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Nearest neighbor

what looks similar are similar



Nearest neighbor

1-nearest neighbor: k-nearest neighbor:

Predict the label as that of the NN
or the (weighted) majority of the k-NN

for classification:



Nearest neighbor

1-nearest neighbor: k-nearest neighbor:

Predict the label as that of the NN
or the (weighted) average of the k-NN

for regression:



Search for the nearest neighbor

Linear search

...

n times of distance calculations
O(dn ln k)

d is the dimension, n is the number of samples



Nearest neighbor

for retrieval:



Nearest neighbor classifier

‣ as classifier, asymptotically less than 2 times of 
the optimal Bayes error 
‣ naturally handle multi-class
‣ no training time
‣ nonlinear decision boundary

‣ slow testing speed for a large training data set
‣ have to store the training data
‣ sensitive to similarity function

nonparametric method



Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

construction: 
alternatively choose one dimension, 
make a split by the median value.

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html


Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

linear search on k-d tree:
   search(node,x):
    1. if node is a leave, return the distance and the instance
    2. compare search(left branch,x) and search(right branch,x)
    3. return the instance with smaller distance

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html


Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

   search(node,x):
    1. if node is a leave, return the distance and the instance
    2. if out-of-best-range, return infinity distance
    2. compare search(left branch,x) and search(right branch,x)
    3. return the instance with smaller distance

a smarter search on k-d tree:

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html


Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

1. find the leaf containing the 
test instance, and calculate the 
distance to training point a

search for the nearest neighbor:
    follow the depth-first search

example:
find      in the leaf of a, draw a cycle 
with diameter being the distance

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html


Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

1. find the leaf containing the 
test instance, and calculate the 
distance to training point a

search for the nearest neighbor:
    follow the depth-first search

2. back-tracing like the depth-
first search. Skip nodes not 
overlapped with the current 
circle.

example:
find      in the leaf of a, draw a cycle 
with diameter being the distance

the cycle overlaps with the box of b, 
so visit the leaf of b

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html


Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

1. find the leaf containing the 
test instance, and calculate the 
distance to training point a

search for the nearest neighbor:
    follow the depth-first search

2. back-tracing like the depth-
first search. Skip nodes not 
overlapped with the current 
circle.

example:
find      in the leaf of a, draw a cycle 
with diameter being the distance

the cycle overlaps with the box of b, 
so visit the leaf of b

the cycle does not overlap with the 
box of node 5 and node 3, skip them

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html


Accelerate NN search: hashing

hashing
objects:

buckets:

value
hash function



Accelerate NN search: hashing

hashing
objects:
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value

locality sensitive hashing: 
              similar objects in the same bucket

hash function



Accelerate NN search: hashing

hashing
objects:

buckets:

value

locality sensitive hashing: 
              similar objects in the same bucket

hash function

A LSH function family                      has the 
following properties for any x1,x2 2 S

if kx1 � x2k  r, then Ph2H(h(x1) = h(x2)) � P1

if kx1 � x2k � cr, then Ph2H(h(x1) = h(x2))  P2

H(c, r, P1, P2)

similar objects should be hashed in the same bucket with high probability

dissimilar objects should be hashed in the same bucket with low probability



k110101001, 110001100kH = 3

Accelerate NN search: hashing

Binary vectors in Hamming space

objects:  (1100101101)
Hamming distance:  count the number of positions 
with different elements



k110101001, 110001100kH = 3

Accelerate NN search: hashing

Binary vectors in Hamming space

objects:  (1100101101)
Hamming distance:  count the number of positions 
with different elements

h2 h5 h9

LSH functions:                           where
hi(x) = xiH = {h1, . . . , hn}

110101001
110010100
000110110
111001001
000011101

1    0    1
1    1    0
0    1    0
1    0    1
0    1    1



k110101001, 110001100kH = 3

Accelerate NN search: hashing

Binary vectors in Hamming space

objects:  (1100101101)
Hamming distance:  count the number of positions 
with different elements

h2 h5 h9

LSH functions:                           where
hi(x) = xiH = {h1, . . . , hn}

110101001
110010100
000110110
111001001
000011101

1    0    1
1    1    0
0    1    0
1    0    1
0    1    1

P (hi(x1) = hi(x2)) = 1� kx1 � x2k
d

frequency in the same bucket for 
a sample of hashing functions



hr(x) = sign(r>x)

r1

r2
P (hr(x1) = hr(x2)) = 1� ✓(x1,x2)

⇡

✓(x1,x2) = arccos

x

>
1 x2

kx1kkx2k

Accelerate NN search: hashing

Real vectors with angle similarity

LSH functions:                           whereH = {hr}(r 2 Bn)

frequency in the same bucket for 
a sample of hashing functions



Reduce the model complexity

What is the model complexity of NN classifiers?

How to make it simpler?



Reduce the model complexity

What is the model complexity of NN classifiers?

How to make it simpler?

k-NN revisit:
1) build prototypes, which are exactly the 
training instances
2) find an class assignment of the prototypes 
to minimize the training error under k-NN



Reduce the model complexity

What is the model complexity of NN classifiers?

How to make it simpler?

k-NN revisit:
1) build prototypes, which are exactly the 
training instances
2) find an class assignment of the prototypes 
to minimize the training error under k-NN

model: data
hypothesis space: all class assignments  



Reduce the model complexity

What is the model complexity of NN classifiers?

How to make it simpler?



Reduce the model complexity

What is the model complexity of NN classifiers?

How to make it simpler?



Reduce the model complexity

What is the model complexity of NN classifiers?

How to make it simpler?

...



Data reduction

keep boundary examples only

Condensed kNN [Hart, TIT68]: iteratively record and 
remove a boundary example



Data reduction

keep boundary examples only

Condensed kNN [Hart, TIT68]: iteratively record and 
remove a boundary example

[images from http://
en.wikipedia.org/wiki/K-
nearest_neighbors_algori
thm]
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Data reduction

keep boundary examples only

Condensed kNN [Hart, TIT68]: iteratively record and 
remove a boundary example

[images from http://
en.wikipedia.org/wiki/K-
nearest_neighbors_algori
thm]
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Neural networks
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Limitation of single neuron

[Minsky and Papert, Perceptrons, 1969]

Marvin Minsky
Turing Award 1969 AI Winter



Multi-layer perceptrons

feed-forward network

x3

x2

x4

x1

...

y

input
layer

hidden
layer

hidden
layer

output
layer

sigmoid network with one hidden layer can approximate 
arbitrary function [Cybenko 1989]



ŷ = F (x)

Back-propagation algorithm

[Rumelhart, Hinton, Williams. Nature 1986]

gradient descent

E(w) = (F (x)� y)2error:
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ŷ = F (x)

Back-propagation algorithm

[Rumelhart, Hinton, Williams. Nature 1986]

gradient descent

E(w) = (F (x)� y)2error:

�wi,j = �⌘
@E(w)

@wi,j
update one weight:
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ŷ = F (x)

Back-propagation algorithm

[Rumelhart, Hinton, Williams. Nature 1986]

gradient descent

E(w) = (F (x)� y)2error:

�wi,j = �⌘
@E(w)

@wi,j
update one weight:
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ŷ = F (x)

Back-propagation algorithm

[Rumelhart, Hinton, Williams. Nature 1986]

gradient descent

E(w) = (F (x)� y)2error:

�wi,j = �⌘
@E(w)

@wi,j
update one weight:

w
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Back-propagation algorithm

[Rumelhart, Hinton, Williams. Nature 1986]

For each given training example (x, y), do�

1.   Input the instance x to the NN and compute the output value ou of every output 
unit u of the network�

2.   For each network output unit k, calculate its error term δk�

3.   For each hidden unit k, calculate its error term δh�

4.   Update each network weight wji which is the weight associated with the i-th 
input value to the unit j�



Advantage and disadvantages

Smooth and nonlinear 
decision boundary

Slow convergence

Many local optima

Best network structure unknown

Hard to handle nominal features



Complexity of networks

The number of free variables?

Leave to “linear models”



Deep network

[Hinton and Salakhutdinov, Science 2006]

autoencoder:



Hopfield networks

a fully connected recursive network



Hopfield networks

run:

1) set the input value of blue nodes

2) run the network

3) read the output from the yellow nodes



Hopfield networks

train:

set the input and the output the same pattern

associative rule:



习题

多层神经网络为何能实现非线性分类？

BP算法能否收敛到全局最优解？

k近邻分类算法是否需要训练预测模型？


