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The importance of features

features determine the instance distribution
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good features lead to better mining results



Feature processing

feature selection

feature extraction

a good feature set is more important 
than a good classifier



Feature selection

To select a set of good features from 
a given feature set

Improve mining performance
reduce classification error

Reduce the time/space complexity of mining

Improve the interpretability

Better data visualization

Saving the cost of observing features



Feature selection

original features

selected features

evaluation criterionsearch method



Evaluation criteria

classifier independent

classifier dependent

dependency based criteria

information based criteria

distance based criteria

classifier internal weighting

< x,f(x) >

f ’< x,f(x) > algorithm



Dependency based criteria

How a feature set is related with the class
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high co
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correlation between a feature and the class
correlation between two features
search: select high correlated low redundant features



I(X; split) =

X

j

#partition j

#all

H(partition j)

Information based criteria

How much a feature set provides 
information about the class

Information gain:

H(X) = �
X

i

pi ln(pi)Entropy:

Entropy after split:

Information gain: H(X)-I(X;split)



1: F = original feature sets, C is the class label

2: S = ;
3: loop

4: a = the best correlated/informative feature in F
5: v = the correlation/IG of a
6: if v < ✓ then

7: break

8: end if

9: F = F/{a}
10: S = S [ {a}
11: end loop

12: return S

A simple forward search

sequentially add the next best feature



1: F = original feature sets, C is the class label

2: S = ;
3: loop

4: a = the best correlated/informative feature in F
5: v = the correlation/IG of a
6: if v < ✓ then

7: break

8: end if

9: F = F/{a}
10: S = S [ {a}
11: for a0 2 F do

12: v0 = the correlation/IG of a0 to a
13: if v0 > ↵ · v then F = F/{a0}
14: end if

15: end for

16: end loop

17: return S

A simple forward search

remove 
redundant 
features



Distance based criteria

Examples in the same class should be near
Examples in different classes should be far
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within class distant

cross-class distant

select features to optimize the distance 



w = 0
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Distance based criteria

Relief: feature weighting based on distance
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1. random select an instance x

2. find the nearest same-class 
instance u (according to w)

3. find the nearest diff-class 
instance v (according w)

4. 

5. goto 1 for m times

w = w � |x� u|+ |x� v|

select the features whose weights are above a threshold



Feature weighting from classifiers

Many classification algorithms perform 
feature selection and weighting internally

decision tree: select a set of features by recursive IG

random forest: weight features by the frequency of 
using a feature

linear model: a natural feature weighting

select features from these models’ internal feature 
weighting

note the difference to FS for classification



Classifier dependent feature selection

f ’< x,f(x) > algorithm

select features to maximize the performance of 
the following mining task

slow in speed
hard to search
hard to generalize the selection results

more accurate mining result



F = original feature set

S = ;
perf-so-far = the worst performance value

loop

for a 2 F do

v(a) = the performance given features S [ {a}
end for

ma = the best feature

mv = v(ma)
if mv is worse than perf-so-far then

break

end if

S = S [ma
perf-so-far = mv

end loop

return S

Classifier dependent feature selection

Sequential forward search: 
add features one-by-one



F = original feature set

perf-so-far = the performance given features F
loop

for a 2 F do

v(a) = the performance given features F/{a}
end for

ma = the best feature to remove

mv = v(ma)
if mv is worse than perf-so-far then

break

end if

F = F/{ma}
perf-so-far = mv

end loop

return S

Classifier dependent feature selection

Sequential backward search:
remove features one-by-one



Classifier dependent feature selection

empty

1 32

2,1 2,3

2,3,1

1,2,3

1,2 2,3 1,3

2 3

forward backward

faster more accurate



Classifier dependent feature selection

1,2,3

1,2 2,3 1,3

2,3,6 2,3,7

combined forward-backward search

random init

backward

forward 2,3,5

backward 2,3 3,6 2,6

...



Feature extraction

disclosure the inner structure of the data 
to support a better mining performance

feature extraction construct new features

commonly followed by a feature selection

usually used for low-level features

digits bitmap:



Linear methods

Principal components analysis (PCA)

rotate the data to align the directions of 
the variance



Linear methods

Principal components analysis (PCA)

the first dimension = the largest variance direction



Linear methods

Principal components analysis (PCA)

the first dimension = the largest variance direction
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6.3 Principal Components Analysis

In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis
it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ∥w1∥ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 −α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we
have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
w2

wT
2Σw2 −α(wT

2w2 − 1)− β(wT
2w1 − 0)(6.7)



Linear methods

Principal components analysis (PCA)

the first dimension = the largest variance direction
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find a unit w to maximize the 
variance
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114 6 Dimensionality Reduction

Taking the derivative with respect to w2 and setting it equal to 0, we
have

2Σw2 − 2αw2 − βw1 = 0(6.8)

Premultiply by wT
1 and we get

2wT1Σw2 − 2αwT
1w2 − βwT

1w1 = 0

Note that wT1w2 = 0. wT
1Σw2 is a scalar, equal to its transpose wT

2Σw1

where, because w1 is the leading eigenvector of Σ, Σw1 = λ1w1. There-
fore

wT1Σw2 = wT2Σw1 = λ1w
T
2w1 = 0

Then β = 0 and equation 6.8 reduces to

Σw2 = αw2

which implies that w2 should be the eigenvector of Σ with the second
largest eigenvalue, λ2 = α. Similarly, we can show that the other dimen-
sions are given by the eigenvectors with decreasing eigenvalues.

Because Σ is symmetric, for two different eigenvalues, the eigenvectors
are orthogonal. If Σ is positive definite (xTΣx > 0, for all nonnull x), then
all its eigenvalues are positive. If Σ is singular, then its rank, the effective
dimensionality, is k with k < d and λi , i = k+ 1, . . . , d are 0 (λi are sorted
in descending order). The k eigenvectors with nonzero eigenvalues are
the dimensions of the reduced space. The first eigenvector (the one with
the largest eigenvalue), w1, namely, the principal component, explains
the largest part of the variance; the second explains the second largest;
and so on.

We define

z =WT (x −m)(6.9)

where the k columns of W are the k leading eigenvectors of S, the esti-
mator to Σ. We subtract the sample mean m from x before projection
to center the data on the origin. After this linear transformation, we get
to a k-dimensional space whose dimensions are the eigenvectors, and the
variances over these new dimensions are equal to the eigenvalues (see
figure 6.1). To normalize variances, we can divide by the square roots of
the eigenvalues.
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have
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In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis
it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ∥w1∥ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 −α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we
have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
w2

wT
2Σw2 −α(wT

2w2 − 1)− β(wT
2w1 − 0)(6.7)
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Figure 6.2 (a) Scree graph. (b) Proportion of variance explained is given for the
Optdigits dataset from the UCI Repository. This is a handwritten digit dataset
with ten classes and sixty-four dimensional inputs. The first twenty eigenvectors
explain 90 percent of the variance.

use the eigenvectors of the correlation matrix, R, instead of the covari-
ance matrix, S, for the correlations to be effective and not the individual
variances.

PCA explains variance and is sensitive to outliers: A few points distant
from the center would have a large effect on the variances and thus the
eigenvectors. Robust estimation methods allow calculating parameters in
the presence of outliers. A simple method is to calculate the Mahalanobis
distance of the data points, discarding the isolated data points that are
far away.

If the first two principal components explain a large percentage of the
variance, we can do visual analysis: We can plot the data in this two di-

from [Intro. ML]
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Figure 6.6 Map of Europe drawn by MDS. Pairwise road travel distances be-
tween these cities are given as input, and MDS places them in two dimensions
such that these distances are preserved as well as possible.

two points r and s, the squared Euclidean distance between them is

d2
rs = ∥xr − xs∥2 =

d
∑

j=1

(xrj − xsj)2 =
d
∑

j=1

(xrj)
2 − 2

d
∑

j=1

xrjx
s
j +

d
∑

j=1

(xsj)
2

= brr + bss − 2brs(6.24)

where brs is defined as

brs =
d
∑

j=1

xrjx
s
j(6.25)

To constrain the solution, we center the data at the origin and assume

N
∑

t=1

xtj = 0,∀j = 1, . . . , d

from [Intro. ML]
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Taking the derivative with respect to w1 and setting it equal to 0, we
have
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which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have
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m be the mean of a class
s2 be the variance of a class
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Figure 6.7 Two-dimensional, two-class data projected on w.

m1 and m1 are the means of samples from C1 before and after projec-
tion, respectively. Note thatm1 ∈ ℜd andm1 ∈ ℜ. We are given a sample
X = {xt , r t} such that r t = 1 if xt ∈ C1 and r t = 0 if xt ∈ C2.

m1 =
∑

t w
Txtr t

∑

t r t
= wTm1

m2 =
∑

t w
Txt(1− r t )

∑

t(1− r t )
= wTm2(6.31)

The scatter of samples from C1 and C2 after projection arescatter

s2
1 =

∑

t

(wTxt −m1)
2r t

s2
2 =

∑

t

(wTxt −m2)
2(1− r t)(6.32)

After projection, for the two classes to be well separated, we would like
the means to be as far apart as possible and the examples of classes be
scattered in as small a region as possible. So we want |m1 −m2| to be
large and s2

1 + s2
2 to be small (see figure 6.7). Fisher’s linear discriminantFisher’s linear

discriminant is w that maximizes

J(w) = (m1 −m2)2

s2
1 + s2

2

(6.33)

maximize the criterion
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Rewriting the numerator, we get

(m1 −m2)
2 = (wTm1 −wTm2)

2

= wT (m1 −m2)(m1 −m2)
Tw

= wTSBw(6.34)

where SB = (m1−m2)(m1−m2)
T is the between-class scatter matrix. Thebetween-class

scatter matrix denominator is the sum of scatter of examples of classes around their
means after projection and can be rewritten as

s2
1 =

∑

t

(wTxt −m1)
2r t

=
∑

t

wT (xt −m1)(x
t −m1)

Twr t

= wTS1w(6.35)

where

S1 =
∑

t

r t (xt −m1)(x
t −m1)

T(6.36)

is the within-class scatter matrix for C1. S1/
∑

t r
t is the estimator of Σ1.within-class

scatter matrix Similarly, s2
2 = wTS2w with S2 =

∑

t (1 − rt )(xt −m2)(xt −m2)T , and we
get

s2
1 + s2

2 = wTSWw

where SW = S1 + S2 is the total within-class scatter. Note that s2
1 + s2

2

divided by the total number of samples is the variance of the pooled
data. Equation 6.33 can be rewritten as

J(w) = wTSBw

wTSWw
= |w

T (m1 −m2)|2
wTSWw

(6.37)

Taking the derivative of J with respect to w and setting it equal to 0, we
get

wT (m1 −m2)

wTSWw

(

2(m1 −m2)−
wT (m1 −m2)

wTSWw
SWw

)

= 0

Given that wT (m1 −m2)/w
TSWw is a constant, we have

w = cS−1
W (m1 −m2)(6.38)

where c is some constant. Because it is the direction that is important for
us and not the magnitude, we can just take c = 1 and find w.
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Figure 6.7 Two-dimensional, two-class data projected on w.

m1 and m1 are the means of samples from C1 before and after projec-
tion, respectively. Note thatm1 ∈ ℜd andm1 ∈ ℜ. We are given a sample
X = {xt , r t} such that r t = 1 if xt ∈ C1 and r t = 0 if xt ∈ C2.

m1 =
∑

t w
Txtr t

∑
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= wTm1
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∑

t(1− r t )
= wTm2(6.31)

The scatter of samples from C1 and C2 after projection arescatter
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After projection, for the two classes to be well separated, we would like
the means to be as far apart as possible and the examples of classes be
scattered in as small a region as possible. So we want |m1 −m2| to be
large and s2

1 + s2
2 to be small (see figure 6.7). Fisher’s linear discriminantFisher’s linear

discriminant is w that maximizes

J(w) = (m1 −m2)2

s2
1 + s2

2

(6.33)
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where c is some constant. Because it is the direction that is important for
us and not the magnitude, we can just take c = 1 and find w.

The objective becomes:
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Example: Face recognition

[image from http://commons.wikimedia.org/wiki/File:Fisherface_eigenface_laplacianface.GIF]

Basis of eigenface (PCA):

Basis of Fisherface (LDA):

PCA and LDA are commonly used to extract features 
for face recognition.

http://commons.wikimedia.org/wiki/File:Fisherface_eigenface_laplacianface.GIF
http://commons.wikimedia.org/wiki/File:Fisherface_eigenface_laplacianface.GIF


习题

特征是否越多越好？为什么？

特征选择(feature selection)和特征抽取(feature 
extraction)各适合应用在什么场景？

主成分分析(PCA)和线性判别分析(LDA)哪一种是需要类
别标记的？


