Appendix of "Derivative-Free Optimization via Classification"

Yang Yu and Hong Qian and Yi-Qi Hu National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China {yuy,qianh,huyq}@lamda.nju.edu.cn

In this appendix, we first introduce some definitions and notations in Section 1. Then, we prove Lemma 1 in Section 2 and Lemma 2 in Section 3. Theorem 1 is proved in Section 4, and the proofs of Corollary 1, 2 and 3 are presented in Section 5, 6 and 7, respectively.

Definitions and Notations

Let X denote a solution space that is a compact subset of \mathbb{R}^n , and $f: X \to \mathbb{R}$ denote a minimization problem. Assume that there exist $x^*, x' \in X$ such that $f(x^*) = \min_{x \in X} f(x)$ and $f(x') = \max_{x \in X} f(x)$. Let \mathcal{F} denote a collection of functions that satisfy this assumption. Given $f \in \mathcal{F}$, the *minimization problem* is to find a solution $x^* \in X$ s.t. $f(x^*) \leq f(x)$ for all $x \in X$.

For a subset $D \subseteq X$, let $\#D = \int_{x \in X} \mathbb{I}[x \in D] \, dx$ (or $\#D = \sum_{x \in X} \mathbb{I}[x \in D]$ for finite discrete domains), where $\mathbb{I}[\cdot]$ is the indicator function. Define |D| = #D/#X and thus $|D| \in [0, 1]$. Let $D_{\alpha} = \{x \in X \mid f(x) \leq \alpha\}$, and $D_{\epsilon} = \{x \in X \mid f(x) - f(x^*) \leq \epsilon\}$ for $\epsilon > 0$. Let Δ denote the symmetric difference of two sets defined as $A_1 \Delta A_2 = (A_1 \cup A_2) - (A_1 \cap A_2)$. A hypothesis is a mapping $h: X \to \{-1, +1\}$. Let $\mathcal{H} \subseteq \{h: X \to \{-1, +1\}\}$ be a hypothesis space. Let $D_h = \{x \in X \mid h(x) = +1\}$ for hypothesis $h \in \mathcal{H}$, i.e., the positive class region represented by h. Denote \mathcal{U}_X and \mathcal{U}_{D_h} the uniform distribution over X and D_h , respectively, and denote \mathcal{T}_h the distribution defined on D_h induced by h. Let D_{KL} denote the Kullback-Leibler (KL) divergence between two probability distributions. Let $\log(\cdot)$ and $\ln(\cdot)$ be the base two logarithm and natural logarithm, respectively. Let $p \circ l_Y(\cdot)$ be the set of all polynomials w.r.t. the related variables and superpoly(\cdot) be the set of all functions that grow faster than any function in $p \circ l_Y(\cdot)$ w.r.t. the related variables.

Proof of Lemma 1

LEMMA 1

Given $f \in \mathcal{F}$, $0 < \delta < 1$ and $\epsilon > 0$, the (ϵ, δ) -query complexity of a classification-based optimization algorithm is upper bounded by

$$O\left(\max\left\{\frac{1}{(1-\lambda)|D_{\epsilon}|+\lambda\overline{\mathbf{Pr}_{h}}}\ln\frac{1}{\delta},\sum_{t=1}^{T}m_{\mathbf{Pr}_{h_{t}}}\right\}\right),\$$

where $\overline{\mathbf{Pr}}_h = \frac{1}{T} \sum_{t=1}^{T} \mathbf{Pr}_{h_t} = \frac{1}{T} \sum_{t=1}^{T} \int_{D_{\epsilon}} \mathcal{U}_{D_{h_t}}(x) \, \mathrm{d}x$ (or $\overline{\mathbf{Pr}}_h = \frac{1}{T} \sum_{t=1}^{T} \sum_{x \in D_{\epsilon}} \mathcal{U}_{D_{h_t}}(x)$ for finite discrete domains) is the average success probability of sampling from the learned positive area of h_t , and $m_{\mathbf{Pr}_{h_t}}$ is the sample size required to realize the success probability \mathbf{Pr}_{h_t} .

Proof. In each iteration, $m_{\mathbf{Pr}_{h_t}}$ samples are needed to realize the probability \mathbf{Pr}_{h_t} . Generally speaking, the higher the probability the larger the sample size, but it depends on the concrete implementation of the algorithm. Thus, $\sum_{t=1}^{T} m_{\mathbf{Pr}_{h_t}}$ number of samples is naturally required. We next prove the rest of the bound.

The total number of calls to \mathcal{O} by a classifier-based optimization algorithm is (m+1)T. We consider the probability that, after T iterations, a classifier-based optimization algorithm outputs a bad solution \tilde{x} s.t. $f(\tilde{x}) - f(x^*) > \epsilon$, and we denote it as $\mathbf{Pr}(f(\tilde{x}) - f(x^*) > \epsilon)$. Since \tilde{x} is the best solution among all sampled solutions, $\mathbf{Pr}(f(\tilde{x}) - f(x^*) > \epsilon)$ is the probability of intersection of events that sampling in each step does not generate a good solution x s.t. $f(x) - f(x^*) \leq \epsilon$. For sampling from \mathcal{U}_X , the probability of failure is $1 - \mathbf{Pr}_u$, where $\mathbf{Pr}_u = |D_{\epsilon}| = \#D_{\epsilon}/\#X$ is the success probability of uniform sampling in X. For sampling from the distribution \mathcal{T}_{h_t} defined on D_{h_t} induced by the learned hypothesis h_t , the probability of failure is $1 - \mathbf{Pr}_{h_t}$, where $\mathbf{Pr}_{h_t} = \int_{D_{\epsilon}} \mathcal{T}_{h_t}(x) \, dx$ (or $\mathbf{Pr}_{h_t} = \sum_{x \in D_{\epsilon}} \mathcal{T}_{h_t}(x)$ for finite discrete domains) is the success probability of sampling from \mathcal{T}_{h_t} . Let $\exp(x)$ denote e^x . Since that every sampling is independent, we have

$$\begin{aligned} \mathbf{Pr}(f(\tilde{x}) - f(x^*) > \epsilon) &= (1 - \mathbf{Pr}_u)^m \cdot \prod_{t=1}^T \sum_{i=0}^m \binom{m}{i} (1 - \lambda)^i \lambda^{m-i} (1 - \mathbf{Pr}_u)^i (1 - \mathbf{Pr}_{h_t})^{m-i} \\ &= (1 - \mathbf{Pr}_u)^m \prod_{t=1}^T \left((1 - \lambda)(1 - \mathbf{Pr}_u) + \lambda(1 - \mathbf{Pr}_{h_t}) \right)^m \\ &= (1 - \mathbf{Pr}_u)^m \prod_{t=1}^T \left(1 - (1 - \lambda)\mathbf{Pr}_u - \lambda\mathbf{Pr}_{h_t} \right)^m \\ &\leq \exp\left(- \mathbf{Pr}_u \cdot m \right) \cdot \prod_{t=1}^T \exp\left(- \left((1 - \lambda)\mathbf{Pr}_u \cdot m + \lambda\mathbf{Pr}_{h_t} \cdot m \right) \right) \\ &= \exp\left(- \left(\mathbf{Pr}_u \cdot m + (1 - \lambda) \sum_{t=1}^T \mathbf{Pr}_u \cdot m + \lambda \sum_{t=1}^T \mathbf{Pr}_{h_t} \cdot m \right) \right) \\ &\leq \exp\left(- \left((1 - \lambda) \sum_{t=1}^T \mathbf{Pr}_u \cdot m + \lambda \sum_{t=1}^T \mathbf{Pr}_{h_t} \cdot m \right) \right) \\ &= \exp\left(- \left((1 - \lambda) \mathbf{Pr}_u + \lambda \overline{\mathbf{Pr}}_h \right) \cdot mT \right), \end{aligned}$$

where the first inequality is by $(1-x) \leq \exp(-x)$ for $x \in [0,1]$, and $\overline{\mathbf{Pr}}_h = \frac{1}{T} \sum_{t=1}^{T} \mathbf{Pr}_{h_t}$. In order to let $\mathbf{Pr}(f(\tilde{x}) - f(x^*) > \epsilon) < \delta$, it suffices that

$$\exp\left(-\left((1-\lambda)\mathbf{Pr}_u+\lambda\overline{\mathbf{Pr}}_h\right)\cdot mT\right)<\delta.$$

Therefore, we derive that $mT \in O\left(\frac{1}{(1-\lambda)\mathbf{Pr}_u + \lambda \overline{\mathbf{Pr}_h}} \ln \frac{1}{\delta}\right)$. At last, by $(m+1)T \leq 2mT \in O\left(\frac{1}{(1-\lambda)\mathbf{Pr}_u + \lambda \overline{\mathbf{Pr}_h}} \ln \frac{1}{\delta}\right)$ and $\mathbf{Pr}_u = |D_{\epsilon}| = \#D_{\epsilon}/\#X$, we prove the lemma.

Proof of Lemma 2

Let $R_{\mathcal{D}}$ denote the generalization error of $h \in \mathcal{H}$ with respect to the target function under distribution \mathcal{D} , and D_{KL} denote the Kullback-Leibler (KL) divergence between two probability distributions.

LEMMA 2

Given $f \in \mathcal{F}$, $\epsilon > 0$, the average success probability of sampling from the distributions induced by the learned hypotheses of any classifier-based optimization algorithm $\overline{\mathbf{Pr}}_h$ is lower bounded by

$$\overline{\mathbf{Pr}}_{h} \geq \frac{1}{T} \sum_{t=1}^{T} \left(|D_{\epsilon}| - 2\Psi_{D_{KL}(\mathcal{D}_{t} \parallel \mathcal{U}_{X})}^{R_{\mathcal{D}_{t}}} \right) / \left(|D_{\alpha_{t}}| + \Psi_{D_{KL}(\mathcal{D}_{t} \parallel \mathcal{U}_{X})}^{R_{\mathcal{D}_{t}}} \right),$$

where $\mathcal{D}_t = \lambda \mathcal{U}_{D_{h_t}} + (1-\lambda)\mathcal{U}_X$ is the sampling distribution at iteration t, and $\Psi_{D_{KL}(\mathcal{D}_t || \mathcal{U}_X)}^{R_{\mathcal{D}_t}} = R_{\mathcal{D}_t} + \#X\sqrt{\frac{1}{2}D_{KL}(\mathcal{D}_t || \mathcal{U}_X)}.$

To prove this lemma, our strategy is to first bound \mathbf{Pr}_{h_t} , which is the success probability of sampling from the distributions induced by the learned hypothesis at iteration t, and then bound $\overline{\mathbf{Pr}}_h$ by definition.

Bounding Pr_{h_t}

In this section, we will bound \mathbf{Pr}_{h_t} by two steps. A primary lower bound of \mathbf{Pr}_{h_t} is shown in Lemma 3 below, and an explicit lower bound will be presented later.

LEMMA 3

Given $f \in \mathcal{F}, \epsilon > 0$ and any hypothesis $h_t \in \mathcal{H}, \mathbf{Pr}_{h_t}$ is lower bounded by

$$\mathbf{Pr}_{h_t} \geq \frac{|D_{\epsilon} \cap D_{h_t}|}{|D_{h_t}|} - \#(D_{\epsilon} \cap D_{h_t}) \sqrt{\frac{1}{2} D_{KL}(\mathcal{T}_{h_t} \| \mathcal{U}_{D_{h_t}})},$$

where D_{KL} denotes the Kullback-Leibler (KL) divergence between two probability distributions.

Proof. We only consider continuous domains situation and omit finite discrete domains situation since the proof procedure is quite similar. Let $\mathbb{I}[\cdot]$ denote the indicator function, the proof starts from the definition of \mathbf{Pr}_{h_t} .

$$\begin{aligned} \mathbf{Pr}_{h_t} &= \int_{D_{h_t}} \mathcal{T}_{h_t}(x) \cdot \mathbb{I}[x \in D_{\epsilon}] \, \mathrm{d}x = \int_{D_{h_t}} \left(\mathcal{T}_{h_t}(x) - \mathcal{U}_{D_{h_t}}(x) + \mathcal{U}_{D_{h_t}}(x) \right) \cdot \mathbb{I}[x \in D_{\epsilon}] \, \mathrm{d}x \\ &= \frac{|D_{\epsilon} \cap D_{h_t}|}{|D_{h_t}|} + \int_{D_{h_t}} \left(\mathcal{T}_{h_t}(x) - \mathcal{U}_{D_{h_t}}(x) \right) \cdot \mathbb{I}[x \in D_{\epsilon}] \, \mathrm{d}x \\ &\geq \frac{|D_{\epsilon} \cap D_{h_t}|}{|D_{h_t}|} - \int_{D_{h_t}} \sup_{x} |\mathcal{T}_{h_t}(x) - \mathcal{U}_{D_{h_t}}(x)| \cdot \mathbb{I}[x \in D_{\epsilon}] \, \mathrm{d}x \\ &\geq \frac{|D_{\epsilon} \cap D_{h_t}|}{|D_{h_t}|} - \sqrt{\frac{1}{2}} D_{KL}(\mathcal{T}_{h_t} || \mathcal{U}_{D_{h_t}})} \int_{D_{h_t}} \mathbb{I}[x \in D_{\epsilon}] \, \mathrm{d}x \\ &= \frac{|D_{\epsilon} \cap D_{h_t}|}{|D_{h_t}|} - \#(D_{\epsilon} \cap D_{h_t}) \sqrt{\frac{1}{2}} D_{KL}(\mathcal{T}_{h_t} || \mathcal{U}_{D_{h_t}})}, \end{aligned}$$

where $U_{D_{h_t}}$ is the uniform distribution over D_{h_t} , and the last inequality is by the Pinsker's inequality.

In order to derive an more explicit lower bound of \mathbf{Pr}_{h_t} , we need to investigate $|D_{h_t}|$ and $|D_{\epsilon} \cap D_{h_t}|$, and we will bound them respectively.

Bounding $|D_{h_t}|$

LEMMA 4

LEMMA 5

Given $f \in \mathcal{F}$ and any hypothesis $h_t \in \mathcal{H}$, $|D_{h_t}|$ is bounded by

$$|D_{\alpha_t}| - R_{\mathcal{U}_X, t} \le |D_{h_t}| \le |D_{\alpha_t}| + R_{\mathcal{U}_X, t},$$

where $R_{\mathcal{U}_X,t}$ is the generalization error of h_t with respect to D_{α_t} under distribution \mathcal{U}_X .

Proof. Let Δ denote the symmetric difference operator of two sets. We can verify directly that $||D_{h_t}| - |D_{\alpha_t}|| \leq |D_{h_t}\Delta D_{\alpha_t}| = R_{\mathcal{U}_X,t}$, where $R_{\mathcal{U}_X,t}$ is the generalization error of h_t with respect to D_{α_t} under distribution \mathcal{U}_X . Thus, $|D_{\alpha_t}| - R_{\mathcal{U}_X,t} \leq |D_{h_t}| \leq |D_{\alpha_t}| + R_{\mathcal{U}_X,t}$.

Bounding $|D_{\epsilon} \cap D_{h_t}|$

Given $f \in \mathcal{F}, \epsilon > 0$ and any hypothesis $h_t \in \mathcal{H}, |D_{\epsilon} \cap D_{h_t}|$ is lower bounded by

$$|D_{\epsilon} \cap D_{h_t}| \ge |D_{\epsilon}| - 2R_{\mathcal{U},t}$$

where $R_{\mathcal{U}_X,t}$ is the generalization error of h_t with respect to D_{α_t} under distribution \mathcal{U}_X .

Proof. We w.l.o.g. assume that $\epsilon \leq \alpha_t$ for all t. Let Δ denote the symmetric difference operator of two sets, by set operators, we have

$$\begin{aligned} |D_{\epsilon} \cap D_{h_{t}}| &= |D_{\epsilon} \cup D_{h_{t}}| - |D_{\epsilon} \Delta D_{h_{t}}| \\ &\geq |D_{\epsilon} \cup D_{h_{t}}| - |D_{\epsilon} \Delta D_{\alpha_{t}}| - |D_{\alpha_{t}} \Delta D_{h_{t}}| \\ &= |D_{\epsilon} \cup D_{h_{t}}| - |D_{\epsilon} \Delta D_{\alpha_{t}}| - R_{\mathcal{U},t} \\ &= |D_{\epsilon} \cup D_{h_{t}}| + |D_{\epsilon}| - |D_{\alpha_{t}}| - R_{\mathcal{U},t} \\ &\geq |D_{h_{t}}| + |D_{\epsilon}| - |D_{\alpha_{t}}| - R_{\mathcal{U},t}, \end{aligned}$$

where the first inequality is by the triangle inequality, and the last equality is by $D_{\epsilon} \subseteq D_{\alpha_t}$. Combining it with the conclusion of Lemma 4 results in that

$$|D_{\epsilon} \cap D_{h_t}| \ge (|D_{h_t}| - |D_{\alpha_t}|) + |D_{\epsilon}| - R_{\mathcal{U},t} \ge |D_{\epsilon}| - 2R_{\mathcal{U},t}.$$

Bounding $|D_{h_t}|$ and $|D_{\epsilon} \cap D_h|$ More Explicitly

Lemma 4 and 5 show that $|D_{h_t}|$ and $|D_{\epsilon} \cap D_h|$ are bounded by the generalization error $R_{\mathcal{U}_X,t}$ of h_t under \mathcal{U}_X . Since the true sampling distribution in the classifier-based optimization framework at each iteration is $\mathcal{D}_t = \lambda \mathcal{T}_{h_t} + (1-\lambda)\mathcal{U}_X$ instead of \mathcal{U}_X , it is necessary to investigate the relationship between $R_{\mathcal{U}_X,t}$ and $R_{\mathcal{D}_t}$ in order to bound $|D_{h_t}|$ and $|D_{\epsilon} \cap D_h|$ more explicitly via $R_{\mathcal{D}_t}$.

LEMMA 6

The generalization error $R_{\mathcal{U}_X}$ of h under \mathcal{U}_X and the generalization error $R_{\mathcal{D}}$ of h under any distribution \mathcal{D} have the following relationship:

$$R_{\mathcal{U}_X} \leq R_{\mathcal{D}} + \#X\sqrt{\frac{1}{2}D_{KL}(\mathcal{D}\|\mathcal{U}_X)}$$

Proof. We only take continuous domains situation into consideration and omit finite discrete domains situation, since the proof procedure is quite similar. The proof starts from the definition of R_{D} .

$$\begin{split} R_{\mathcal{D}} &= \int_{X} \mathcal{D}(x) \cdot \mathbb{I}[x \in D_{\alpha} \Delta D_{h}] \, \mathrm{d}x \\ &= \int_{X} \left(\mathcal{U}_{X}(x) + \mathcal{D}(x) - \mathcal{U}_{X}(x) \right) \cdot \mathbb{I}[x \in D_{\alpha} \Delta D_{h}] \, \mathrm{d}x \\ &= R_{\mathcal{U}_{X}} + \int_{X} \left(\mathcal{D}(x) - \mathcal{U}_{X}(x) \right) \cdot \mathbb{I}[x \in D_{\alpha} \Delta D_{h}] \, \mathrm{d}x \\ &\geq R_{\mathcal{U}_{X}} - \int_{X} \sup_{x} |\mathcal{D}(x) - \mathcal{U}_{X}(x)| \cdot \mathbb{I}[x \in D_{\alpha} \Delta D_{h}] \, \mathrm{d}x \\ &\geq R_{\mathcal{U}_{X}} - \sqrt{\frac{1}{2}} D_{KL}(\mathcal{D} || \mathcal{U}_{X})} \int_{X} \mathbb{I}[x \in D_{\alpha} \Delta D_{h}] \, \mathrm{d}x \\ &= R_{\mathcal{U}_{X}} - \#(D_{\alpha} \Delta D_{h}) \sqrt{\frac{1}{2}} D_{KL}(\mathcal{D} || \mathcal{U}_{X})} \\ &\geq R_{\mathcal{U}_{X}} - \#X \sqrt{\frac{1}{2}} D_{KL}(\mathcal{D} || \mathcal{U}_{X}), \end{split}$$

where the second inequality is by the Pinsker's inequality.

Denote $\lambda \mathcal{T}_{h_t} + (1-\lambda)\mathcal{U}_X$ as \mathcal{D}_t , and $R_{\mathcal{D}_t} + \#X\sqrt{\frac{1}{2}D_{KL}(\mathcal{D}_t || \mathcal{U}_X)}$ as $\Psi_{D_{KL}(\mathcal{D}_t || \mathcal{U}_X)}^{R_{\mathcal{D}_t}}$. We now can bound $|D_{h_t}|$ and $|D_{\epsilon} \cap D_h|$ more explicitly.

LEMMA 7

Given $f \in \mathcal{F}, \epsilon > 0$ and any hypothesis $h_t \in \mathcal{H}, |D_{h_t}|$ is upper bounded by

$$|D_{h_t}| \le |D_{\alpha_t}| + \Psi_{D_{KL}(\mathcal{D}_t || \mathcal{U}_X)}^{R_{\mathcal{D}_t}},$$

and $|D_{\epsilon} \cap D_{h_t}|$ is lower bounded by

$$|D_{\epsilon} \cap D_{h_t}| \ge |D_{\epsilon}| - 2\Psi_{D_{KL}(\mathcal{D}_t || \mathcal{U}_X)}^{R_{\mathcal{D}_t}},$$

where
$$\mathcal{D}_t = \lambda \mathcal{T}_{h_t} + (1 - \lambda) \mathcal{U}_X$$
, and $\Psi_{D_{KL}(\mathcal{D}_t \parallel \mathcal{U}_X)}^{R_{\mathcal{D}_t}} = R_{\mathcal{D}_t} + \# X \sqrt{\frac{1}{2} D_{KL}(\mathcal{D}_t \parallel \mathcal{U}_X)}$

Proof. By Lemma 4 and Lemma 6, we have $|D_{h_t}| \leq |D_{\alpha_t}| + R_{\mathcal{D}_t} + \#X\sqrt{\frac{1}{2}D_{KL}(\mathcal{D}_t||\mathcal{U}_X)}$. By Lemma 5 and Lemma 6, we have $|D_{\epsilon} \cap D_{h_t}| \geq |D_{\epsilon}| - 2R_{\mathcal{D}_t} - 2\#X\sqrt{\frac{1}{2}D_{KL}(\mathcal{D}_t||\mathcal{U}_X)}$.

Bounding Pr_{h_t} Explicitly

On the basis of Lemma 3 and Lemma 7, we are able to derive an explicit lower bound of \mathbf{Pr}_{h_t} .

LEMMA 8

Given $f \in \mathcal{F}, \epsilon > 0$ and any hypothesis $h_t \in \mathcal{H}, \mathbf{Pr}_{h_t}$ is lower bounded by

$$\mathbf{Pr}_{h_t} \geq \frac{|D_{\epsilon}| - 2\Psi_{D_{KL}(\mathcal{D}_t \parallel \mathcal{U}_X)}^{R_{\mathcal{D}_t}}}{|D_{\alpha_t}| + \Psi_{D_{KL}(\mathcal{D}_t \parallel \mathcal{U}_X)}^{R_{\mathcal{D}_t}}} - \# D_{\epsilon} \sqrt{\frac{1}{2} D_{KL}(\mathcal{T}_{h_t} \parallel \mathcal{U}_{D_{h_t}})},$$

where \mathcal{T}_{h_t} is the distribution defined on D_{h_t} induced by h_t , $\mathcal{U}_{D_{h_t}}$ is the uniform distribution over D_{h_t} , $\mathcal{D}_t = \lambda \mathcal{T}_{h_t} + (1-\lambda)\mathcal{U}_X$, and $\Psi_{D_{KL}(\mathcal{D}_t || \mathcal{U}_X)}^{R_{\mathcal{D}_t}} = R_{\mathcal{D}_t} + \#X\sqrt{\frac{1}{2}D_{KL}(\mathcal{D}_t || \mathcal{U}_X)}$.

Proof. By Lemma 3, we have $\mathbf{Pr}_{h_t} \geq \frac{|D_{\epsilon} \cap D_{h_t}|}{|D_{h_t}|} - \#(D_{\epsilon} \cap D_{h_t})\sqrt{\frac{1}{2}D_{KL}(\mathcal{T}_{h_t}||\mathcal{U}_{D_{h_t}})}$. Combining it with Lemma 7 results in that

$$\begin{aligned} \mathbf{Pr}_{h_{t}} &\geq \frac{|D_{\epsilon}| - 2\Psi_{D_{KL}(\mathcal{D}_{t}||\mathcal{U}_{X})}^{R_{D_{t}}}}{|D_{\alpha_{t}}| + \Psi_{D_{KL}(\mathcal{D}_{t}||\mathcal{U}_{X})}^{R_{D_{t}}}} - \#(D_{\epsilon} \cap D_{h_{t}})\sqrt{\frac{1}{2}D_{KL}(\mathcal{T}_{h_{t}}||\mathcal{U}_{D_{h_{t}}})} \\ &\geq \frac{|D_{\epsilon}| - 2\Psi_{D_{KL}(\mathcal{D}_{t}||\mathcal{U}_{X})}^{R_{D_{t}}}}{|D_{\alpha_{t}}| + \Psi_{D_{KL}(\mathcal{D}_{t}||\mathcal{U}_{X})}^{R_{D_{t}}}} - \#D_{\epsilon}\sqrt{\frac{1}{2}D_{KL}(\mathcal{T}_{h_{t}}||\mathcal{U}_{D_{h_{t}}})}. \end{aligned}$$

Proof of Lemma 2

Proof. Since $\mathcal{D}_t = \lambda \mathcal{U}_{D_{h_t}} + (1 - \lambda)\mathcal{U}_X$, we have $\mathcal{T}_{h_t} = \mathcal{U}_{D_{h_t}}$ and thus $D_{KL}(\mathcal{T}_{h_t} || \mathcal{U}_{D_{h_t}}) = 0$. Now, combining the definition of $\overline{\mathbf{Pr}}_h (= \frac{1}{T} \sum_{t=1}^T \mathbf{Pr}_{h_t})$ and Lemma 8 proves the theorem.

Proof of Theorem 1

THEOREM 1

Given $f \in \mathcal{F}$, $0 < \delta < 1$ and $\epsilon > 0$, if a classifier-based optimization algorithm has error-target θ -dependence and γ -shrinking rate, its (ϵ, δ) -query complexity belongs to

$$O\left(\frac{1}{|D_{\epsilon}|}\left((1-\lambda)+\frac{\lambda}{\gamma T}\sum_{t=1}^{T}\frac{1-Q\cdot R_{\mathcal{D}_{t}}-\theta}{|D_{\alpha_{t}}|}\right)^{-1}\ln\frac{1}{\delta}\right),\$$

where $Q = 1/(1 - \lambda)$.

To prove this theorem, our strategy is to refine the bound of $|D_{\epsilon} \cap D_{h_t}|$ under the *error-target* θ -dependence condition and the bound of $|D_{h_t}|$ under the γ -shrinking rate condition, respectively.

Refining the Bounds of $|D_{\epsilon} \cap D_{h_t}|$ and $|D_{h_t}|$

LEMMA 9

For the classifier-based optimization algorithms under the condition of error-target θ -dependence,

$$|D_{\epsilon} \cap D_{h_t}| \ge |D_{\epsilon}| \cdot (1 - R_{\mathcal{U}_X, t} - \theta)$$

holds for all t, where $R_{\mathcal{U}_X,t}$ is the generalization error of h_t under \mathcal{U}_X in iteration t.

Proof. Assume w.l.o.g. that $\epsilon \leq \alpha_t$ for all t, we have

$$\begin{aligned} |D_{\epsilon} \cap D_{h_t}| &= |D_{\epsilon}| - |D_{\epsilon} \cap (D_{\alpha_t} \Delta D_{h_t})| \\ &\geq |D_{\epsilon}| - |D_{\epsilon}| \cdot |D_{\alpha_t} \Delta D_{h_t}| - \theta |D_{\epsilon}| \\ &= |D_{\epsilon}|(1 - |D_{\alpha_t} \Delta D_{h_t}| - \theta), \end{aligned}$$

where the first equality is by $D_{\epsilon} \subseteq D_{\alpha_t}$, and the first inequality is by the condition of *error-target* θ -dependence.

Let $R_{\mathcal{U}_X,t}$ denote the generalization error of h_t under \mathcal{U}_X in iteration t, it can be verified directly that $R_{\mathcal{U}_X,t} = |D_{\alpha_t} \Delta D_{h_t}|$ under 0-1 loss. Thus, we have $|D_{\epsilon} \cap D_{h_t}| \ge |D_{\epsilon}|(1 - R_{\mathcal{U}_X,t} - \theta)$.

In order to refine Lemma 9, i.e., lower bound $|D_{\epsilon} \cap D_{h_t}|$ using the generalization error of h_t under the true sampling distribution $\mathcal{D}_t = \lambda \mathcal{U}_{D_{h_t}} + (1 - \lambda)\mathcal{U}_X$ instead of \mathcal{U}_X , we need Lemma 10 below. It gives a relationship between $R_{\mathcal{U}_X,t}$ and $R_{\mathcal{D}_t}$, where $R_{\mathcal{D}_t}$ is the generalization error of h_t under \mathcal{D}_t in iteration t.

LEMMA 10

For any $h_t \in \mathcal{H}$, let $\mathcal{D}_t = \lambda \mathcal{U}_{D_{h_t}} + (1 - \lambda)\mathcal{U}_X$, it holds for all t that $R_{\mathcal{U}_X, t} \leq R_{\mathcal{D}_t}/(1 - \lambda)$, where $\lambda \in (0, 1)$.

Proof. We only consider continuous domains situation and omit finite discrete domains situation since the proof procedure is quite similar. Let $D_{\neq,t}$ be the region where h_t makes mistakes. Splitting $D_{\neq,t}$ into $D_{\neq,t}^+ = D_{\neq,t} \cap D_{h_t}$ and $D_{\neq,t}^- = D_{\neq,t} - D_{\neq,t}^+$, we can calculate the probability density $\mathcal{D}_t(x) = \lambda \frac{1}{\#D_{h_t}} + (1-\lambda) \frac{\#D_{h_t}}{\#X} \frac{1}{\#D_{h_t}} = \lambda \frac{1}{\#D_{h_t}} + (1-\lambda) \frac{1}{\#X}$ for any $x \in D_{\neq,t}^+$, and $\mathcal{D}_t(x) = (1-\lambda) \frac{\#(X-D_{h_t})}{\#X} \frac{1}{\#(X-D_{h_t})} = (1-\lambda) \frac{1}{\#X}$ for any $x \in D_{\neq,t}^-$. Thus,

$$\begin{aligned} R_{\mathcal{D}_t} &= \int_X \mathcal{D}_t(x) \cdot \mathbb{I}[h_t \text{ makes mistake on } x] \, \mathrm{d}x \\ &= \int_{D_{\neq,t}} \mathcal{D}_t(x) \, \mathrm{d}x = \int_{D_{\neq,t}^+} \mathcal{D}_t(x) \, \mathrm{d}x + \int_{D_{\neq,t}^-} \mathcal{D}_t(x) \, \mathrm{d}x \\ &\geq \int_{D_{\neq,t}^+} (1-\lambda) \frac{1}{\#X} \, \mathrm{d}x + \int_{D_{\neq,t}^-} (1-\lambda) \frac{1}{\#X} \, \mathrm{d}x \\ &= (1-\lambda) R_{\mathcal{U}_X,t}, \end{aligned}$$

which proves the lemma.

Let $Q = 1/(1 - \lambda)$. Combining Lemma 10 with Lemma 9, we can conclude that $|D_{\epsilon} \cap D_{h_t}| \ge |D_{\epsilon}| \cdot (1 - Q \cdot R_{\mathcal{D}_t} - \theta)$. Meanwhile, the γ -shrinking rate condition admits $|D_{h_t}| \le \gamma |D_{\alpha_t}|$ for all t directly.

Proof of Theorem 1

Proof. By Lemma 3 and the assumption of $\mathcal{T}_{h_t} = \mathcal{U}_{D_{h_t}}$, we have $D_{KL}(\mathcal{T}_{h_t} || \mathcal{U}_{D_{h_t}}) = 0$ and thus $\mathbf{Pr}_{h_t} \ge |D_{\epsilon} \cap D_{h_t}| / |D_{h_t}|$ for all t. Combining it with the refined bounds of $|D_{\epsilon} \cap D_{h_t}|$ and $|D_{h_t}|$ results in that $\mathbf{Pr}_{h_t} \ge \frac{(1-Q\cdot R_{D_t} - \theta) \cdot |D_{\epsilon}|}{\gamma \cdot |D_{\alpha_t}|}$, where $Q = 1/(1 - \lambda)$. Finally, by the definition of $\overline{\mathbf{Pr}}_h$ and Lemma 1 we prove the theorem.

Proof of Corollary 1

COROLLARY 1

In finite discrete domains $X = \{0,1\}^n$, given $f \in \mathcal{F}_L^{\beta_1,L_1,\beta_2,L_2}$, $0 < \delta < 1$ and $0 < \epsilon \leq L_1(\frac{n}{2})^{\beta_1}$, for a classifier-based optimization algorithm using a classification algorithm with convergence rate $\widetilde{\Theta}(\frac{1}{m})$, under the conditions that error-target dependence $\theta < 1$ and shrinking rate $\gamma > 0$, the (ϵ, δ) -query complexity of the classifier-based optimization algorithm belongs to $p \circ l_Y(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \ln L_1, \ln \frac{1}{L_2}) \cdot \ln \frac{1}{\delta}$.

Proof. By the proof procedure of Theorem 1, letting Q = 2 (i.e., $\lambda = 1/2$), we have $\overline{\mathbf{Pr}}_h \geq \frac{1}{T} \sum_{t=1}^{T} (K_t \cdot |D_{\epsilon}|)/(\gamma \cdot |D_{\alpha_t}|)$, where $K_t = 1 - 2R_{\mathcal{D}_t} - \theta$. Assume that $\theta < 1$, since $K_t = 1 - 2R_{\mathcal{D}_t} - \theta$ for all t, there must exist a constant K > 0 such that $K_t \geq K$ as long as $R_{\mathcal{D}_t} < (1-\theta)/2$ for all t. Under the assumption of classifier-based optimization using the classification algorithms with convergence rate $\widetilde{\Theta}(\frac{1}{m})$, $R_{\mathcal{D}_t} < (1-\theta)/2$ can be guaranteed if the sampled solution size m in each iteration belongs to $\operatorname{poly}(\frac{1}{\epsilon}, n)$ [2]. Letting $K' = K/\gamma$, we therefore obtain that $\overline{\mathbf{Pr}}_h \geq \frac{1}{T} \sum_{t=1}^{T} (K \cdot |D_{\epsilon}|)/(\gamma \cdot |D_{\alpha_t}|) = \frac{K'}{T} \sum_{t=1}^{T} |D_{\epsilon}|/|D_{\alpha_t}|$.

Since $f \in \mathcal{F}_{L}^{\beta_{1},L_{1},\beta_{2},L_{2}}$, we know $L_{2}||x-x^{*}||_{H}^{\beta_{2}} \leq f(x) - f(x^{*}) \leq L_{1}||x-x^{*}||_{H}^{\beta_{1}}$. Denote $\widetilde{D}_{\epsilon} = \{x \in X \mid ||x-x^{*}||_{H}^{\beta_{1}} \leq \frac{\epsilon}{L_{1}}\}$. It can be verified directly that $\widetilde{D}_{\epsilon} \subseteq D_{\epsilon}$ and thus $|\widetilde{D}_{\epsilon}| \leq |D_{\epsilon}|$. Let $\alpha'_{t} = \alpha_{t} - f(x^{*})$ and we assume that $\alpha'_{t} > 0$. $D_{\alpha_{t}} = \{x \in X \mid f(x) \leq \alpha_{t}\} = \{x \in X \mid f(x) \leq \alpha_{t}\} = \{x \in X \mid f(x) - f(x^{*}) \leq \alpha'_{t}\}$. Denote $\widetilde{D}_{\alpha_{t}} = \{x \in X \mid ||x-x^{*}||_{H}^{\beta_{2}} \leq \frac{\alpha'_{t}}{L_{2}}\}$. Similarly, we have $D_{\alpha_{t}} \subseteq \widetilde{D}_{\alpha_{t}}$ and thus $|D_{\alpha_{t}}| \leq |\widetilde{D}_{\alpha_{t}}|$. For simplicity, we assume that $(\frac{\epsilon}{L_{1}})^{\frac{1}{\beta_{1}}}$ and $(\frac{\alpha'_{t}}{L_{2}})^{\frac{1}{\beta_{2}}}$ are both positive integers. By the definition of Hamming distance, we have

$$\#\widetilde{D}_{\epsilon} = \sum_{i=0}^{\left(\frac{\epsilon}{L_{1}}\right)^{\frac{1}{\beta_{1}}}} \binom{n}{i}, \quad \#\widetilde{D}_{\alpha_{t}} = \sum_{i=0}^{\left(\frac{\alpha_{t}'}{L_{2}}\right)^{\frac{1}{\beta_{2}}}} \binom{n}{i}.$$

Let $H(p) = -p \log p - (1-p) \log(1-p)$ which is the binary entropy function of p, where $0 \le p \le 1$ and H(p) = 0 for p = 0, 1. Then, the following inequality [1] holds for all integers $0 \le k \le n$ with $p = k/n \le 1/2$

$$\frac{1}{1 + \sqrt{8np(1-p)}} \cdot 2^{nH(p)} \le \sum_{i=0}^{k} \binom{n}{i} \le 2^{nH(p)}.$$

Since $0 < \epsilon \leq L_1(\frac{n}{2})^{\beta_1}$, we have $(\frac{\epsilon}{L_1})^{\frac{1}{\beta_1}} \leq \frac{n}{2}$. Meanwhile, choosing $\alpha'_t = \frac{2L_2}{2^t}$ for all t can guarantee that $(\frac{\alpha'_t}{L_2})^{\frac{1}{\beta_2}} \leq \frac{n}{2}$ for all t because $(\frac{\alpha'_1}{L_2}) = 1 \leq (\frac{n}{2})^{\beta_2}$ for $n \geq 2$. If n = 1, we can still choose smaller α'_t s.t. $(\frac{\alpha'_t}{L_2})^{\frac{1}{\beta_2}} \leq \frac{n}{2}$, and we omit the details since it is easy to verify. Combing the above statement with the inequality $\overline{\mathbf{Pr}}_h \geq \frac{K'}{T} \sum_{t=1}^T |D_{\epsilon}| / |D_{\alpha_t}|$, we have

$$\begin{split} \overline{\mathbf{Pr}}_{h} &\geq \frac{K'}{T} \sum_{t=1}^{T} \frac{|\widetilde{D}_{\epsilon}|}{|\widetilde{D}_{\alpha_{t}}|} = \frac{K'}{T} \sum_{t=1}^{T} \frac{\#\widetilde{D}_{\epsilon}}{\#\widetilde{D}_{\alpha_{t}}} \\ &= \frac{K'}{T} \sum_{t=1}^{T} \frac{\sum_{i=0}^{\left(\frac{\epsilon}{L_{1}}\right)^{\frac{1}{\beta_{1}}}}{\binom{\alpha_{i}}{L_{2}}^{\left(\frac{\epsilon}{L_{2}}\right)^{\frac{1}{\beta_{2}}}} \binom{n}{i}} \\ &\geq \frac{K'}{T} \cdot \frac{2^{nH\left(\left(\frac{\epsilon}{L_{1}}\right)^{\frac{1}{\beta_{1}}}\right)}}{1 + \sqrt{8\left(\frac{\epsilon}{L_{1}}\right)^{\frac{1}{\beta_{1}}}\left(1 - \left(\frac{\epsilon}{L_{1}}\right)^{\frac{1}{\beta_{1}}}/n\right)}} \sum_{t=1}^{T} 2^{-nH\left(\left(\frac{\alpha_{t}'}{L_{2}}\right)^{\frac{1}{\beta_{2}}}\right)} \end{split}$$

Let the number of iterations T to approach $\left(\frac{\alpha'_T}{L_2}\right)^{\frac{1}{\beta_2}} = \left(\frac{\epsilon}{L_1}\right)^{\frac{1}{\beta_1}}$. Solving this equation results in that $T = \frac{\beta_2}{\beta_1} \log \frac{L_1}{\epsilon} + 1 \in \text{poly}(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \log L_1)$. For simplicity, we assume that $\frac{\beta_2}{\beta_1} \log \frac{L_1}{\epsilon} + 1$ is a

positive integer and let the classifier-based optimization algorithms run $T = \frac{\beta_2}{\beta_1} \log \frac{L_1}{\epsilon} + 1$ number of iterations. Now, we can conclude that $\overline{\mathbf{Pr}}_h \ge \left(\operatorname{poly}(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \log L_1, \log \frac{1}{L_2}) \right)^{-1}$.

Substituting $\overline{\mathbf{Pr}}_h \geq \left(\operatorname{poly}(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \log L_1, \log \frac{1}{L_2}) \right)^{-1}$ into Lemma 1, we have $(m+1)T \in \operatorname{poly}(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \ln L_1, \ln \frac{1}{L_2}) \cdot \ln \frac{1}{\delta}$, with probability at least $1 - \delta$. Finally, combining the fact that $R_{\mathcal{D}_t} < (1 - \theta)/2$ can be guaranteed with $\operatorname{poly}(\frac{1}{\epsilon}, n)$ sampled solutions in each iteration and $T \in \operatorname{poly}(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \ln L_1)$, the (ϵ, δ) -query complexity of the classifier-based optimization algorithms belongs to $\operatorname{poly}(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \ln L_1, \ln \frac{1}{L_2}) \cdot \ln \frac{1}{\delta}$.

Proof of Corollary 2

COROLLARY 2

In compact continuous domains X, given $f \in \mathcal{F}_L^{\beta_1,L_1,\beta_2,L_2}$, $0 < \delta < 1$ and $\epsilon > 0$, for a classifierbased optimization algorithm using a classification algorithm with convergence rate $\widetilde{\Theta}(\frac{1}{m})$, under the conditions that error-target dependence $\theta < 1$ and shrinking rate $\gamma > 0$, the (ϵ, δ) -query complexity of the classifier-based optimization algorithm belongs to $poly(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \ln L_1, \ln \frac{1}{L_2}) \cdot \ln \frac{1}{\delta}$.

Proof. By the proof procedure of Theorem 1, letting Q = 2 (i.e., $\lambda = 1/2$), we have $\overline{\mathbf{Pr}}_h \geq \frac{1}{T} \sum_{t=1}^{T} (K_t \cdot |D_{\epsilon}|)/(\gamma \cdot |D_{\alpha_t}|)$, where $K_t = 1 - 2R_{\mathcal{D}_t} - \theta$. Assume that $\theta < 1$, since $K_t = 1 - 2R_{\mathcal{D}_t} - \theta$ for all t, there must exist a constant K > 0 such that $K_t \geq K$ as long as $R_{\mathcal{D}_t} < (1-\theta)/2$ for all t. Under the assumption of classifier-based optimization using the classification algorithms with convergence rate $\tilde{\Theta}(\frac{1}{m})$, $R_{\mathcal{D}_t} < (1-\theta)/2$ can be guaranteed if the sampled solution size m in each iteration belongs to $\operatorname{poly}(\frac{1}{\epsilon}, n)$ [2]. Letting $K' = K/\gamma$, we therefore obtain that $\overline{\mathbf{Pr}}_h \geq \frac{1}{T} \sum_{t=1}^T (K \cdot |D_{\epsilon}|)/(\gamma \cdot |D_{\alpha_t}|) = \frac{K'}{T} \sum_{t=1}^T |D_{\epsilon}|/|D_{\alpha_t}|$.

Since $f \in \mathcal{F}_{L}^{\beta_{1},L_{1},\beta_{2},L_{2}}$, we know $L_{2}||x-x^{*}||_{2}^{\beta_{2}} \leq f(x) - f(x^{*}) \leq L_{1}||x-x^{*}||_{2}^{\beta_{1}}$. Denote $\widetilde{D}_{\epsilon} = \{x \in X \mid ||x-x^{*}||_{2}^{\beta_{1}} \leq \frac{\epsilon}{L_{1}}\}$. It can be verified directly that $\widetilde{D}_{\epsilon} \subseteq D_{\epsilon}$ and thus $|\widetilde{D}_{\epsilon}| \leq |D_{\epsilon}|$. Let $\alpha'_{t} = \alpha_{t} - f(x^{*})$ and we assume that $\alpha'_{t} > 0$. $D_{\alpha_{t}} = \{x \in X \mid f(x) \leq \alpha_{t}\} = \{x \in X \mid f(x) \leq \alpha_{t}\} = \{x \in X \mid f(x) - f(x^{*}) \leq \alpha'_{t}\}$. Denote $\widetilde{D}_{\alpha_{t}} = \{x \in X \mid ||x-x^{*}||_{2}^{\beta_{2}} \leq \frac{\alpha'_{t}}{L_{2}}\}$. Similarly, we have $D_{\alpha_{t}} \subseteq \widetilde{D}_{\alpha_{t}}$ and thus $|D_{\alpha_{t}}| \leq |\widetilde{D}_{\alpha_{t}}|$. Note that $\#\widetilde{D}_{\epsilon}$ is the volume of ℓ_{2} ball of radius $(\frac{\epsilon}{L_{1}})^{\frac{1}{\beta_{1}}}$ in \mathbb{R}^{n} which is proportional to $(\frac{\epsilon}{L_{1}})^{\frac{n}{\beta_{1}}}$, and $\#\widetilde{D}_{\alpha_{t}}$ is the volume of ℓ_{2} ball of radius $(\frac{\alpha'_{t}}{L_{2}})^{\frac{1}{\beta_{2}}}$ in \mathbb{R}^{n} which is proportional to $(\frac{\alpha'_{t}}{L_{2}})^{\frac{n}{\beta_{2}}}$. Combing it with the inequality $\overline{\mathbf{Pr}}_{h} \geq \frac{K'}{T} \sum_{t=1}^{T} |D_{\epsilon}|/|D_{\alpha_{t}}|$, we have

$$\overline{\mathbf{Pr}}_{h} \geq \frac{K'}{T} \sum_{t=1}^{T} \frac{|\widetilde{D}_{\epsilon}|}{|\widetilde{D}_{\alpha_{t}}|} = \frac{K'}{T} \sum_{t=1}^{T} \frac{\#\widetilde{D}_{\epsilon}}{\#\widetilde{D}_{\alpha_{t}}}$$
$$= \frac{K'}{T} \sum_{t=1}^{T} \frac{(\epsilon/L_{1})^{\frac{n}{\beta_{1}}}}{(\alpha_{t}'/L_{2})^{\frac{n}{\beta_{2}}}}$$
$$= \frac{K'}{T} \cdot \left(\frac{L_{2}^{\frac{1}{\beta_{2}}}}{L_{1}^{\frac{1}{\beta_{1}}}}\right)^{n} \sum_{t=1}^{T} (\alpha_{t}')^{-\frac{n}{\beta_{2}}}.$$

We choose $\alpha'_t = \frac{1}{2^t}$, and use the number of iterations T to approach $(\alpha'_T)^{-\frac{n}{\beta_2}} = (L_2^{\frac{1}{\beta_2}} \epsilon^{\frac{1}{\beta_1}} / L_1^{\frac{1}{\beta_1}})^{-n}$. Solving this equation results in that $T = \frac{\beta_2}{\beta_1} \log \frac{L_1}{\epsilon} - \log L_2 \in \text{poly}(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \log L_1, \log \frac{1}{L_2})$. For simplicity, we assume that $\frac{\beta_2}{\beta_1} \log \frac{L_1}{\epsilon} - \log L_2$ is a positive integer and let the classifier-based optimization algorithms run $T = \frac{\beta_2}{\beta_1} \log \frac{L_1}{\epsilon} - \log L_2$ number of iterations. Now, we can conclude that $\overline{\mathbf{Pr}}_h \ge \left(\text{poly}(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \log L_1, \log \frac{1}{L_2}) \right)^{-1}$. Substituting $\overline{\mathbf{Pr}}_h \geq \left(\operatorname{poly}(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \log L_1, \log \frac{1}{L_2}) \right)^{-1}$ into Lemma 1, we have $(m+1)T \in \operatorname{poly}(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \ln L_1, \ln \frac{1}{L_2}) \cdot \ln \frac{1}{\delta}$, with probability at least $1 - \delta$. Finally, combining the fact that $R_{\mathcal{D}_t} < (1 - \theta)/2$ can be guaranteed with $\operatorname{poly}(\frac{1}{\epsilon}, n)$ sampled solutions in each iteration and $T \in \operatorname{poly}(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \ln L_1, \ln \frac{1}{L_2})$, the (ϵ, δ) -query complexity of the classifier-based optimization algorithms belongs to $\operatorname{poly}(\frac{1}{\epsilon}, n, \frac{1}{\beta_1}, \beta_2, \ln L_1, \ln \frac{1}{\beta_2}, \ln L_1, \ln \frac{1}{L_2}) \cdot \ln \frac{1}{\delta}$.

Proof of Corollary 3

COROLLARY 3

In compact continuous domains X, given $f \in \mathcal{F}$ satisfying $\sum_{t=1}^{T} (\alpha'_t)^{\mathcal{N}_c - n} \in \Omega(\epsilon^{\mathcal{N}_p - n}), 0 < \delta < 1$ and $\epsilon > 0$, for a classifier-based optimization algorithm using the classification algorithms with convergence rate $\widetilde{\Theta}(\frac{1}{m})$, under the conditions that error-target dependence $\theta < 1$ and shrinking rate $\gamma > 0$, the (ϵ, δ) -query complexity of the classifier-based optimization algorithm belongs to $poly(\frac{1}{\epsilon}, n) \cdot \ln \frac{1}{\delta}$.

Proof. By the proof procedure of Theorem 1, letting Q = 2 (i.e., $\lambda = 1/2$), we have $\overline{\mathbf{Pr}}_h \geq \frac{1}{T} \sum_{t=1}^{T} (K_t \cdot |D_{\epsilon}|)/(\gamma \cdot |D_{\alpha_t}|)$, where $K_t = 1 - 2R_{\mathcal{D}_t} - \theta$. Assume that $\theta < 1$, since $K_t = 1 - 2R_{\mathcal{D}_t} - \theta$ for all t, there must exist a constant K > 0 such that $K_t \geq K$ as long as $R_{\mathcal{D}_t} < (1 - \theta)/2$ for all t. Under the assumption of classifier-based optimization using the classification algorithms with convergence rate $\tilde{\Theta}(\frac{1}{m})$, $R_{\mathcal{D}_t} < (1 - \theta)/2$ can be guaranteed if the sampled solution size m in each iteration belongs to $\operatorname{poly}(\frac{1}{\epsilon}, n)$ [2]. Letting $K' = K/\gamma$, we therefore obtain that $\overline{\mathbf{Pr}}_h \geq \frac{1}{T} \sum_{t=1}^T (K \cdot |D_{\epsilon}|)/(\gamma \cdot |D_{\alpha_t}|) = \frac{K'}{T} \sum_{t=1}^T |D_{\epsilon}|/|D_{\alpha_t}|$.

Recall that $D_{\epsilon} = \{x \in X \mid f(x) - f(x^*) \leq \epsilon\}$ for any $\epsilon > 0$. Let $\alpha'_t = \alpha_t - f(x^*)$ and we assume that $\alpha'_t > 0$, thus, $D_{\alpha_t} = \{x \in X \mid f(x) \leq \alpha_t\} = \{x \in X \mid f(x) - f(x^*) \leq \alpha'_t\}$. Let $V(D_{\epsilon})$, $V(D_{\alpha_t})$ and $V(\eta\epsilon)$ denote the volume of D_{ϵ} , D_{α_t} and ℓ_2 ball of radius $\eta\epsilon$ in \mathbb{R}^n respectively. By the definition of \mathcal{N}_p and \mathcal{N}_c , we have

$$C_1 \epsilon^{-\mathcal{N}_p} \cdot V(\eta \epsilon) \le V(D_\epsilon) = \# D_\epsilon \le C_2 \epsilon^{-\mathcal{N}_c} \cdot V(\eta \epsilon),$$

$$C_1(\alpha_t')^{-\mathcal{N}_p} \cdot V(\eta \alpha_t') \le V(D_{\alpha_t}) = \# D_{\alpha_t} \le C_2(\alpha_t')^{-\mathcal{N}_c} \cdot V(\eta \alpha_t').$$

Note that the volume of ℓ_2 ball of radius $\eta \epsilon$ in \mathbb{R}^n is $\frac{\pi^{n/2}}{\Gamma(n/2+1)}(\eta \epsilon)^n$. Combing it with the inequality $\overline{\mathbf{Pr}}_h \geq \frac{K'}{T} \sum_{t=1}^T |D_\epsilon| / |D_{\alpha_t}|$, we have

$$\begin{split} \overline{\mathbf{Pr}}_{h} &\geq \frac{K'}{T} \sum_{t=1}^{T} \frac{|D_{\epsilon}|}{|D_{\alpha_{t}}|} = \frac{K'}{T} \sum_{t=1}^{T} \frac{\#D_{\epsilon}}{\#D_{\alpha_{t}}} \\ &\geq \frac{K'}{T} \sum_{t=1}^{T} \frac{C_{1} \epsilon^{-\mathcal{N}_{p}} \cdot V(\eta \epsilon)}{C_{2}(\alpha_{t}')^{-\mathcal{N}_{c}} \cdot V(\eta \alpha_{t}')} = \frac{K'}{T} \sum_{t=1}^{T} \frac{C_{1} \epsilon^{-\mathcal{N}_{p}} \cdot (\eta \epsilon)^{n}}{C_{2}(\alpha_{t}')^{-\mathcal{N}_{c}} \cdot (\eta \alpha_{t}')^{n}} \\ &= \frac{C_{1}K'}{C_{2}T} \sum_{t=1}^{T} \frac{\epsilon^{n-\mathcal{N}_{p}}}{(\alpha_{t}')^{n-\mathcal{N}_{c}}} = \frac{C_{1}K' \cdot \epsilon^{n-\mathcal{N}_{p}}}{C_{2}T} \sum_{t=1}^{T} (\alpha_{t}')^{\mathcal{N}_{c}-n}. \end{split}$$

Let $T \in \text{poly}(\frac{1}{\epsilon}, n)$, if the problem $f \in \mathcal{F}$ satisfying $\sum_{t=1}^{T} (\alpha'_t)^{\mathcal{N}_c - n} \in \Omega(\epsilon^{\mathcal{N}_p - n})$, we can conclude that $\overline{\mathbf{Pr}}_h \geq (\text{poly}(\frac{1}{\epsilon}, n))^{-1}$.

Substituting $\overline{\mathbf{Pr}}_h \geq (\operatorname{poly}(\frac{1}{\epsilon}, n))^{-1}$ into Lemma 1, we have $(m+1)T \in \operatorname{poly}(\frac{1}{\epsilon}, n) \cdot \ln \frac{1}{\delta}$, with probability at least $1 - \delta$. Finally, combining the fact that $R_{\mathcal{D}_t} < (1 - \theta)/2$ can be guaranteed with $\operatorname{poly}(\frac{1}{\epsilon}, n)$ sampled solutions in each iteration and $T \in \operatorname{poly}(\frac{1}{\epsilon}, n)$, the (ϵ, δ) -query complexity of the classifier-based optimization algorithms belongs to $\operatorname{poly}(\frac{1}{\epsilon}, n) \cdot \ln \frac{1}{\delta}$.

References

[1] R. B. Ash. Information Theory. Dover Publications Inc., New York, 1990.

[2] M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory. MIT Press, Cambridge, Massachusetts, 1994.