

Data Mining for M.Sc. students, CS, Nanjing University Fall, 2014, Yang Yu

# Lecture 5: Machine Learning III Nearest Neighbors and Neural Networks

http://cs.nju.edu.cn/yuy/course\_dm14ms.ashx



what looks similar are similar





#### for classification:







Predict the label as that of the NN or the (weighted) majority of the k-NN

for regression:



Predict the label as that of the NN or the (weighted) *average* of the k-NN

Search for the nearest neighbor



Linear search

---0000000000

#### *n* times of distance calculations *O(dn* ln *k) d* is the dimension, *n* is the number of samples

#### for retrieval:







#### Nearest neighbor classifier



 as classifier, asymptotically less than 2 times of the optimal Bayes error

- naturally handle multi-class
- no training time
- nonlinear decision boundary

slow testing speed for a large training data set

- have to store the training data
- sensitive to similarity function

nonparametric method



construction: alternatively choose one dimension, make a split by the median value.

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]



linear search on k-d tree:
 search(node,x):

1. if node is a leave, return the distance and the instance

2. compare *search*(left branch,x) and *search*(right branch,x)

3. return the instance with smaller distance



*search*(node,x):

- 1. if node is a leave, return the distance and the instance
- 2. if *out-of-best-range*, return infinity distance
- 2. compare *search*(left branch,x) and *search*(right branch,x)
- 3. return the instance with smaller distance

# Accelerate NN search: branch-and-bound

*k*-d tree:

search for the nearest neighbor: follow the depth-first search

1. find the leaf containing the test instance, and calculate the distance to training point *a* 



# Accelerate NN search: branch-and-bound

*k*-d tree:

search for the nearest neighbor: follow the depth-first search

1. find the leaf containing the test instance, and calculate the distance to training point *a* 

2. back-tracing like the depthfirst search. Skip nodes not overlapped with the current circle.



find in the leaf of *a*, draw a cycle with diameter being the distance

the cycle overlaps with the box of *b*, so visit the leaf of *b* 

# Accelerate NN search: branch-and-bound

*k*-d tree:

search for the nearest neighbor: follow the depth-first search

1. find the leaf containing the test instance, and calculate the distance to training point *a* 

2. back-tracing like the depthfirst search. Skip nodes not overlapped with the current circle.



find in the leaf of *a*, draw a cycle with diameter being the distance

the cycle overlaps with the box of *b*, so visit the leaf of *b* 

the cycle does not overlap with the box of node 5 and node 3, skip them





#### locality sensitive hashing: similar objects in the same bucket



#### locality sensitive hashing: similar objects in the same bucket

A LSH function family  $\mathcal{H}(c, r, P_1, P_2)$  has the following properties for any  $x_1, x_2 \in S$ 

if  $||\boldsymbol{x}_1 - \boldsymbol{x}_2|| \leq r$ , then  $P_{h \in \mathcal{H}}(h(\boldsymbol{x}_1) = h(\boldsymbol{x}_2)) \geq P_1$ similar objects should be hashed in the same bucket with high probability if  $||\boldsymbol{x}_1 - \boldsymbol{x}_2|| \geq cr$ , then  $P_{h \in \mathcal{H}}(h(\boldsymbol{x}_1) = h(\boldsymbol{x}_2)) \leq P_2$ dissimilar objects should be hashed in the same bucket with low probability Accelerate NN search: hashing

#### **Binary vectors in Hamming space**

objects: (1100101101) Hamming distance: count the number of positions with different elements

 $||110101001, 110001100||_H = 3$ 



Accelerate NN search: hashing

#### **Binary vectors in Hamming space**

objects: (1100101101) Hamming distance: count the number of positions with different elements  $\|110101001, 110001100\|_{H} = 3$ 

LSH functions:  $\mathcal{H} = \{h_1, \ldots, h_n\}$  where  $h_i(\boldsymbol{x}) = x_i$ 



Accelerate NN search: hashing

#### **Binary vectors in Hamming space**

objects: (1100101101) Hamming distance: count the number of positions with different elements  $\|110101001, 110001100\|_{H} = 3$ 

LSH functions:  $\mathcal{H} = \{h_1, \ldots, h_n\}$  where  $h_i(\boldsymbol{x}) = x_i$ 

#### Real vectors with angle similarity

$$heta(m{x}_1,m{x}_2) = rccos rac{m{x}_1^{+}m{x}_2}{\|m{x}_1\|\|m{x}_2\|}$$

LSH functions:  $\mathcal{H} = \{h_r\} (r \in \mathbb{B}^n)$  where  $h_r(x) = \operatorname{sign}(r^\top x)$ 





ers?

What is the model complexity of NN classifiers?

What is the model complexity of NN classifiers?

How to make it simpler?

*k*-NN revisit:1) build prototypes, which are exactly the training instances2) find an class assignment of the prototypes to minimize the training error under *k*-NN

What is the model complexity of NN classifiers?

How to make it simpler?

*k*-NN revisit:1) build prototypes, which are exactly the training instances2) find an class assignment of the prototypes to minimize the training error under *k*-NN

model: data hypothesis space: all class assignments

ers?

What is the model complexity of NN classifiers?

ers?

What is the model complexity of NN classifiers?



What is the model complexity of NN classifiers?



## Data reduction

keep boundary examples only



Condensed kNN [Hart, TIT68]: iteratively record and remove a boundary example

## Data reduction

keep boundary examples only



Condensed kNN [Hart, TIT68]: iteratively record and remove a boundary example





[images from <u>http://</u> en.wikipedia.org/wiki/Knearest\_neighbors\_algori thm]

## Data reduction

keep boundary examples only



Condensed kNN [Hart, TIT68]: iteratively record and remove a boundary example









[images from <u>http://</u> en.wikipedia.org/wiki/Knearest\_neighbors\_algori thm]

#### Neural networks







## Neuron / perceptron

output a function of sum of input

linear function:  $f(\sum_{i} w_{i} x_{i}) = \sum_{i} w_{i} x_{i}$ 

threshold function:

$$f(\sum_{i} w_i x_i) = I(\sum_{i} w_i x_i > 0)$$

sigmoid function:

$$f(\sum_{i} w_i x_i) = \frac{1}{1 + e^{-\Sigma}}$$





[Minsky and Papert, Perceptrons, 1969]



Marvin Minsky Turing Award 1969

#### AI Winter

# Multi-layer perceptrons

feed-forward network



sigmoid network with one hidden layer can approximate arbitrary function [Cybenko 1989]



$$\hat{y} = F(\boldsymbol{x})$$
  $f(\sum_{i} w_{i}x_{i}) = \frac{1}{1 + e^{-\Sigma}}$   
gradient descent

error:  $E(w) = (F(x) - y)^2$ 



 $\hat{y} = F(\boldsymbol{x}) \quad f(\sum_{i} w_{i} x_{i}) = \frac{1}{1 + e^{-\Sigma}}$ gradient descent
error:  $E(\boldsymbol{w}) = (F(\boldsymbol{x}) - y)^{2}$   $\Delta w_{i,j} = -\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}}$ 

update one weight:  $\Delta w_{i,j} = -\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}}$ 



$$\hat{y} = F(\boldsymbol{x}) \quad f(\sum_{i} w_{i}x_{i}) = \frac{1}{1 + e^{-\Sigma}}$$
gradient descent
error:  $E(\boldsymbol{w}) = (F(\boldsymbol{x}) - y)^{2}$ 

$$\Delta w_{i,j} = -\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}}$$
r layer
$$\partial F(\boldsymbol{x})$$

update one weight:  $\Delta w_{i,j} = -\eta$ weight of the laster layer  $\frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}} = \frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})} \frac{\partial F(\boldsymbol{x})}{\partial w_{i,j}}$ 



weight of the first

$$\hat{y} = F(\boldsymbol{x}) \quad f(\sum_{i} w_{i}x_{i}) = \frac{1}{1 + e^{-\Sigma}}$$
gradient descent
error:  $E(\boldsymbol{w}) = (F(\boldsymbol{x}) - y)^{2}$ 
update one weight:  $\Delta w_{i,j} = -\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}}$ 
weight of the laster layer
$$\frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}} = \frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})} \frac{\partial F(\boldsymbol{x})}{\partial w_{i,j}}$$
weight of the first layer

| $\frac{\partial E(\boldsymbol{w})}{\boldsymbol{\omega}}$ | $\frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})} \frac{\partial HL2}{\partial HL1} \frac{\partial HL1}{\partial HL1}$     |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{\partial w_{i,j}}$ –                          | $\overline{\partial F(\boldsymbol{x})} \ \overline{\partial \text{HL2}} \ \overline{\partial \text{HL1}} \ \overline{\partial w_{i,j}}$ |

#### For each given training example (x, y), do

- 1. Input the instance **x** to the NN and compute the output value  $o_u$  of every output unit *u* of the network
- 2. For each network output unit k, calculate its error term  $\delta_k$

 $\delta_k \leftarrow o_k (1 - o_k) (y_k - o_k)$ 

3. For each hidden unit k, calculate its error term  $\delta_h$ 

$$\delta_h \leftarrow o_k(1 - o_k) \sum_{k \in outputs} w_{kh} \delta_k$$

4. Update each network weight  $w_{ji}$  which is the weight associated with the *i*-th input value to the unit *j* 



$$w_{ji} \leftarrow w_{ji} + \eta \delta_j x_{ji}$$



# Advantage and disadvantages

Smooth and nonlinear decision boundary





Slow convergence

Many local optima

Best network structure unknown

Hard to handle nominal features



# Complexity of networks



#### The number of free variables?

Leave to "linear models"

### Deep network

#### autoencoder:





[Hinton and Salakhutdinov, Science 2006]

# Hopfield networks

#### a fully connected recursive network









NANA 1992

run:

1) set the input value of blue nodes

2) run the network

3) read the output from the yellow nodes





# ALISA NANITAC UNITA

#### train:

set the input and the output the same pattern

associative rule:

$$w_{ij} = \frac{1}{N} x_i x_j$$







#### 多层神经网络为何能实现非线性分类?

#### BP算法能否收敛到全局最优解?

#### k近邻分类算法是否需要训练预测模型?