
Lecture	
 5:	
 Machine	
 Learning	
 III
Nearest	
 Neighbors	
 and	
 Neural	
 Networks

http://cs.nju.edu.cn/yuy/course_dm14ms.ashx

Data Mining for M.Sc. students, CS, Nanjing University
Fall, 2014, Yang Yu

http://cs.nju.edu.cn/yuy/course_dm12ms.ashx
http://cs.nju.edu.cn/yuy/course_dm12ms.ashx

Nearest neighbor

what looks similar are similar

Nearest neighbor

1-nearest neighbor: k-nearest neighbor:

Predict the label as that of the NN
or the (weighted) majority of the k-NN

for classification:

Nearest neighbor

1-nearest neighbor: k-nearest neighbor:

Predict the label as that of the NN
or the (weighted) average of the k-NN

for regression:

Search for the nearest neighbor

Linear search

...

n times of distance calculations
O(dn ln k)

d is the dimension, n is the number of samples

Nearest neighbor

for retrieval:

Nearest neighbor classifier

‣ as classifier, asymptotically less than 2 times of
the optimal Bayes error
‣ naturally handle multi-class
‣ no training time
‣ nonlinear decision boundary

‣ slow testing speed for a large training data set
‣ have to store the training data
‣ sensitive to similarity function

nonparametric method

Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

construction:
alternatively choose one dimension,
make a split by the median value.

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

linear search on k-d tree:
 search(node,x):
 1. if node is a leave, return the distance and the instance
 2. compare search(left branch,x) and search(right branch,x)
 3. return the instance with smaller distance

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

 search(node,x):
 1. if node is a leave, return the distance and the instance
 2. if out-of-best-range, return infinity distance
 2. compare search(left branch,x) and search(right branch,x)
 3. return the instance with smaller distance

a smarter search on k-d tree:

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

1. find the leaf containing the
test instance, and calculate the
distance to training point a

search for the nearest neighbor:
 follow the depth-first search

example:
find in the leaf of a, draw a cycle
with diameter being the distance

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

1. find the leaf containing the
test instance, and calculate the
distance to training point a

search for the nearest neighbor:
 follow the depth-first search

2. back-tracing like the depth-
first search. Skip nodes not
overlapped with the current
circle.

example:
find in the leaf of a, draw a cycle
with diameter being the distance

the cycle overlaps with the box of b,
so visit the leaf of b

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Accelerate NN search: branch-and-bound

k-d tree:

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

1. find the leaf containing the
test instance, and calculate the
distance to training point a

search for the nearest neighbor:
 follow the depth-first search

2. back-tracing like the depth-
first search. Skip nodes not
overlapped with the current
circle.

example:
find in the leaf of a, draw a cycle
with diameter being the distance

the cycle overlaps with the box of b,
so visit the leaf of b

the cycle does not overlap with the
box of node 5 and node 3, skip them

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Accelerate NN search: hashing

hashing
objects:

buckets:

value
hash function

Accelerate NN search: hashing

hashing
objects:

buckets:

value

locality sensitive hashing:
 similar objects in the same bucket

hash function

Accelerate NN search: hashing

hashing
objects:

buckets:

value

locality sensitive hashing:
 similar objects in the same bucket

hash function

A LSH function family has the
following properties for any x1,x2 2 S

if kx1 � x2k  r, then Ph2H(h(x1) = h(x2)) � P1

if kx1 � x2k � cr, then Ph2H(h(x1) = h(x2))  P2

H(c, r, P1, P2)

similar objects should be hashed in the same bucket with high probability

dissimilar objects should be hashed in the same bucket with low probability

k110101001, 110001100kH = 3

Accelerate NN search: hashing

Binary vectors in Hamming space

objects: (1100101101)
Hamming distance: count the number of positions
with different elements

k110101001, 110001100kH = 3

Accelerate NN search: hashing

Binary vectors in Hamming space

objects: (1100101101)
Hamming distance: count the number of positions
with different elements

h2 h5 h9

LSH functions: where
hi(x) = xiH = {h1, . . . , hn}

110101001
110010100
000110110
111001001
000011101

1 0 1
1 1 0
0 1 0
1 0 1
0 1 1

k110101001, 110001100kH = 3

Accelerate NN search: hashing

Binary vectors in Hamming space

objects: (1100101101)
Hamming distance: count the number of positions
with different elements

h2 h5 h9

LSH functions: where
hi(x) = xiH = {h1, . . . , hn}

110101001
110010100
000110110
111001001
000011101

1 0 1
1 1 0
0 1 0
1 0 1
0 1 1

P (hi(x1) = hi(x2)) = 1� kx1 � x2k
d

frequency in the same bucket for
a sample of hashing functions

hr(x) = sign(r>x)

r1

r2
P (hr(x1) = hr(x2)) = 1� ✓(x1,x2)

⇡

✓(x1,x2) = arccos

x

>
1 x2

kx1kkx2k

Accelerate NN search: hashing

Real vectors with angle similarity

LSH functions: whereH = {hr}(r 2 Bn)

frequency in the same bucket for
a sample of hashing functions

Reduce the model complexity

What is the model complexity of NN classifiers?

How to make it simpler?

Reduce the model complexity

What is the model complexity of NN classifiers?

How to make it simpler?

k-NN revisit:
1) build prototypes, which are exactly the
training instances
2) find an class assignment of the prototypes
to minimize the training error under k-NN

Reduce the model complexity

What is the model complexity of NN classifiers?

How to make it simpler?

k-NN revisit:
1) build prototypes, which are exactly the
training instances
2) find an class assignment of the prototypes
to minimize the training error under k-NN

model: data
hypothesis space: all class assignments

Reduce the model complexity

What is the model complexity of NN classifiers?

How to make it simpler?

Reduce the model complexity

What is the model complexity of NN classifiers?

How to make it simpler?

Reduce the model complexity

What is the model complexity of NN classifiers?

How to make it simpler?

...

Data reduction

keep boundary examples only

Condensed kNN [Hart, TIT68]: iteratively record and
remove a boundary example

Data reduction

keep boundary examples only

Condensed kNN [Hart, TIT68]: iteratively record and
remove a boundary example

[images from http://
en.wikipedia.org/wiki/K-
nearest_neighbors_algori
thm]

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D

Data reduction

keep boundary examples only

Condensed kNN [Hart, TIT68]: iteratively record and
remove a boundary example

[images from http://
en.wikipedia.org/wiki/K-
nearest_neighbors_algori
thm]

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm%5D

Neural networks

f(
X

i

wixi) =
X

i

wixi

f(
X

i

wixi) =
1

1 + e

�⌃

f(
X

i

wixi) = I(
X

i

wixi > 0)

Neuron / perceptron

output a function of sum of
input

linear function:

sigmoid function:

threshold function:

X

i

wixi

f(⌃)

x1

x2

x3

x4

x5

w1
w2
w3
w4
w5

x0
w0

Limitation of single neuron

[Minsky and Papert, Perceptrons, 1969]

Marvin Minsky
Turing Award 1969 AI Winter

Multi-layer perceptrons

feed-forward network

x3

x2

x4

x1

...

y

input
layer

hidden
layer

hidden
layer

output
layer

sigmoid network with one hidden layer can approximate
arbitrary function [Cybenko 1989]

ŷ = F (x)

Back-propagation algorithm

[Rumelhart, Hinton, Williams. Nature 1986]

gradient descent

E(w) = (F (x)� y)2error:

w f(
X

i

wixi) =
1

1 + e

�⌃

ŷ = F (x)

Back-propagation algorithm

[Rumelhart, Hinton, Williams. Nature 1986]

gradient descent

E(w) = (F (x)� y)2error:

�wi,j = �⌘
@E(w)

@wi,j
update one weight:

w f(
X

i

wixi) =
1

1 + e

�⌃

ŷ = F (x)

Back-propagation algorithm

[Rumelhart, Hinton, Williams. Nature 1986]

gradient descent

E(w) = (F (x)� y)2error:

�wi,j = �⌘
@E(w)

@wi,j
update one weight:

w

@E(w)

@wi,j
=

@E(w)

@F (x)

@F (x)

@wi,j

weight of the laster layer

f(
X

i

wixi) =
1

1 + e

�⌃

ŷ = F (x)

Back-propagation algorithm

[Rumelhart, Hinton, Williams. Nature 1986]

gradient descent

E(w) = (F (x)� y)2error:

�wi,j = �⌘
@E(w)

@wi,j
update one weight:

w

@E(w)

@wi,j
=

@E(w)

@F (x)

@F (x)

@wi,j

weight of the laster layer

@E(w)

@wi,j
=

@E(w)

@F (x)

@F (x)

@HL2

@HL2

@HL1

@HL1

@wi,j

weight of the first layer

f(
X

i

wixi) =
1

1 + e

�⌃

Back-propagation algorithm

[Rumelhart, Hinton, Williams. Nature 1986]

For each given training example (x, y), do�

1. Input the instance x to the NN and compute the output value ou of every output
unit u of the network�

2. For each network output unit k, calculate its error term δk�

3. For each hidden unit k, calculate its error term δh�

4. Update each network weight wji which is the weight associated with the i-th
input value to the unit j�

Advantage and disadvantages

Smooth and nonlinear
decision boundary

Slow convergence

Many local optima

Best network structure unknown

Hard to handle nominal features

Complexity of networks

The number of free variables?

Leave to “linear models”

Deep network

[Hinton and Salakhutdinov, Science 2006]

autoencoder:

Hopfield networks

a fully connected recursive network

Hopfield networks

run:

1) set the input value of blue nodes

2) run the network

3) read the output from the yellow nodes

Hopfield networks

train:

set the input and the output the same pattern

associative rule:

习题

多层神经网络为何能实现非线性分类？

BP算法能否收敛到全局最优解？

k近邻分类算法是否需要训练预测模型？

