Derivative-Free Optimization with Adaptive Experience
for Efficient Hyper-Parameter Tuning'

Yi-Qi Hu'? and Zelin Liu’?> and Hua Yang® and Yang Yu! and Yunfeng Liu’

Abstract. Hyper-parameter tuning is a core part of automatic ma-
chine learning (AutoML), which aims to automatically configure ma-
chine learning systems in deployed applications. Previously, hyper-
parameter tuning is usually formulated as a black-box optimization
problem, for which derivative-free optimization (DFO) solver is of-
ten employed. Such solvers often suffered from low-efficiency. Thus
experienced DFO was proposed, which utilizes historical optimiza-
tion process data to guide the optimization on new problems. How-
ever, the effectiveness of experienced DFO is sensitive to the rele-
vance between the experienced tasks and the target tasks. Relevant
experience can accelerate the convergence, while irrelevant experi-
ence could injure the convergence. This paper proposes an adaptation
mechanism for the experienced DFO. It learns a set of experience
models to guide the DFO processes, and exams these models on a
few labeled samples from the target task. By comparing model pre-
dictions with the ground-truth labels, it adaptively learns the relevant
experience by weighting those models. The experiments on synthetic
tasks verify that the proposed method can effectively adopt the rel-
evant experience for a range of target tasks. Furthermore, we apply
the proposed method to the tasks of configuring LightGBM hyper-
parameters. The empirical results show that the proposed method ef-
fectively selects the relevant experience and significantly improves
the performance of hyper-parameter tuning in only a few iterations.

1 Introduction

Machine learning has been proved as a practical technique and
widely used in many applications, e.g., computer vision [6], natural
language processing [10], recommendation systems [8], etc. How-
ever, successful applications of machine learning usually rely on
careful configurations of learning processes. However, manual con-
figurations deeply depend on expert knowledge and spend plenty
of human power. To tackle this issue, automatic machine learning
(AutoML) [35] is proposed. Without any human participation, it
tries to automatically configure machine learning processes includ-
ing data pre-processing [21], algorithm selection [1, 5, 7, 16], hyper-
parameter tuning [2, 3, 17, 13, 29], etc. AutoML is usually formu-
lated as a black-box optimization problem, such as the combined al-
gorithm selection and hyper-parameter optimization (CASH) prob-
lem in [11]. This formulation is non-convex, non-continuous, and

1 This work is supported by NSFC (61876077), Jiangsu SF (BK20170013),
and Collaborative Innovation Center of Novel Software Technology and
Industrialization. Yang Yu is the corresponding author. This work is done
when Yi-Qi Hu and Zelin Liu were interns in Zhuiyi Technology Co.,Ltd.
Authors’ institutions:

1 National Key Laboratory for Novel Software Technology, Nanjing Uni-
versity, Nanjing, China.

2 Zhuiyi Technology Co., Ltd., China.

Email addresses: {huyq,yuy} @lamda.nju.edu.cn

non-differentiable. Thus, the gradient-based optimization methods
are hard to be applied. However, derivative-free optimization (DFO)
is suitable for such situations [23]. Derivative-free optimization [19,
36, 15, 4, 14] follows the trial-and-error framework, which only re-
lies on the evaluation values of samples to accomplish the DFO pro-
cesses. By applying derivative-free optimization, some popular Au-
toML tools [11, 31] have been developed and achieved successes in
some data mining competitions.

Without gradients, derivative-free optimization methods need
many samples together with their evaluations to explore the search
space. An evaluation of AutoML tasks involves a full validation pro-
cess. Thus, many evaluations imply very high time-cost. As a result,
previous AutoML solvers always suffer from the low-efficient issue,
i.e., it spends a long time on finding a good configuration. Expe-
rienced derivative-free optimization [18] could be a way to alleviate
this issue. It involves a two-part process. The first part is to extract ex-
perience data from some historical optimization processes and learn
directional models based on the experience data. The second part
is to utilize the directional models to guide the derivative-free opti-
mization process on unseen tasks. With the guidance of the direc-
tional models, the experienced derivative-free optimization can suc-
cessfully avoid unnecessary evaluations and accelerate convergence
with only a few samples. While this method shows improvement in
DFO processes from scratch, it could suffer from the uncontrollable
relevance between the target task and the source tasks. Irrelevant di-
rectional models will provide wrong guidance as to slow down the
convergence on target tasks. Hence, it is urgent to maintain experi-
ence relevance.

In this paper, we proposed the experience adaptation mechanism
to selectively adopt relevant experience for experienced derivative-
free optimization. It follows a simple principle: on target tasks, we
will keep the directional models (experience) that correctly guide the
DFO processes, while omitting the directional models that wrongly
guide the DFO processes. The correctness of direction guidance is
easy to be tested in the target tasks. Directional models guide the
DFO process by predicting a search direction for the next sample. If
the next sample successfully improves the optimization performance,
we consider the predicted direction correctly guide the search. On
the contrary, if the next sample unsuccessfully improves the opti-
mization performance, we consider the predicted direction wrongly
guide the search. Through the guidance-exam way, relevant direc-
tional models can be discovered. We implemented this experience
adaptation mechanism based on the classification-based optimization
RACOS [36, 15], and named it ADARACOS. The experiment results
on synthetic tasks show that ADARACOS can effectively find the rele-
vant directional models on target tasks. Then, we apply ADARACOS
to tune LightGBM hyper-parameters on 40 datasets. It verifies that

ADARACOS can significantly improve the performance of hyper-
parameter tuning with a few evaluation budgets.

The rest four sections of this paper present background & related
works, proposed method, experiments, and conclusions.

2 Background & Related Works

In this paper, we focus on the hyper-parameter tuning task that can
be formulated as a black-box optimization problem. Let D™ and
D' denote the training and the testing datasets. For an algorithm,
let § € A denote a hyper-parameter configuration, where A is the
hyper-parameter space. We use a criterion f (-) to evaluate a hyper-
parameter configuration such as accuracy, AUC score, F1 score, etc.
The hyper-parameter tuning task can be formulated as follows:

k
5 = argmax l Z f (6, xD;_ra\in7 D;/_alid) , 1)
sea ki
where D¢ = D™ — D" is the validating dataset at j-th fold.
Like the CASH problem [11], this formulation is essentially max-
imizing the k-fold validation performance on the hyper-parameter
space of an algorithm. Due to the non-convex, non-continuous and
non-differentiable properties, the hyper-parameter tuning is a hard
optimization problem.

Derivative-free optimization is suitable for solving hyper-
parameter tuning tasks like Eq. (1). Previous derivative-free op-
timization methods include evolutionary algorithms [12, 37, 26],
Bayesian optimization [27, 29], classification-based optimiza-
tion [36, 15], etc [25]. They all share the same optimization frame-
work that consists of sampling and evaluating. Without gradients,
derivative-free optimization needs plenty of samples and evalua-
tions to explore the search space. Due to the high evaluation cost,
derivative-free optimization suffers from the low-efficient issue when
solving hyper-parameter tuning tasks. Thus, some high-efficient al-
gorithms are applied as the task solvers such as SMAC [19], TPE [4],
RAcCOS [36, 15], etc. These algorithms generate new samples and ex-
plore the search space only according to the evaluation values. With-
out extra information, derivative-free optimization is hard to break
through the efficient bottleneck.

Recently, meta-knowledge [30, 24, 18] is considered to improve
the efficiency of hyper-parameter tuning. For example, in [24], the
authors employ the best samples of historical tasks to initialize the
Bayesian optimization processes on new tasks, i.e., warm-starting.
Experienced DFO [18] is also a meta-knowledge based method. The
meta-knowledge is a set of directional models that are learned from
the DFO processes of historical tasks. With the guidance of predicted
directions, it effectively avoids many unnecessary evaluations and ac-
celerates DFO convergence within a few sample evaluations. How-
ever, the effectiveness of directional models is sensitive to the rele-
vance between the source and target tasks. Figure 1 simply illustrates
the relevant issue among source and target tasks. In the figure, the X-
axis is the distance that measures the relevance between the source
tasks and the target task. The small distance means high relevance.
The Y-axis is the optimization performance in the Sphere function.
It is a minimization task. The results show a positive correlation be-
tween the distance and the optimization performance. It means that
experienced DFO with a relevant directional model is easier to obtain
better performance.

The relevance among tasks is frequently considered on meta learn-
ing [32] such as one-shot learning [22, 33], few-shot learning [28],
model reuse [38, 34], etc. Previously, these works manually define

0.60 x
3 x
=S 0551 x
wn X
2
g x X%
g 050 X e XX x
g xxx "xx
i=
Q. 0.45 X x
o x
X
0.40
X
15 20 25 300 35
Distances

Figure 1. Illustration of relevance between source and target tasks. The
task is minimizing Sphere function. We randomly shift the optimal points of
Sphere function to construct the task distribution. The target task is Sphere
function with {0.1}" as the optimal point, where n = 10 is the
dimensionality. The X -axis is the Euclidean distance between the optimal
points of source and target tasks that measures the relevance. The Y -axis is
the performance of experienced DFO with only 50 evaluation budget.

the relevance among different tasks. For example, the target task is
to classify tigers from images. We choose the model that learns from
the cat classification task as the base model. Unfortunately, optimiza-
tion usually indicates an abstract process. Thus, an intuitive or math-
ematical definition of relevance is unavailable for the optimization
tasks. In online learning, prediction with expert advice [9] consid-
ers the situation of unavailable relevance. The problem of this setting
is how to apply some pre-trained expert predictors to predict a target
task. The core challenge is to select the most relevant expert predictor
among the candidates. Prediction with expert advice employs expert
predictors to test on the frequent-coming instances. With the labels
of instances, the relevant expert predictors can be selected according
to the test results.

Without pre-defined relevance between the source and target tasks,
this paper proposed the experience adaptation mechanism that adap-
tively finds relevant directional models to improve the efficiency of
experienced DFO.

3 Proposed Method

In this section, we propose the adaptive experienced derivative-free
optimization method. We firstly introduce the problem setting, i.e.,
the source and target optimization tasks. We then briefly discuss the
experienced DFO framework. Finally, we show the details of the ex-
perience adaptation mechanism, i.e., the core part of the proposed
method.

3.1 Source and target tasks

This paper considers an optimization task set F =
{fl,fz,...,f]w}, where Vi € {1,2,...,M},fi ~ F. Fis
an underlying task distribution. Since all tasks in F' come from
the same task distribution, the tasks are different but inner-relevant
among each other. Hyper-parameter tuning tasks naturally follow
this problem setting. A model can be applied to train on different
datasets. Although it is the same model, the best hyper-parameters
are totally different due to different datasets. Thus, the tasks are

similar but different. We split F' into Fs = {f1, fo,..., fm,} and
Fy = {f1,f2--., fm,}, where F;UF, = F, F; N F; = () and
M, + My = M. Fs is a source task set. f;, € Fs is a source
task. F is a target task set. f;, € F% is a target task. Generally, the
source tasks have been optimized by derivative-free optimization
methods. In other words, the optimization spaces of source tasks
have been explored by DFO methods. The target tasks are unseen
now and will be optimized soon. For a learning model, the source
task set is formed by hyper-parameter tuning tasks on datasets that
we have already searched. The target task set is formed by the
hyper-parameter tuning tasks on unseen datasets. Due to the inner
relevance among source and target tasks, it is an intuitive idea to
apply the experience from the source optimization tasks to accelerate
the DFO processes on the target tasks.

3.2 Experienced Optimization

Experienced DFO [18] aims to extract experience from the DFO pro-
cesses on the source tasks, and apply the extracted experience to ac-
celerate optimization processes on target tasks. Experienced DFO ap-
plies three main steps as follows:

e Organizing an experience dataset from the DFO processes on
source tasks.

e Training a directional model on the experience dataset.

e Applying the directional model to guide the DFO processes on
target tasks.

Experienced derivative-free optimization utilizes the first two steps to
extract experience from the DFO processes on the source tasks. The
third step is used to accelerate DFO processes on the target tasks. For
well introducing experienced DFO, we discuss the details of these
three steps.

Organizing experience dataset. We note that derivative-free op-
timization generates new samples based on some temporary-stored
samples. For example, evolutionary algorithms follow a population-
based framework. New samples are generated by crossover or mu-
tation according to the samples in the population. Thus, the samples
that are used to generate a new sample can be stored as the experi-
ence. Previous derivative-free optimization methods generally follow
this framework. Let & denote the temporary-stored samples. Let z’
denote the new sample. Thus, an instance of experience dataset can
be presented by [«; ’]. Given an evaluation function f;, itis easy to
give [k; x'] a label (in the minimization task) by comparing =’ with
the best-so-far sample & as follows:

e -{5 @S @

More details of experience dataset organization please refer to [18].
Eq. (2) includes the information of search direction by comparing
the new sample with the best-so-far sample. Meanwhile, the quality
of search direction can be easily defined as whether the new sample
has improved optimization performance. If the new sample is better
than the best-so-far performance, it indicates a good search direction
and gets a positive label. Otherwise, it is a bad search direction and
gets a negative label. Based on this organization, the experience ex-
traction is transformed as a supervised binary classification problem.
For a new sample, we can construct a labeled experience data in-
stance. For a DFO process on a source task f;_, we can organize an
experience dataset as D" = {([k1;@1], (1) , ([k2; @2] , £2) ... }.
From different source tasks, we can obtain some different experience
datasets.

Algorithm 1 Experienced DFO framework
Input:

f: The objective function of a target task;

P: The pre-sample size;

N': Total evaluation budget;

&: A directional model;

X The search space;

Initialize: Initializing for optimization;

Sample: Getting a new sample;

Update: Updating optimization with new sample.
Procedure:

I: B, =Initialize (Ux)

2: fort =1to N do

33 P=0

4. forp=1to Pdo

5: [kp; @p] = Sample (B)
6: P =P U{[kp; xp]}

7: end for

8 [wia] = argmaxg, zcp @ ([2))
9: B =Update(B,z', f (z'))
10: if f(z') < f (2) then

11 z=a

12: endif

13: end for

14: return &

Training a directional model. With the labeled experience
datasets, it is a supervised learning problem to train models on them.
Because instances in the experience datasets indicate the search di-
rections during optimization. We name the training models the di-
rectional models. A directional model essentially is a binary classi-
fication predictor. In [18], a simple multi-layer perception (MLP) is
employed as the training model. Let ¢ denote a trained directional
model. The output of ® is a real number that is in [0, 1] and predicts
the goodness of the new sample. For example, we get a new sam-
ple &’ and its previous samples & that generates x’. ® ([k; z']) is a
score that means whether the new sample @’ indicates a good search
direction.

Experienced DFO framework. We obtain a directional model
® by training a classifier on the experience dataset. Experienced
DFO utilizes the directional model by adding a pre-sampling phase
to derivative-free optimization methods. Algorithm 1 shows the de-
tails of the experienced DFO framework. Initialize, Sample
and Update are basic components of derivative-free optimization.
In the pre-sampling phase (lines 4 to 7), we obtain some temporary
samples. These samples will not be evaluated by the evaluation func-
tion immediately. We firstly employ the directional model & to pre-
dict scores for each of them. Only the sample with the largest pre-
dicted value will be evaluated. Owing to the directional model, expe-
rienced DFO avoids evaluating samples that have bad search direc-
tions, thus improving the optimization efficiency. Combining with
classification-based optimization RACOS [15], experienced DFO is
implemented as EXPRACOS [18] algorithm.

Discussion. The key that experienced DFO effectively acceler-
ates convergence is that the directional model can correctly predict
the goodness of new samples on target tasks. The directional mod-
els from similar source tasks can provide more accurate predictions
for target tasks. It is very important to select the relevant directional
models for target tasks. Unfortunately, the relevance among opti-
mization tasks is usually unavailable for us. Thus, the selection of

the relevant directional model becomes a bottleneck towards high-
efficient experienced derivative-free optimization.

3.3 Experience Adaptation Mechanism

In machine learning applications, a learning model is usually applied
to several different datasets. Thus, hyper-parameter tuning should be
run on these datasets to find the best configuration. All these tasks
are source tasks. The experience can be collected during the DFO
processes on all source tasks. Based on the experienced DFO frame-
work, we can train a directional model ®;_ on an experience dataset
of a source task f; . Thus, we can collect many directional model
candidates. Ideally, the experience (directional model) which corre-
sponding source task is most relevant to the target task f;, should
be applied to guide the DFO processes. However, the relevance be-
tween source and target tasks is unknown. Thus, EXPRACOS [18] ap-
plies the union of all experience datasets to train a directional model.
In other words, EXPRACOS utilizes all experience from all source
tasks to guide the DFO processes of the target task. Based on the
conclusion that is showed in Figure 1, irrelevant directional mod-
els have negative impacts on optimization. Hence, the efficiency of
EXPRACOS will be possibly injured, because the manually selected
experience is unsuitable for the target task. This paper proposed the
experienced DFO with experience adaption mechanism that aims to
adaptively discover the relevant directional models and apply them
to accelerate the DFO processes on target tasks.

For a source task f;_, we can train a directional model ®;_ on the
experience dataset of f;_. Thus, we can get a basic directional model
set ® = {Py,Py,...,Pps, } based on the source task set Fy, =
{f1, f2, .., fam.}. In experience adaptation, we utilize an ensemble
directional model that is weighted sum of all the basic directional
models in @ as follows:

M,

®(msz]) = Y wi P ([wi2]), 3)

ig=1

where w = {w1,wa,...,wn,} are weights of basic directional
models. The weights intuitively reflect the relevance between the di-
rectional models and the target task. We note that the ground-truth
label of an experience instance, i.e., [K;x] can be easily obtained
according to the evaluation value of « by Eq. (2). With labeled in-
stances, experience adaptation mechanism follows a simple idea that
is adjusting weights according to the testing result of the directional
model on the target task.

Because of the property of derivative-free optimization, we se-
quentially generate the new samples. The labeled instance ([x;] , £)
can be got one by one. We note that the prediction value of a ba-
sic directional model is a real number in [0, 1]. For each instance
([k;], £), we employ the weighted ensemble directional model
(Eq. (3)) to predict on it to get the prediction value. Noting that
each basic directional model has also been applied to give a pre-
diction value for this instance. We define a squared loss to mea-
sure the error that a basic directional model makes on this instance:
(®;, ([;x]) — £)°. The weights of all basic directional models can
be adapted according to the loss as follow:

wi, = exp (—a (€, ([k;z]) — 0)*) wi,,)
where « is a hyper-parameter to scale the square loss. Based on the
experienced DFO framework (Algorithm 1), we utilize this weight
adaptation mechanism on the weighted ensemble directional model.

Algorithm 2 DFO with Adaptive Experience
Input: (extra input than Algorithm 1)
P = {P1, Dy,..., D, }: Basic directional model set;
Normalize: A normalization procedure.
Procedure:
I: B, =1Initialize (Ux)

M,
2w = {whwg,. .. ,’UJMS} = {i}
3: fort = 1to N do
4 P=0
forp=1to Pdo

[kp; p] = Sample (B)

P =PU{[kp;zp]}
end for
[k 2'] = argmax| zjep >pn g wi, P, ([K;2])
o eo{) JEersTe

0, f(z')>f(z).

11: foris; = 1to M do
12: w;, = exp (fa (P, ([&'52]) — 6’)2) w,
13: end for
14: w = Normalize (w)
15 B =Update (B, 2, f (2))
16: if f(z') < f (z) then

R ISR

17: z=x
18: end if
19: end for

20: return

The derivative-free optimization with experience adaptation mecha-
nism method is presented in Algorithm 2.

Algorithm 2 still follows the pre-sampling mechanism to utilize
the directional model. The algorithm starts with optimization initial-
ization. We set the same weights ﬁ for all basic directional mod-
els (line 2). Line 5 to 8 is the pre-sampling phase. We utilize the
weighted ensemble directional model to predict the goodness score
for each temporary sample (line 9). The sample with the highest pre-
dicted value will be evaluated by the evaluation function (lines 10 and
15). We adapt weights for all basic directional models during lines
10 to 14. Firstly, we get the ground-truth label for the experience
instance [&'; '] (line 10). Then, we adjust the weight for each direc-
tional model with the prediction loss according to Eq. (4) (lines 11
to 13). Finally, we apply a normalization procedure to guarantee that
ZZI.V:; w;, = 1. With the selected sample and its evaluation value,
we update the optimization procedure (line 15) and the best-so-far
sample (lines 16 to 18). When the evaluation budget is exhausted,
the best-so-far sample will be returned as the optimization solution
(line 20).

Discussion. We implement the experience adaptation mecha-
nism based on experienced derivative-free optimization. With the
weighted ensemble, all basic directional models from different
source tasks are integrated as a directional model. When optimizing
on target tasks, we firstly employ the ensemble directional model to
select samples that are worth being evaluated. We then test all basic
directional models on the labeled experience instance. According to
the testing results, the relevant directional models will be selected by
adapting the weights. We discuss the experience adaptation mecha-
nism by focusing on the Eq. (4). If basic directional models give a
correct prediction, they will obtain a small squared loss. The corre-
sponding weights can get a small discount. But when basic direc-
tional models give a wrong prediction, their weights will get a huge

Table 1. Average performance on synthetic target task, i.e., Sphere and Rosenbrock functions with the optimal points * = {0.10}10, {0.25}10 and
{ 0.40}10. We set two different directional model sets for ADARACOS and EXPRACOS. In Sphere-Exp, all directional models are from Sphere source tasks. In
Mixed-Exp, half of the directional models are from Sphere source tasks and half of the directional models are from Rosenbrock source tasks. The bold number

in each row is the best result among the compared methods.

) . ADARACOS EXPRACOS

Function & 2 Sphere-Exp Mixed-Exp Sphere-Exp Mixed-Exp Racos SMAC Bayes

Sphere {0.10}'° 0.0694 +£0.02 0.0747+£0.02 0.1132+£0.05 0.1165+0.07 0.7941+0.29 0.0700+£0.01 0.4894 + 0.05
Sphere {0.25}'° 0.0775+£0.03 0.1165+£0.07 0.1091£0.05 0.1250 £0.08 0.804640.39 0.2749 +0.11 0.4500 £ 0.11
Sphere {0.40}'° 0.0909 £0.04 0.1528+£0.22 0.1978+£0.05 0.2938+0.19 0.8306+0.36 0.6778+0.25 0.3444 + 0.09
RosenB. {0.10}'° 12.304+227 11.010+0.69 13.351+£3.30 14109 +4.62 26.903+5.18 17.176+1.15 45.523+17.1
RosenB. {0.25}'° 25549+ 954 15.814+6.62 26.008+8.93 17.771+3.16 33.065+£29.1 43.701 £8.37 45.733 £ 13.9
RosenB. {0.40}'0 57.388+20.4 45.408 +34.8 03.370+£40.7 54.763+22.6 61.955+24.2 99.798+43.6 48.504 +12.9

discount. After the normalization step, the weights of basic direc-
tional models that make correct predictions will increase relatively.
On the contrary, the weights of basic directional models that make
wrong predictions will decrease relatively. In this way, relevant di-
rectional models that make fewer mistakes on the target task can be
adaptively selected with large weights. Irrelevant directional mod-
els that make more mistakes can be adaptively omitted with small
weights.

4 Experiments

We implement derivative-free optimization with experience adapta-
tion mechanism based on EXPRACOS [18] and name it ADARACOS.
We firstly test ADARACOS on synthetic tasks. Because the relevance
among synthetic tasks is available, we can easily investigate the ef-
fectiveness of ADARACOS. Then, ADARACOS is applied to solve
hyper-parameter tuning tasks.

We select experienced DFO method, i.e., EXPRACOS and some
the state-of-the-art derivative-free optimization methods including
RACOS (code from https://github.com/eyounx/ZOOpt/), SMAC [19]
(code from https://github.com/automl/SMAC3) and Bayes [27] as
compared methods. SMAC and Bayes are Bayesian optimization
methods that are widely used in AutoML tasks. For ADARACOS and
EXPRACOS, we apply a simple MLP as the directional model, while
network structures depend on the tasks.

4.1 On Synthetic Tasks

We select Sphere and Rosenbrock as basic synthetic functions.
Sphere is a convex function as follows:

n

fl@) =" (w:—ai)?, ©)
i=1
Rosenbrock is a non-convex function as follows:

1
[100(zi41 — e — (2 —) + (1 — @i +20)?]
1

n

f(®) =

2

6

where € = {z1,z2,...,%,} is a sample, n is the dimensionality,
x* = {z},z5,...,x;,} is the optimal point. The synthetic task is to
minimize function value in a constraint region. The relevance among
different synthetic tasks can be captured easily (we will discuss it in
the next paragraph). With known relevance, we can deeply investi-
gate the effectiveness of ADARACOS on these experiments.

Task settings. We construct the task distribution F by randomly
shifting the optimal point for Sphere and Rosenbrock functions. In

other words, functions with different «* are different tasks. In exper-
iments, we organize two different source task sets: Sphere source set
and Mixed source set. The shifting region is [—0.5, 0.5]". In Sphere
source set, we uniformly sample 2000 different «* for only Sphere
function. In the Mixed source set, we uniformly sample 1000 dif-
ferent ™ for Sphere and Rosenbrock functions separately. We set
z* = {0.1}", {0.25}" and {0.40}" for Sphere and Rosenbrock
separately to construct 6 target tasks. We set n = 10 for all source
and target tasks. The relevance between two synthetic tasks can be
measured by the Euclidean distance between two optimal points. A
small distance indicates strong relevance. A large distance indicates
weak relevance. This conclusion has been verified in Figure 1. Intu-
itively, two different functions share weak relevance. On target tasks,
the search space is [—1, 1]". The evaluation budget is only 50.

Directional model training. We employ RACOS to optimize on
source tasks with 500 evaluation budget and independently run for
10 times to collect experience datasets. Then, we sort all experience
datasets according to the distance between the optimal points of the
source and target task. Every 100 experience datasets in the order
form a new dataset. We totally form 20 experience datasets. For the
mixed source task set, we form dataset groups according to function
types, i.e., 10 experience datasets for Sphere and Rosenbrock respec-
tively. We can totally train 20 MLP directional models on experience
datasets for each setting. For EXPRACOS, the directional model is an
average weighted ensemble of all 20 MLP models. For ADARACOS,
the initialized directional model is the same as EXPRACOS. But the
weights will adapt during optimization.

Empirical analysis. We independently repeat experiments on tar-
get tasks for 10 times. And the average performances of all compared
methods are reported in Table 1. ADARACOS receives the best per-
formances on all 6 target tasks. It indicates that experienced DFO
with experience adaptation releases strong power on unseen tasks.
We compare experienced DFO methods (ADARACOS, and EXPRA-
Ccos) with classical optimization (RACOS, SMAC, and Bayes). Ex-
perienced DFO methods generally outperform classical optimization
on most of the tasks. SMAC receives good performance on Sphere
with 2* = {0.10}'°. Because the initialization point of SMAC is
a central point of the search space, i.e., {0.0}10. This point is very
near to the optimal point. Focusing on ADARACOS and EXPRACOS,
the results indicate that experience adaptation is effective to avoid
the negative impact of irrelevant experience (ADARACOS receives
better performances on all 6 target tasks). To verify how ADARA-
Cos select experience, we show the weights changing of directional
models in Figure 2. The X -axis from left to right means that the rel-
evance is from strong to weak. The figures indicate that the relevant
directional models can be effective selected (the weights in left are
becoming larger and larger) and the irrelevant directional models can

I sphere

Weight values

o
B

0.00 high 0.00 high
Distance from target task

a.l Sphere, t =0

Distance from target task

a.2 Sphere, t = 20

Weight values

o

Weight values
o o o
2 28 8
7 2 B

°
S

0.10

0.05

0.00

Tow high high

Distance from target task

a.4 Sphere, t = 40

Distance from target task

a.3 Sphere, ¢t = 30

B sphere
rosenbrock

s o 2
2 3 2

Weight values
o

Weight values

°
S

o
=

o
°
3
8

"] high
low high Distance from target task e

b.2 Mixed, ¢t = 20

Distance from target task

b.1 Mixed, t =0

Weight values

0.30

o
2

0.20

0.15

Weight values

o
3

0.10

0.05

0.00!
Tow high low Distance from target task high

b.4 Mixed, t = 40

Distance from target task

b.3 Mixed, t = 30

Figure 2. [Illustration of ADARACOS weights changing on the target task, i.e., 10 dimensional Sphere function with the optimal point * = {0. 1}10.
Weights of Figure a. and b. are from ADARACOS with Sphere experience and Mixed experience at optimization step ¢ = 0, 20, 30 and 40. In one Figure, the
X -axis from left to right means that the distances of optimal points between the source and target task are from low to high.

be effectively omitted (the weights in right (Figure 2 a.) and in orange
(Figure 2 b.) are becoming smaller and smaller).

4.2 On Hyper-Parameter Tuning Tasks

We employ ADARACOS to solve AutoML tasks: the hyper-parameter
tuning for an ensemble classifier LightGBM [20] on 40 datasets. We
select 11 hyper-parameters that will be tuned for LightGBM includ-
ing boosting type, learning rate, n-estimators, number of leaves, etc.
The evaluation criterion is the F1 score. Thus, the hyper-parameter
tuning tasks are maximizing the F1 validation score for LightGBM
on 40 datasets.

Task setting. We select 30 datasets (top 30 datasets in Table 2)
as source datasets that organize source tasks. And the rest of the
10 datasets (bottom 10 datasets in Table 2) are target datasets that
organize target tasks. To collect the experience datasets, we em-
ploy RACOS to tune hyper-parameters for LightGBM on each source
dataset with 300 evaluation budget for 10 independent repeats. All
the optimization processes are logged as the experience dataset.
Then, we train directional models on these experience datasets.
Hence, we obtain all 30 basic directional models for experienced op-
timization. The directional model of EXPRACOS is still the average
weighted ensemble of all 30 basic directional models. For ADARA-
Cos, the weights of directional models will be adapted. We test all
compared methods on all source and target tasks. we set only 30 eval-
uation budget for all compared methods on all tasks. Each experiment
is independently repeated for 5 times.

Empirical analysis. Table 2 shows the optimization and gener-
alization the F1 scores of all compared methods on all 40 datasets.
After hyper-parameter tuning, we can get the best hyper-parameter
configuration for each dataset. Then we train the LightGBM with
the best configuration on the training dataset. The generalization F1
scores can be obtained by testing the learned LightGBM model on
the testing dataset. Compared methods outperform the baseline on
most of the datasets. It indicates that hyper-parameter tuning is nec-
essary for machine learning applications. But on datasets G.H.20 and

Cylinder, hyper-parameter tuning over-fits on training dataset (base-
line is the best). It is caused by the data distribution shifting issue
between training and testing datasets. In all 5 compared methods,
ADARACOS and EXPRACOS are experienced optimization meth-
ods. RACOS, SMAC and Bayes are basic derivative-free optimization
methods that don’t use experience. On source datasets, we com-
pare EXPRACOS with basic optimization methods. EXPRACOS even
worse than RACOS and SMAC (EXPRACOS has larger avg. rank).
This phenomenon shows that the hyper-parameter tuning tasks share
weak relevance even on the same learning model. Thus some irrel-
evant directional models exist and have negative impacts on EX-
PRACOS. ADARACOS outperform other compared methods on 29/30
datasets and obtain 1.13 avg. rank. It indicates that selecting rele-
vant directional models is necessary for improving hyper-parameter
tuning performance. And the proposed experience adaptation mecha-
nism can effectively eliminate the negative impact of irrelevant basic
directional models and correctly select the relevant directional mod-
els. On target tasks, the optimization results show that ADARACOS
can effectively transfer optimization experience into unseen tasks
(ADARACOS beats other compared methods on all 10 datasets). EX-
PRACOS beats RACOS on 9/10 datasets. It shows that experienced
optimization is helpful to improve optimization performance on un-
seen tasks. But comparing them with ADARACOS, ADARACOS sig-
nificantly improve F1 score on all 10 datasets with only 30 evaluation
budget. It indicates that experience adaptation can significantly im-
prove the efficiency of hyper-parameter tuning.

5 Conclusions

Hyper-parameter tuning plays an important role in AutoML. A clas-
sical solver is employing derivative-free optimization to discover the
hyper-parameter configuration with the best performance. Due to the
high evaluation cost, previous hyper-parameter tuning methods suf-
fer from the low-efficient issue, i.e., it spends a long time to find
a good enough hyper-parameter configuration. To tackle this issue,
experienced DFO approach was proposed to utilize the experience

Table 2. Results of optimization and generalization F1 score for LightGBM hyper-parameter tuning on 40 datasets. All compared methods only have 30
evaluation budget. ADARA. and EXPRA. mean ADARACOS and EXPRACOS. B.L. means baseline that is the F1 score of LightGBM with default
hyper-parameters. The first 30 datasets are source datasets. Hyper-parameter tuning tasks on them are the source tasks. The last 10 datasets are target dataset.
Hyper-parameter tuning tasks on them are the target tasks. In the table, the numbers with e and o are the 1st and 2nd rank performances in compared methods.
We analyze the number of 1st/2nd/3rd ranks and average rank (Avg. Rank) among compared methods for source tasks and target tasks separately.

‘ Dataset ‘ Optimization F1 score on training dataset

Generalization F1 score on testing dataset

B.L.
\ | ADARA. ExPRA. RACOs SMAC Bayes | ADARA. EXPRA. RAcOs SMAC Bayes
Australian | 9026 8817 88710 88710 .8724 | .8966e 89540 8924 8528 8922 .8389
Breast 9999 .999%9e 9999e .9999e .9999e | .9697e 9470 9549 9548 9512 .9402
Electricity | .743le 73980 7377 7345 7322 | .7365 7387e 73840 5686 5527 5492
Buggy.C. 8943e 8693 8825 88640 8825 | .8957¢ 8811 8889 8842 .89270 8552
CMC 5860e 5738 57540 5715 5741 | .5452¢ 5152 5123 54100 4927 4614
Contrac. 5785e 57620 5750 5715 5725 | 5459 5171 5029 54440 5172 4614
Credit.A. 8938¢ 8921 89270 8864 8895 | .8462¢ 84610 8371 8273 8435 .8250
G.E2-1000 | .5772¢ 5433 5518 .55900 .5378 | .5187e 4984 4907 5187e 5108 .5368
GE2200 | .7534e 7040 7041 7534e 7131 | .6880e 68560 .6676 6672 .6832 .6187
G.E.3-20 5784e 5623 56570 5485 5601 | .5300e 5123 5125 4612 52860 .4936
G.H.20 7221 7040 7169 71870 7076 | .6250e 6216 62200 5874 5819 6747
HV.woN. | .5934e 5875 5786 .5642 58880 | .6225¢ .5873 5860 .6145 .6l6lo .5977
g | HVwN. 593le 5889 5871 59100 5823 | .5785e 56590 5544 5648 5393 5241
% | MfeatK. 9713 9713e 9680 9692 9693 | .970le 9661 9596 97000 9632 9197
8 | Mfeat.M. 7235 72120 7161 7140 72120 | .7204e 7102 7146 7083 71860 .6967
8 | Mfeat.P. 9722e 9674 9685 972lo 9661 | .9688e 96840 9669 9655 9633 .9501
S | Mfeat.Z. 7867e 7758 77800 7771 7766 | .7867e 7713 7729 7616 77370 .74ll
“ | Monk2 8732¢ 6981 6548 5774 74130 | 8197e 6392 6559 6755 79610 .6089
ParityS5. 4948e 4815 48470 4820 4837 | 4582e 4480 448lo 4451 4364 2291
Pima 7236e 7102 6948 7173 71770 | .7555¢ 7139 7179 6177 .T4ldo 6590
Tic.T.T 974le 9163 9401 974le 9241 | 9838e 9600 9756 97760 9770 .7898
Tokyo.1 9248e 9203 9168 92430 9210 | .9430e 93980 9293 9311 9382 9081
Vehicle 7943e 7853 791lo 7763 7814 | 76330 7562 7284 .8004e 7345 7610
Wine.QR. | 4218e 3875 3617 40210 3620 | 362le 3119 3081 .3099 3097 .2589
Yeast A754e 4435 44470 4388 4388 | 50330 4834 4685 5213e 4726 4716
Airlines 6488e 64830 6467 6438 6464 | .6530e 65270 6517 6417 6467 5943
Titanic 8238¢ 82210 8187 8099 8048 | .8364e 8192 8149 82370 8091 8217
Twonorm 9749 9750 9751 9782 9757 | .9792¢ 9783 9776 97840 9768 .9541
Glass 7499e 7088 7125 7071 74970 | 7422¢ 6604 6622 71780 4353 4345
Horse.C. 8724e 8586 8602 87020 8616 | .8628¢ .8339 855lo 8510 .8528 .7989
Lst/2nd/3rd 29/0/0 2/58 1811 492 1/6/7 | 27/2/1 187 059 375 0/7/6 -
Avg.Rank 1.13 3.43 313 327 347 1.13 327 363 333 3.60 -
Messidor 7548e 75250 7462 7353 7505 | .65070 6474 6420 .679% 6452 6581
Adult 8137¢ 8121 8104 8128 81290 | .8070e .8023 8030 .806lo .8049 .7558
2 | BalanceS. | .5448¢ 5399 5380 .54090 5398 | .5559¢ 5479 5368 55150 5421 5294
2 | CNAE 9060e 8924 89550 8946 8920 | .8962¢ .8922 8928 .8897 .89420 8227
g | CreditG 7190e 71740 7052 7173 7168 | .7058e 6912 7009 5921 6454 .6894
3 | CRX 8864e 88540 8843 8690 8810 | .9153e 90660 9034 8975 .8978 .8974
g | Cylinder 8094e 80650 7487 7791 7953 | .7935e 7408 6654 79000 .6897 .7990
= | Flare T174e 6816 6704 7l14lo 6954 | .6065e 5769 5607 5007 58460 4518
SolarF. 67248 6233 6131 64480 6195 | .6073e 5996 60140 5709 5968 5758
German 7498e 7457 7331 74630 7432 | .6491e 6300 6246 .6081 .63780 5482
1st/2nd/3rd 10/0/0 0/4/3 0A/1 0/4/3 013 | 9/1/0 o/7 022 13/0 0531 -
Avg.Rank 1.00 2.90 440 310 3.60 1.10 3.20 370 370 330 -

of historical DFO processes to accelerate DFO processes on target
tasks. However, the irrelevant experience will make a negative im-
pact on experienced DFO. In this paper, we proposed the experience
adaptation mechanism. It tests the experience on the target tasks. The
relevant experience that makes fewer mistakes will be adaptively se-
lected. And the irrelevant experience that makes more mistakes will

be omitted. We implement experience adaptation mechanism based
on EXPRACOS and name it ADARACOS. The experiments on syn-
thetic tasks verify that ADARACOS can effectively discover the rel-
evance among tasks. The empirical results of AutoML applications
on 40 datasets show that ADARACOS significantly improve the effi-
ciency of hyper-parameter tuning.

REFERENCES

(1]

(2]
[3]

[4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Mathias M Adankon and Mohamed Cheriet, ‘Model selection for the
LS-SVM. application to handwriting recognition’, Pattern Recognition,
42(12), 3264-3270, (2009).

Yoshua Bengio, ‘Gradient-based optimization of hyperparameters’,
Neural computation, 12(8), 1889-1900, (2000).

James Bergstra and Yoshua Bengio, ‘Random search for hyper-
parameter optimization’, Journal of Machine Learning Research, 13,
281-305, (2012).

James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl,
‘Algorithms for hyper-parameter optimization’, in Advances in Neural
Information Processing Systems, pp. 25462554, (2011).

Alain Biem, ‘A model selection criterion for classification: Applica-
tion to hmm topology optimization’, in Proceedings of the 7th Inter-
national Conference on Document Analysis and Recognition, pp. 104—
108, (2003).

Gary R Bradski, ‘Computer vision face tracking for use in a perceptual
user interface’, (1998).

Pavel B Brazdil, Carlos Soares, and Joaquim Pinto Da Costa, ‘Ranking
learning algorithms: Using IBL and meta-learning on accuracy and time
results’, Machine Learning, 50(3), 251-277, (2003).

Andrei Z Broder, ‘Computational advertising and recommender sys-
tems’, in Proceedings of the ACM Conference on Recommender Sys-
tems, pp. 1-2. ACM, (2008).

Nicolo Cesa-Bianchi and Gabor Lugosi, Prediction, learning, and
games, Cambridge university press, 2006.

Ronan Collobert and Jason Weston, ‘A unified architecture for natural
language processing: Deep neural networks with multitask learning’, in
Proceedings of the 25th International Conference on Machine Learn-
ing, pp. 160-167, (2008).

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost , Manuel
Blum, and Frank Hutter, ‘Efficient and robust automated machine learn-
ing’, in Advances in Neural Information Processing Systems, pp. 2962—
2970, (2015).

David B Fogel, ‘An introduction to simulated evolutionary optimiza-
tion’, IEEE Transactions on Neural Networks, 5(1), 3—14, (1994).

XC Guo, JH Yang, CG Wu, CY Wang, and YC Liang, ‘A novel LS-
SVMs hyper-parameter selection based on particle swarm optimiza-
tion’, Neurocomputing, 71(16), 3211-3215, (2008).

Nikolaus Hansen, Sibylle D Miiller, and Petros Koumoutsakos, ‘Reduc-
ing the time complexity of the derandomized evolution strategy with
covariance matrix adaptation (CMA-ES)’, Evolutionary Computation,
11(1), 1-18, (2003).

Yi-Qi Hu, Hong Qian, and Yang Yu, ‘Sequential classification-based
optimization for direct policy search.’, in Proceedings of the 31st AAAI
Conference on Artificial Intelligence, pp. 2029-2035, (2017).

Yi-Qi Hu, Yang Yu, and Jun-Da Liao, ‘Cascaded algorithm-selection
and hyper-parameter optimization with extreme-region upper confi-
dence bound bandit’, in Proceeding of the 28th International Joint Con-
ference on Artificial Intelligence, (2019).

Yi-Qi Hu, Yang Yu, Wei-Wei Tu, Qiang Yang, Yugiang Chen, and
Wenyuan Dai, ‘Multi-fidelity automatic hyper-parameter tuning via
transfer series expansion’, in Proceedings of the 33rd AAAI Conference
on Artificial Intelligence, (2019).

Yi-Qi Hu, Yang Yu, and Zhi-Hua Zhou, ‘Experienced optimization with
reusable directional model for hyper-parameter search.’, in Proceeding
of the 27th International Joint Conference on Artificial Intelligence, pp.
2276-2282, (2018).

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown, ‘Sequential
model-based optimization for general algorithm configuration.’, LION,
5,507-523, (2011).

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu, ‘Lightgbm: A highly efficient
gradient boosting decision tree’, in Advances in Neural Information
Processing Systems, pp. 3146-3154, (2017).

SB Kotsiantis, Dimitris Kanellopoulos, and PE Pintelas, ‘Data prepro-
cessing for supervised leaning’, International Journal of Computer Sci-
ence, 1(2), 111-117, (2006).

Fei-Fei Li, Fergus Rob, and Perona Pietro, ‘One-shot learning of ob-
ject categories’, IEEE Transactions on Pattern analysis and Machine
Intelligence, 28(4), 594-611, (2006).

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh,
and Ameet Talwalkar, ‘Hyperband: A novel bandit-based approach to

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

hyperparameter optimization’, Journal of Machine Learning Research,
18, 185:1-185:52, (2017).

Marius Lindauer and Frank Hutter, ‘Warmstarting of model-based al-
gorithm configuration’, in Proceedings of the 32nd AAAI Conference
on Artificial Intelligence, pp. 1355-1362, (2018).

Rémi Munos, ‘Optimistic optimization of a deterministic function with-
out the knowledge of its smoothness’, in Advances in Neural Informa-
tion Processing Systems, pp. 783-791, (2011).

Chao Qian, Yang Yu, and Zhi-Hua Zhou, ‘Pareto ensemble pruning.’,
in Proceedings of the 29th AAAI Conference on Artificial Intelligence,
pp. 2935-2941, (2015).

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and
Nando De Freitas, ‘Taking the human out of the loop: A review of
Bayesian optimization’, Proceedings of the IEEE, 104(1), 148-175,
(2015).

Jake Snell, Kevin Swersky, and Richard Zemel, ‘Prototypical networks
for few-shot learning’, in Advances in Neural Information Processing
Systems, pp. 4077-4087, (2017).

Jasper Snoek, Hugo Larochelle, and Ryan P Adams, ‘Practical bayesian
optimization of machine learning algorithms’, in Advances in Neural
Information Processing Systems, pp. 2951-2959, (2012).

Kevin Swersky, Jasper Snoek, and Ryan P Adams, ‘Multi-task bayesian
optimization’, in Advances in Neural Information Processing Systems,
pp- 2004-2012, (2013).

Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-
Brown, ‘Auto-weka: Combined selection and hyperparameter optimiza-
tion of classification algorithms’, in Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 847-855, (2013).

Ricardo Vilalta and Youssef Drissi, ‘A perspective view and survey of
meta-learning’, Artificial intelligence review, 18(2), 77-95, (2002).
Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra,
et al., ‘Matching networks for one shot learning’, in Advances in Neural
Information Processing Systems, pp. 3630-3638, (2016).

Xi-Zhu Wu, Song Liu, and Zhi-Hua Zhou, ‘Heterogeneous model
reuse via optimizing multiparty multiclass margin’, in Proceedings of
the 36th International Conference on Machine Learning (ICML), pp.
6840-6849, (2019).

Quanming Yao, Mengshuo Wang, Hugo Jair Escalante, Isabelle Guyon,
Yi-Qi Hu, Yu-Feng Li, Wei-Wei Tu, Qiang Yang, and Yang Yu, ‘Taking
human out of learning applications: A survey on automated machine
learning’, arXiv preprint arXiv:1810.13306, (2018).

Yang Yu, Hong Qian, and Yi-Qi Hu, ‘Derivative-free optimization via
classification.’, in Proceedings of the 30th AAAI Conference on Artifi-
cial Intelligence, pp. 2286-2292, (2016).

Yang Yu, Xin Yao, and Zhi-Hua Zhou, ‘On the approximation ability
of evolutionary optimization with application to minimum set cover’,
Artificial Intelligence, 180, 20-33, (2012).

Peng Zhao, Le-Wen Cai, and Zhi-Hua Zhou, ‘Handling concept drift
via model reuse.’, Machine Learning, (2019).

