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The core of all the problems

infinite samples

V.S.

finite samples —_——



Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

weight

o® (color, weight) — sweet ?
JJUSTER @ ... © X — {-1,+1}
e O |
N+ s ; ground-truth function f
\~~~ a a /l
o ) N examples,/training data:
1 > {(wlayl)w")(wm)ym)}
color i = f()

learning: find an f* that is close to f



Classification

what can be observed:

on examples/training data:

{(®1,91)s s (T, ym) ) i = f@i)

e.g. training error

:_ZI (@) # yi)

what is expected:
over the whole distribution: generalization error

¢ = E[I(h(x) # f(x))
_ /X p(2)I(h(z) # f(x))|dz



Regression

Features: color, weight
Label: price [0,1]

A O (color, weight) — price
® O X =0, +1]

ground-truth function f

weight
O
O

e ® examples/training data:

> {(w1,y1),---7($maym)}
color i = e

learning: find an f* that is close to f



Regression

what can be observed:

on examples/training data:
{(mlayl)aa(mmaym)} Yi :f(ZBZ)

e.g. training mean square error/MSE

1 m
€“ = Z(h(mz) — i)
i=1

what is expected:
over the whole distribution: generalization MSE

¢ = B, (h(x) # f(x))?
_ /X p(x) (h(x) — f(x))2da



The version space algorithm

an abstract view of learning algorithms

S: most specific hypothesis

A o = / G: most general hypothesis
@ — S / version space: consistent

— e / hypotheses [Mitchell, 1997]
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The version space algorithm

an abstract view of learning algorithms

S: most specific hypothesis

G: most general hypothesis

o® /
= = ® / version space: consistent

hypotheses [mitchell, 1997]

weight
(1)
—Q—
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S
o ©

¢ o % conceptual algorithm:
color 1. for every example, remove
the conflict boxes
2. find S in remaining boxes
3. find G in remaining boxes
4. output the mean of S and G




The version space algorithm
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G: most general hypothesis
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The version space algorithm

an abstract view of learning algorithms

S: most specific hypothesis

G: most general hypothesis

version space: consistent

© O—
@ o / : / hypotheses [mitchell, 1997]

weight
(1)
—Q—
© ©
S
o ©

...J‘

R, |
© e o a conceptual algorithm:
color 1. for every example, remove
the conflict boxes
selection a hypothesis 2. find S in remaining boxes

according to learner’s bias 3- 1ind G in remaining boxes
4. output the mean of S and G



The version space algorithm

an abstract view of learning algorithms

three components of a learning algorithm

4 )

hypothesis

space scoring search
function algorithm
k&&




Theories

The i.i.d. assumption:

all training examples and future (test)
examples are drawn independently from
an identical distribution

. unknown but fixed
- S . distribution D

bias-variance dilemma (regression)

generalization bound (classification)



Bias-variance dilemma

Suppose we have 100 training examples
but there can be different training sets

Start from the expected trammg MSE:

Epled] = Ep | — Z = %ZED [(h(a:z) — yz)Z]
(assume no n01s_e) _
Ep |[(h(z) — f(x))?]
= Ep (M) Eplh(z)] + Ep[h(z)] — f(x))]
= Ep [(h(z) — Ep[h(2)))*] + Ep [(Ep[h(z)] - f(x))?]
1 Ep [2(h(x ) Ep[h(x)))(Eplh(=)] - f(@))
( |

= Ep [(h(z) - Ep[h(2)))’] + Ep [(Ep[h(z)] - f(x))?]
variance biasA?2

I




Bias-variance dilemma

Ep [(h(z) — Ep[h(z)]))?]  Ep [(Eplh(z)] — f(x))?]
variance biasA?2

larger hypothesis space
=>

lower bias

but higher variance

hypothesis space
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Bias-variance dilemma

Ep [(h(z) — Ep[h(z)]))?]  Ep [(Eplh(z)] — f(x))?]
variance biasA?2

smaller hypothesis space
=>

smaller variance

but higher bias

hypothesis space



Bias-variance dilemma
Ep [(h(z) — Ep[h(x)])?] Ep [(Eplh(z)] — f(x))?]
variance biasA?2

smaller hypothesis space

f
=> thr 2
smaller variance ) @ g
but higher bias /

hypothesis space



Bias-variance dilemma

Ep [(h(z) — Ep[h(z)]))?]  Ep [(Eplh(z)] — f(x))?]
variance biasA?2




Overfitting and underfitting

training error v.s. hypothesis space size
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linear functions: high training error, small space

{y=a+bx|a,beR}



Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space
{y=a+bx|a,beR}

higher polynomials: moderate training error, moderate space
{y=a+br+cx*+dz’|a,b,c,dcR)



Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space
{y=a+bx|abeR}

higher polynomials: moderate training error, moderate space
{y=a+br+cx*+dz’|a,b,c,dcR)

even higher order: no training error, large space

{y:a+b$—|—0$2—|—d$’3—|—€$4‘|—f$5‘aabacadaevfeR}



Overfitting and bias-variance dilemma

Ep [(h(z) — Ep[h(x)])?]

variance
high b balanced low b
small v large v
A

-

O

—

S

U

Ep [(Ep[h(z)] — f(z))]

biasA2

red: generalization error
blue: training error

model complexity



Overfitting and bias-variance dilemma

Ep [(h(z) — Ep[h(x)])?]

variance
high b balanced low b
small v large v
A

eIror

Ep [(Ep[h(z)] — f(z))]

biasA2

red: generalization error
blue: training error

model complexity



Overfitting and bias-variance dilemma

biasA2

red: generalization error
blue: training error

Ep [(Mz) — Ep[h(x)])?]  Ep [(Ep[h(z)] — f())?]
variance
IslIil{cilllle balanced igl‘"/:c];(]; \%
A
| ”

model complexity



Overfitting and bias-variance dilemma
Ep [(Wz) — Ep[h(z)])*] Ep [(Ep[h(z)] — f(x))?]

variance biasA?2
high b balanced low b
small v large v
A red: generalization error
blue: training error
®
< ®
O o
P
—
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®

model complexity



Overfitting and bias-variance dilemma
Ep [(Wz) — Ep[h(z)])*] Ep [(Ep[h(z)] — f(x))?]

variance biasA?2
high b balanced low b
small v large v
A red: generalization error
blue: training error
®
< ®
| :
P
D o ®
o
@ >

model complexity



Overfitting and bias-variance dilemma
Ep [(Wz) — Ep[h(z)])*] Ep [(Ep[h(z)] — f(x))?]

variance biasA?2
high b balanced low b
small v large v
A red: generalization error

blue: training error

eIror

model complexity



Generalization error

assume i.i.d. examples, and the ground-truth
hypothesis is a box

.

o °“o .
-0
2l 0 09,
o oo
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Generalization error

assume i.i.d. examples, and the ground-truth
hypothesis is a box

e
e e e the error of picking a

- ey @ consistent hypothesis:
sl 0 e e
20 ' © . with probability at least 1 — o
s e : o © 1 1
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Generalization error

assume i.i.d. examples, and the ground-truth
hypothesis is a box

1 O
e e e the error of picking a
- ey @ consistent hypothesis:
sl 0 e e
-%D © . with probability at least 1 — 0
z| @ o © 1 1
5 +¥ e < — - (In|H|+1In=)
----------------------- m 0
O @ O
>
color

smaller generalization error:

» more examples
» smaller hypothesis space



Generalization error

for one h

h 1s consistent

What is the probability of e (h) > e

assume his bad: €¢,(h) > €
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Generalization error

for one h

h 1s consistent

What is the probability of e (h) > e

assume his bad: €¢,(h) > €

h is consistent with 1 example:

P<1-—e€

h is consistent with m example:

P<(1—¢™



Generalization error

h is consistent with m example:

P<(1—¢)™ AQ o® o
There are k consistent hypotheses —__&| 9
g 4; [+ Tt 1
°o— oo —




Generalization error

h is consistent with m example:

P<(1—e™ ‘° °® .
There are k consistent hypotheses —_&| 9 —o—@ |
= ‘F o 1
Probability of choosing a bad one: ol P ——

hi is chosen and hyisbad P<(1—-¢™
h> is chosen and h2isbad P<(1—-¢o™

hx is chosen and hxis bad P<(1—-¢e™



Generalization error

h is consistent with m example:

_am 1 =
P<(1—¢) o ©° o -
There are k consistent hypotheses — 5| 9
) ‘F ©® 1
Probability of choosing a bad one: ol —" P —
h is chosen and h; isbad P<(1-¢™ o >

h> is chosen and h2isbad P<(1—-¢o™

hx is chosen and hxis bad P<(1—-¢e™

overall:
dh: h can be chosen (consistent) but is bad
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Generalization error

hi is chosen and hyisbad P<(1—-¢™
h> is chosen and h2isbad P<(1—-¢o™

hx is chosen and hxis bad P<(1—-¢e™

overall:
dh: h can be chosen (consistent) but is bad

Union bound: P(AU B) < P(A) + P(B)



Generalization error

hi is chosen and hyisbad P<(1—-¢™
h> is chosen and h2isbad P<(1—-¢o™

hx is chosen and hxis bad P<(1—-¢e™

overall:
dh: h can be chosen (consistent) but is bad

Union bound: P(AU B) < P(A) + P(B)

P(3h is consistent but bad) < k- (1 —¢)™ <|H|- (1 —¢)™



Generalization error

P(3h is consistent but bad) < k- (1 —¢)™ < |H|- (1 —¢)™

Pleg>¢) < |H|- (1™

€g < — - -(In|H|+1In-)



Generalization error

P(3h is consistent but bad) < k- (1 —¢)™ < |H|- (1 —¢)™



Generalization error

P(3h is consistent but bad) < k- (1 —¢)™ < |H|- (1 —¢)™

Pleg>¢) < |H|- (1™
0

with probability at least 1 — 9

1 1
€g < E'(IHW\JFIHE)



Inconsistent hypothesis

What if the ground-truth hypothesis
is NOT a box: non-zero training error

weight
@@
@@

-




Inconsistent hypothesis

What if the ground-truth hypothesis
is NOT a box: non-zero training error

e =
g po===- Py "'5';?' """ g
- a El" a ...~“é
': :'I a a :s‘
o0 o !
V) :\‘ a [}
g a E > N a a'l,
:.g.-:.'.: ...... i
o/ O e
>
/ color

training error



Inconsistent hypothesis

What if the ground-truth hypothesis
is NOT a box: non-zero training error

A
e
%o © "} (+] 9\5\‘ with probability at least 1 — ¢
qg = . a W ;,’l 1 1
- N \/E(”l A+ )
o/ O e

training error



Inconsistent hypothesis

What if the ground-truth hypothesis
is NOT a box: non-zero training error

o®
@ ...
— PR - BTN e
fb e é © O with probability at least 1 — 9
2l o iy 09, 1 1
@0 e c<atry Pty
o/ O e
>

tralning error
5 » more examples

smaller generalization error: » smaller hypothesis space
» smaller training error



Hoetfding's inequality

X be an 1.i.d. random variable
X1,Xo,...,X,, be m samples X; € [a,b]

1 m
— E X; — E[X] < difference between sum and expectation
m

i=1

p(% i;Xi —E[X] > €) < exp (— (b2€_2232>



Generalization error

for one h

Xi = I(h(z;) # f(z;)) €0,1]
% > X; — e(h) E[X:] — e,(h)
P(et(h) — e4(h) > €) < exp (—2€¢°m)

P(e; — €4 > €)
< P(3h € |H] : e1(h) — €4(h) > €) < |H|exp (—2¢°m)



Generalization error

for one h

X; = I(h(x;) # f(x:)) € [0,1]

P(et(h) — €4(h) > €) < exp (—2¢*m)

P(e; — €4 > €)
< P(3h € |H] : e1(h) — €4(h) > €) < |H|exp (—2¢°m)
6

with probability at least 1 — o

1
5)

1
€g<€t—|—\/%'(lﬂl7‘”—|—ln



Generalization error: Summary

assume i.i.d. examples
consistent hypothesis case:

with probability at least 1 — o

1 1
€g < E‘(lﬂm|+1ﬂg)

inconsistent hypothesis case:

with probability at least 1 — 9

1
5)

1
€ < et—I—\/E(ln\”Hl + In

generalization error:
number of examples m
training error e
hypothesis space complexity In |H|



PAC-learning

Probably approximately correct (PAC):

1

1
eg<et—|—\/%-(ln\7-[]—|—lng)



PAC-learning

Probably approximately correct (PAC):
with probability at least 1 — 0

1

5)

1
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PAC-learning

Probably approximately correct (PAC):
with probability at least 1 — 0

1

5)

1
eg<et+\/%-(ln\?ﬂ—l—ln

PAC-learnable: [valiant, 1984]
A concept class C is PAC-learnable if

exists a learning algorithm A such that

for all f € C,e> 0,6 > 0and distribution D
Pp(e, <€) >1-9

using m = poly(1/e,1/6) examples and

polynomial time.



PAC-learning

Probably approximately correct (PAC):
with probability at least 1 — 0

1

5)

1
eg<et—|—\/%-(ln\7{]—l—ln

PAC-learnable: [valiant, 1984] Leslie Valiant
Turing Award (2010)

- ) i EATCS Award (2008)
A concept class C is PAC-learnable if o e

exists a learning algorithm A such that NevarinnaPrize (1950

for all f € C,e> 0,6 > 0and distribution D
Pp(e, <€) >1-9

using m = poly(1/¢,1/6) examples and

polynomial time.



Dimensions of modeling

( < x,f(x) >J @ . }})SS function

< x,f(x) > ~

£ = @
< xz,f(x) >
B *‘”

optlmlz ation

model



Learning algorithms revisit

Decision Iree



Tree depth and the possibilities

features: n
feature type: binary
depth: d<n

How many different trees?

n!
one-branch: 2¢ ~ 92d

Y SRl

full-tree:  22° H (n — i)

the possibility of trees grows very fast with d



The overfitting phenomena

-- the divergence between infinite and
finite samples

red: generalization error
A blue: training error

error

tree depth
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The overfitting phenomena
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The overfitting phenomena

-- the divergence between infinite and
finite samples

red: generalization error
A blue: training error

error

tree depth



Pruning

To make decision tree less complex

Pre-pruning: early stop
» minimum data in leaf

» maximum depth
» maximum accuracy

Post-pruning: prune full grown DT

reduced error pruning



Reduced error pruning

1. Grow a decision tree

2. For every node starting from the leaves

3. Try to make the node leaf, if does not increase the error,
keep as the leaf

not red

>=100g

preservatiorg

could split a validation set out bad \go()d
from the training set to

evaluate the error [ sweet j
sweet




DT boundary visualization

decision stump max depth=2 max depth=12




Oblique decision tree

choose a linear combination in each node:

axis parallel:
X1>0.5

oblique:
0.2 Xi+ 0.7 Xo+ 0.1 X3 > 0.5

was hard to train




Learning algorithms revisit

Naive Bayes



graphic representation

naive Bayes assumption:

Plx |y) = HP:BZ\y

no assumption:




Relaxation of naive Bayes assumption

assume features are conditional
independence given the class

if the assumption holds, naive Bayes
classifier will have excellence performance

if the assumption does not hold ...



Relaxation of naive Bayes assumption

assume features are conditional
independence given the class

if the assumption holds, naive Bayes
classifier will have excellence performance

if the assumption does not hold ...
» Naive Bayes classifier may also have good
performance

» Reform the data to satisfy the assumption

» Invent algorithms to relax the assumption



Reform the data

clustering to generate data with subclasses

original data

reformed data

A

A

class A f

O

O

O

O

clustering the
data in each class

(@)
M “oo

oy

form a new data set
with subclasses




Semi-naive Bayes classifiers

TreeNB

train an NB classifier in each leaf node of a
rough decision tree

A

weight




Semi-naive Bayes classifiers

TAN (Tree Augmented NB)

extends NB by allowing every feature to
have one more parent feature other than
the class, which forms a tree structure

fully connected



Semi-naive Bayes classifiers

TAN (Tree Augmented NB)

mutual information %+
for every node pair
:> Wi
I(Xi, X; |Y EY[I(Xi;Xj)\Y]
= Ey|H H(X; | X;) | Y]
P(xi,z; | y)

fully connected graph _Zyp b3 18 BT Plas )

among features

maximum

weighted
Spanning tre
L
] wz-j
Connect to the
class node

N/

weights assigned

and
choose
a root



Semi-naive Bayes classifiers

AODE (average one-dependent estimators)

egpand a posterior probability compare with NB:
with one-dependent estimators
(ODEs) P(x | y) = HP i | y)

Plx |y) = P(x2,...,2n | 21, y)P(wl | )
= P(x1 | HP x; | 21,y

» the Condltlonal independency is less important
»harder to estimate (fewer data)

AODE: average ODEs

f(x) = arg max Zl(count(a;z— >m)) - P(y) - Plz; | y) - Hf)(xj | i, y)



Handling numerical features

Discretization

recall what we have talked about in Lecture 2

Estimate probability density (P(X) — p(x))

(Gaussian model:

1 _ (w—g)Q
p— o)
ple) = ot
|

—f(@—p) ' T (z—p)

p(xla R 7xn) — (27T)k/2‘2‘1/26

training: calculate mean and covariance
test: calculate density



Bayesian networks

inference in a graphic model representation
a model simplified by conditional independence
a clear description of how things are going

P(C=T)

P(C=F)

0.8

0.2

P(S=T)

P(S=F)

0.02

0.98

C |[P(W=T|C)|P(W = F[C)

T 0.9 0.1

F| 0.01 0.99
B |P(A=T|B)|P(A=FB)
T| 07 0.3
F| 01 0.9

S |P(B=T|C.S)|PB=F[C.S)
T 0.9 0.1

F 0.2 0.8

T 0.9 0.1

F| 001 0.99

Judea Pearl
Turing Award 2011

“for fundamental contributions
to artificial intelligence through
the development of a calculus
for probabilistic and causal
reasoning”
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