registration
of depth and RGB images, such as is provided by standard
RGB-D camera APIs. However, the registration need not be
perfect as the forest will learn some degree of tolerance to
misregistration.

2.3. Scene coordinate labels

One of the main contributions of this work is the use of
scene coordinates to define the labels used to train the re-
gression forest. By using scene coordinate labels, the for-
est will learn to directly predict the position in the scene’s
world space that corresponds to a test pixel.

Our training set consists of a set of RGB-D frames with
known 6 d.o.f. camera pose matrices H that encode the 3D
rotation and translation from camera space to world space.
This data could be captured in several ways, for example
by tracking from depth camera input [15, 21], or by using
dense reconstruction and tracking from RGB input [22].

Our labels are defined as follows. At pixel p, the cal-
ibrated depth D(p) allows us to compute the 3D camera
space coordinate x. Using homogeneous coordinates, this
camera position can be transformed into the scene’s world

coordinate frame as m = Hx. Our labels are simply de-
fined as these scene world positions, m.

We train the forest using pixels drawn from all training
images, so the forest can be applied at any test image pixel.
In particular, one can evaluate the forest at any sparse set
of test pixels. If the forest were a perfect predictor, only
three pixel predictions would be required to infer the camera
pose. In practice, the forest instead makes noisy predictions,
and so we employ the efficient optimization described in
Sec. 3 to accurately infer the camera pose.

2.4. Forest training

Given the scene coordinate pixel labeling defined above,
we can now grow the regression forest using the standard
greedy forest training algorithm [7], summarized next. For
each tree, we randomly choose a set S of labeled example
pixels (p,m).1 The tree growing then proceeds recursively,
starting at the root node. At each node n, a set of candidate
weak learner parameters ✓ is sampled at random. Each can-
didate ✓ is evaluated in turn by (1) to partition the set Sn

into left and right subsets SL

n and SR

n respectively. Given
this partition, a tree training objective function Q(✓) is com-
puted. We have found the following simple reduction-in-
spatial-variance objective to work well:

Q(Sn,✓) = V (Sn)�
X

d2{L,R}

|Sd
n(✓)|
|Sn|

V (Sd
n(✓)) , (4)

with V (S) = 1

|S|
X

(p,m)2S

km� ¯

mk2
2

, (5)

and ¯

m being the mean of m in S . The candidate param-
eter set ✓ which results in the largest reduction in vari-
ance is taken, and the training recurses on the resulting left
and right children. Tree growing terminates when a node
reaches a maximum depth D

max

, or the set Sn has only one
element.
Mode fitting. Once the tree has been grown, the final
stage of training is to summarize the distribution over m as
a set of modes Ml, for each leaf node l. To reduce training
time, we sub-sample the set Sl of training pixels reaching
leaf l to at most N

ss

= 500 examples. We then run mean
shift mode detection [6] with a Gaussian kernel of band-
width  = 0.1m. This clusters the points m in Sl into a
small set of modes. In our current implementation, we keep
only a single mode at a leaf node: the mode to which the
largest number of examples was assigned.

3. Camera Pose Optimization
The regression forest described in the previous section is

capable of associating scene coordinates with any 2D im-
age pixel. We now discuss how to use this information to

1For notational clarity p is used to uniquely index a pixel within a par-
ticular image. Training pixels are sampled up to the image boundary.

Classifier: random forests

Inferred camera pose

RGB Depth

…
tree 1

p

ℳ௟భ 𝐩

p
tree T

SCoRe Forest

RA
N

SA
C

op
tim

iza
tio

n

Hypothesis inliers

ℳ௟೅ 𝐩

Figure 2. Camera pose estimation. Top: An example RGB-D
test input. Middle: Our RANSAC optimization uses a scene coor-
dinate regression forest (SCoRe Forest) to obtain image to scene
correspondences. The algorithm maintains a set of inlier pixels
for each of several camera pose hypotheses. Bottom right: The
hypothesis with the lowest energy (highest number of inliers) is
chosen as the final inferred pose (shown as the blue frustum; the
ground truth is shown in red). For clarity of exposition, we show
all image pixels that are inliers to each hypothesis; in fact our al-
gorithm samples pixels sparsely and does not need to evaluate the
SCoRe Forest at every pixel.

estimate the camera location and orientation. The problem
is cast as the energy minimization

H⇤
= argmin

H
E(H) (6)

over the camera pose matrix H . An overview of the method
is given in Fig. 2.

3.1. Energy function

We define our energy function as follows

E(H) =

X

i2I
⇢

✓
min

m2Mi

km�Hxik2
◆

=

X

i2I
ei(H) ,

(7)
where: i 2 I is a pixel index; ⇢ is a robust error function;
Mi = M(pi) represents the set of modes (3D locations in
the scene’s world space) predicted by the trees in the forest
at pixel pi; and xi are the 3D coordinates in camera space
corresponding to pixel pi, obtained by back-projecting the

depth image pixels. We use a top-hat error function ⇢ with
a width of 0.1m. Pixels for which ⇢ evaluates to 0 are con-
sidered inliers, and pixels for which ⇢ evaluates to 1 are
considered outliers. The energy function above thus counts
the number of outliers for a given camera hypothesis H .

Note that computing this energy does not require an ex-
plicit 3D model of the scene: the model is implicitly en-
coded in the regression forest. Because the forest has been
trained to work at any image pixel, we can randomly sam-
ple pixels at test time. This sampling avoids both the need
to compute interest points and the expense of densely eval-
uating the forest. The summation in (7) is thus computed
over a subset I of all possible image pixels; the larger the
size of this subset, the more useful the energy E can be at
ranking pose hypotheses. The minimization over predic-
tions m 2 Mi means that at each pixel, the mode that is
closest to the transformed observed pixel will be chosen.
A consequence of this is that the minimization will infer at
each pixel which tree in the forest gave the best prediction
under a given hypothesis.

3.2. Optimization

To optimize this energy, we use an adapted version of
preemptive RANSAC [24] (see Algorithm 1). The algo-
rithm starts by sampling a set of K

init

initial hypotheses. It
then randomly samples a new batch of B pixels, evaluates
the forest at these pixels, and updates the energies for each
hypothesis based on the forest predictions. The hypotheses
are re-ranked by energy, and the highest energy half of the
hypotheses is discarded (‘preempted’). Each remaining hy-
pothesis is then refined [5] based on the set of inliers com-
puted as a by-product of evaluating the energy at Line 9 of
Algorithm 1. The while loop terminates when only a single
hypothesis remains.

The iteration could instead be stopped earlier, either for
efficiency, or if desired to obtain the top K hypotheses. The
algorithm as presented evaluates the forest on-the-fly; al-
ternatively the forest could be evaluated at the B log

2

K
init

required pixels in advance, though this would require extra
storage. Other RANSAC schedules (e.g. no preemption) are
possible, though not investigated here.
Initial hypothesis sampling. Each initial pose hypothesis
is sampled as follows. The forest is evaluated at three pixels
(the minimal number required), and at each of those pixels
a random mode m 2 Mi is sampled. These putative cor-
respondences are passed to the Kabsch algorithm [16] (also
known as orthogonal Procrustes alignment) which uses a
singular value decomposition (SVD) to solve for the cam-
era pose hypothesis with least squared error.
Pose refinement. Experimentally we found a pose re-
finement step [5] to be crucial to achieving accurate local-
ization. We simply re-run the Kabsch algorithm on the en-
larged set of inliers. For efficiency, we only store and update

