

Data Mining for M.Sc. students, CS, Nanjing University Fall, 2014, Yang Yu

Lecture 8: Unsupervised Learning density estimation and clustering

http://cs.nju.edu.cn/yuy/course_dm14ms.ashx

Unsupervised learning

data for supervised learning

target: find a mapping $h : \mathcal{X} \to \mathcal{Y}$

data for unsupervised learning:

target: find structures of the data

what structures ?

Unsupervised learning

why unsupervised learning?

natural need of discovery of structures in data

act as a preprocessing step to help supervised learning

...

There exists a probability *density* function *p* a data set *D* sampled i.i.d. from *p*

how large is the density at x, i.e., p(x)?

reconstruct *p* from *D* estimate the density of any instance

Parametric methods

Assume the family of the density function, estimate the parameters

Normal distribution/Gaussian model:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

Estimation:

 μ is data mean

 Σ is data covariance matrix

$$\Sigma = rac{1}{n-1} \sum_{i=1}^{n} (\boldsymbol{x}_i - \bar{\boldsymbol{x}}) (\boldsymbol{x}_i - \bar{\boldsymbol{x}})^{ op}$$

NANJAC UNIT

Histogram estimator

divide the input space into bins count the frequency of instances in each bin

 $p(x) = \frac{\# \text{ instances in } bin(x)}{m \times bin-width}$

Naive estimator

for each position, count instances in the neighbor range

$$p(x) = \frac{\# \text{ instances in } [x - h, x + h]}{m \times 2h}$$

Kernel estimator/Parzen window

for each position, the influence of an instance decreases with the distance

$$p(x) = \frac{1}{mh} \sum_{i=1}^{m} K(\frac{x - x_i}{h})$$

Gaussian kernel:
$$K(\Delta) = \frac{1}{\sqrt{2\pi}}e^{-\Delta^2/2}$$

random partition based method (non-metric) instance in low density region is easily separated

random partition based method (non-metric) instance in low density region is easily separated

1. grow a full complete random oblique decision tree

2. the leave depth implies the density

3. build and average many trees to smooth

(normalization is needed)

Clustering is to find clusters in the data

Unfortunately, there is no clear definition of what should be in a cluster

the subjectivity of clustering

hierarchical methods

density-based methods

centroid-based methods

model-based methods

. . .

Hierarchical methods

bottom-up: single-link clustering

stop at a minimum distance threshold e.g. average distance

[from wikipedia]

0.9

0.6

0.4

0.3

Hierarchical methods

bottom-up: single-link clustering

stop at a minimum distance threshold e.g. average distance

[from wikipedia]

0.8

0.6

0.4

0.3

bottom-up: single-link clustering

stop at a minimum distance threshold e.g. average distance from wikipedia]

0.8

0.6

0.4

0.3

bottom-up: single-link clustering

stop at a minimum distance threshold e.g. average distance [from wikipedia]

Hierarchical methods

bottom-up: single-link clustering

stop at a minimum distance threshold e.g. average distance

[from wikipedia]

0.8

0.6

0.4

0.3

bottom-up: single-link clustering

stop at a minimum distance threshold e.g. average distance from wikipedia]

0.8

0.6

0.4

0.3

separate data into two groups by maximizing the inter-group distance

expensive in each level

Density-based methods

A LISE

DBSCAN

focus on dense instances, clustering by connectivity

key concepts:

- an object \hat{P} whose ε -neighborhood containing no less than *MinPts* number of objects is a core object with respect to ε and *MinPts*
- an object *M* is directly density-reachable from object *P* with respect to ε and *MinPts* if *M* is within the ε -neighborhood of *P* which contains at least a minimum number
 - of points, MinPts
- an object Q is density-reachable from object P with respect to ε and *MinPts* if there is a chain of objects $p_1, ..., p_n, p_1 = P$ and $p_n = Q$, p_{i+1} is directly density-reachable from p_i with respect to ε and *MinPts*
- an object *S* is density-connected to object *R* with respect to ε and *MinPts* if there is an object *O* such that both *S* and *R* are density-reachable from *O* with respect to ε and *MinPts*

strictly not a clustering algorithm, leaving instances unclustered

Density-based methods

OPTICS order instances to identify the cluster structure

for each core object, calculate core-distance to be the distance to the *MinPts*-th nearest instance

for instance p, calcuate reachability-distance to a
 core object to be
 max{core-distance(o), distance(o,p)}

similar to DBSCAN, but adjust the scanning order so that closer instances are ordered closer

[Ankerst et al., SIGMOD99]

Density-based methods

[Rodriguez&Laio, Science 2014]: local density:

$$\rho_i = \sum_j I(d_{ij} - d_c < 0)$$

distance to higher density points

 $\delta_i = \min_{j:
ho_j >
ho_i} (d_{ij})$

for the highest density point $\delta_i = \max_j(d_{ij}).$

k-means

Step1: randomly generate *k* centers

Step2: for each instance, assign it to the cluster whose center is the nearest to the instance

Step3: compute the means of the cluster and regard them as the centers

Step4: if there is no change, exit. otherwise go to Step2

fix centers, update clusters

fix clusters, update centers

converge to local optimal

k-medoids

Step1: randomly select k objects as the centers of the clusters

Step2: for each remaining object, assign it to the cluster whose center is the nearest to the object

Step3: compute the means of the cluster, and assign the instance nearest to the mean as the centers

fix clusters, update centers

fix centers, update

clusters

Step4: if there is no improvement, exit. otherwise go to Step2 $k = \sum_{k=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{$

accelerate k-means [Elkan, ICML03]

in the original *k*-means algorithm the later iterations do not utilize earlier information

Lemma 1: Let x be a point and let b and c be centers. If $d(b,c) \ge 2d(x,b)$ then $d(x,c) \ge d(x,b)$.

when d(x,b) is calculated, we don't need to calculate d(x,c) in order to know x is closer to b than c.

Lemma 2: Let x be a point and let b and c be centers. Then $d(x,c) \ge \max\{0, d(x,b) - d(b,c)\}.$

when we know d(x,c) and that the new center moves a distance Δ , we know d(x,c') is at least $d(x,c) - \Delta$ (or 0) without calculate the exact distance.

Gaussian-mixture model

A perspective of dealing with unlabeled data is to imagine how the data is *generated*

assume that the data were generated from multiple Gaussian components

Clustering: To infer the Gaussian components from data

Gaussian models:

Gaussian model has two parameters: $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Density function:

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}$$

Log-likelihood function:

$$\ln p(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = -\frac{1}{2} \Big(k \ln(2\pi) + \ln |\boldsymbol{\Sigma}| + (\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}-\boldsymbol{\mu}) \Big)$$

When data clusters are known:

We know that there are three Gaussians models

for each model, calculate its parameters by maximizing the log-likelihood function: $\sum_{x} \ln p(x|\mu, \Sigma)$ $\begin{cases} \partial \sum_{x} \ln p(x|\mu, \Sigma) / \partial \mu = 0 \\ \partial \sum_{x} \ln p(x|\mu, \Sigma) / \partial \Sigma = 0 \end{cases} \qquad \mu = \frac{1}{N} \sum_{x} p(x|\mu, \Sigma) \cdot x \\ \text{(data mean)} \end{cases}$ $N = \sum_{x} p(x|\mu, \Sigma) \qquad \Sigma = \frac{1}{N} \sum_{x} p(x|\mu, \Sigma) (x - \mu) (x - \mu)^{\top} \\ \text{(data covariance)} \end{cases}$

When data clusters are unknown:

Guess the model at first!

How to assign clusters to data: $w_1 = p(z=1) = \frac{1}{3}$ model 1 z = 1 $w_2 = p(z=2) = \frac{1}{3}$ $w_3 = p(z=3) = \frac{1}{3}$ Assume the models and model 2 z = 2their prior probabilities model 3 z = 3density function prior probability $p(z \mid \boldsymbol{x}) = \frac{p(\boldsymbol{x} \mid z)p(z)}{p(\boldsymbol{x})}$ **Bayes rule:**

Model-based methods

Assign the cluster of the largest posterior probability

$$c(\boldsymbol{x}) = \operatorname*{arg\,max}_{i=1,2,3} p(\boldsymbol{x} \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \cdot w_i$$

EM algorithm:

The original EM approach [Dempster et al, J Royal Statistical Society'77]

1. Initial guess of models (with equal prior probabilities)

$$(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, w_1 = \frac{1}{k}), \dots, (\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, w_k = \frac{1}{k})$$

2. Assign clusters to data

$$c(\boldsymbol{x}) = \operatorname*{arg\,max}_{i=1,\dots,k} p(\boldsymbol{x} \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \cdot w_i$$

Expectation

complete the data

3. Re-estimate model parameters from data $\mu_{i} = \frac{1}{N_{i}} \sum_{\boldsymbol{x}} p(\boldsymbol{x} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) \boldsymbol{x}$ complete the model $\Sigma_{i} = \frac{1}{N_{i}} \sum_{\boldsymbol{x}} p(\boldsymbol{x} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) (\boldsymbol{x} - \boldsymbol{\mu}_{i}) (\boldsymbol{x} - \boldsymbol{\mu}_{i})^{\top}$ $w_{i} = N_{i}/N$ $N_{i} = \sum_{\boldsymbol{x}} p(\boldsymbol{x} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})$ 4. Go to 2 if not *converged*

NANA 1902

GMM example:

(from wikipedia)

Some other methods

spectral clustering [Shi and Malik, PAMI00]:

maximum margin clustering [Xu et al., NIPS05]:

decision tree-based clustering [Liu et al., FADM05]:

Determine the number of clusters

Rule of thumb

$$k = \sqrt{n/2}$$

Cross-validation

leave a subset of data as *test data* try different number of clusters to maximize the performance on the test data

Using density based method

Use density-based method to find the number of clusters, then run a clustering method

使用核密度估计(kernel estimator)方法是否会受到距离 函数的影响?

k-means 聚类算法的停止条件是什么?

k-means 聚类算法的优化目标是什么?

阐述k-means聚类算法的执行过程和关键步骤。