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Abstract

Multi-objective (MO) optimization problems require simulta-
neously optimizing two or more objective functions. An MO
algorithm needs to find solutions that reach different opti-
mal balances of the objective functions, i.e., optimal Pareto
front, therefore, high dimensionality of the solution space
can hurt MO optimization much severer than single-objective
optimization, which was little addressed in previous stud-
ies. This paper proposes a general, theoretically-grounded yet
simple approach ReMO, which can scale current derivative-
free MO algorithms to the high-dimensional non-convex MO
functions with low effective dimensions, using random em-
bedding. We prove the conditions under which an MO func-
tion has a low effective dimension, and for such functions,
we prove that ReMO possesses the desirable properties of
optimal Pareto front preservation, time complexity reduc-
tion, and rotation perturbation invariance. Experimental re-
sults indicate that ReMO is effective for optimizing the high-
dimensional MO functions with low effective dimensions,
and is even effective for the high-dimensional MO functions
where all dimensions are effective but most only have a small
and bounded effect on the function value.

Introduction
Solving sophisticated optimization problems plays an essen-
tial role in the development of artificial intelligence. In some
real-world applications, we need to simultaneously optimize
two or more objective functions instead of only one, which
leads to the progress of multi-objective (MO) optimization.

Let f(x) =
(
f1(x), . . . , fm(x)

)
denote a multi-objective

function. In this paper, we assume that the optimization
problems are deterministic, i.e., each call of f returns the
same function value for the same solution x. Furthermore,
we focus on the derivative-free optimization. That is to say,
f is regarded as a black-box function, and we can only per-
form the MO optimization based on the sampled solutions
and their function values. Other information such as gradi-
ent is not used or even not available. Since the derivative-
free optimization methods do not depend on gradient, they
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are suitable for a wide range of sophisticated real-world
optimization problems, such as non-convex functions, non-
differentiable functions, and discontinuous functions.

The MO optimization has achieved many remarkable
applications such as in reinforcement learning (Moffaert
and Nowé 2014), constrained optimization (Qian, Yu, and
Zhou 2015a), and software engineering (Harman, Mansouri,
and Zhang 2012; Minku and Yao 2013). Two reasons ac-
counting for its successful applications. First, the MO al-
gorithm can find the solutions that reach different opti-
mal balances of the objectives (e.g., performance and cost),
which can satisfy different demands from different users.
Besides, it has been shown that MO optimization can do
better than single-objective optimization in some machine
learning tasks (Li et al. 2014; Qian, Yu, and Zhou 2015b;
2015c).

Driven by the demand from real-world applications, de-
spite the hardness of MO optimization such as the ob-
jectives are often conflicted with each other, derivative-
free MO optimization methods have obtained substantial
achievements. Well-known MO optimization methods, such
as improved version of the strength Pareto evolutionary al-
gorithm (SPEA2) (Zitzler, Laumanns, and Thiele 2001),
region-based selection in evolutionary multi-objective opti-
mization (PESA-II) (Corne et al. 2001), non-dominated sort-
ing genetic algorithm II (NSGA-II) (Deb et al. 2002), and
multi-objective evolutionary algorithm based on decomposi-
tion (MOEA/D) (Zhang and Li 2007), non-dominated neigh-
bor immune algorithm (NNIA) (Gong et al. 2008), etc., have
been proposed and successfully applied in various applica-
tions.

Problem. Previous studies have shown that derivative-
free MO methods are effective and efficient for the MO
functions in low-dimensional solution space. However, MO
optimization methods may lose their power for the high-
dimensional MO functions, because the convergence rate
is slow or the computational cost of each iteration is high
in high-dimensional solution space. Furthermore, high di-
mensionality of the solution space can hurt MO optimiza-
tion much severer than single-objective optimization, since
an MO algorithm needs to find a set of solutions that reaches
different optimal balances of the objectives. Therefore, scal-
ability becomes one of the main bottlenecks of MO opti-
mization, which restricts the further applications of it.



Related Work. Recently, there emerged studies focusing
on addressing the issue of scaling derivative-free MO op-
timization algorithms to high-dimensional solution space,
such as (Wang et al. 2015; Ma et al. 2016; Zhang et al.
2016). In (Wang et al. 2015), the algorithm is designed
on the basis of analyzing the relationship between the de-
cision variables and the objective functions. In (Ma et al.
2016), the relationship between the decision variables is an-
alyzed in order to design the smart algorithm. In (Zhang
et al. 2016), the problem of scalability is handled through
decision variable clustering. Although the remarkable em-
pirical performance of these algorithms when addressing
high-dimension MO optimization problems, almost all of
these algorithms lack the solid theoretical foundations. The
questions of when and why these algorithms work need to
be answered theoretically in order to guide the better de-
sign and application of high-dimensional MO algorithms.
Compared with the theoretical progress for derivative-free
high-dimensional single-objective optimization (Wang et al.
2013; Kaban, Bootkrajang, and Durrant 2013; Friesen and
Domingos 2015; Kandasamy, Schneider, and Póczos 2015;
Qian and Yu 2016), the theoretically-grounded MO meth-
ods are deficient and thus quite appealing. Furthermore,
some existing approaches to scaling MO algorithms to high-
dimensional MO problems are not general and only re-
stricted to the special algorithms. It is desirable that more
MO algorithms can possess the scalability.

On the other hand, it has been observed that, for a
wide class of high-dimensional single-objective optimiza-
tion problems, such as hyper-parameter optimization in ma-
chine learning tasks (Bergstra and Bengio 2012; Hutter,
Hoos, and Leyton-Brown 2014), the objective function value
is only affected by a few dimensions instead of all di-
mensions. And we call the dimensions which affect the
function value as the effective dimensions. For the high-
dimensional single-objective optimization problems with
low effective dimensions, the random embedding technique
which possesses the solid theoretical foundation has been
proposed (Wang et al. 2013; 2016). Due to the desirable
theoretical property of random embedding, it has been ap-
plied to cooperate with some state-of-the-art derivative-
free single-objective optimization methods and shown to
be effective. Successful cases including Bayesian optimiza-
tion (Wang et al. 2013; 2016), simultaneous optimistic opti-
mization (Qian and Yu 2016), and estimation of distribution
algorithm (Sanyang and Kaban 2016). These successful ex-
amples inspire us that we can extend the random embedding
technique to high-dimensional MO functions with low effec-
tive dimensions, and at the same time inherit the theoretical
merits of random embedding. Besides, it would be desirable
if the extension of random embedding is suitable for any MO
algorithm rather than only some special algorithms.

Our Contributions. This paper proposes a general,
theoretically-grounded yet simple approach ReMO, which
can scale any derivative-free MO optimization algorithm to
the high-dimensional non-convex MO optimization prob-
lems with low effective dimensions using random embed-
ding. ReMO performs the optimization by employing ar-
bitrary derivative-free MO optimization algorithm in low-

dimensional solution space, where the function values of so-
lutions are evaluated through embedding it into the origi-
nal high-dimensional solution space. Theoretical and exper-
imental results verify the effectiveness of ReMO for scala-
bility. The contributions of this paper are:

• Disclosing a sufficient and necessary condition as well as
a sufficient condition under which the high-dimensional
MO functions have the effective dimensions.

• Proving that ReMO possesses three desirable theoretical
properties: Pareto front preservation, time complexity re-
duction, and rotation perturbation invariance (i.e., robust
to rotation perturbation).

• Showing that ReMO is effective to improve the scalability
of current derivative-free MO optimization algorithms for
the high-dimensional non-convex MO problems with low
effective dimensions, and is even effective for the high-
dimensional MO problems where all dimensions are ef-
fective but most only have a small and bounded effect on
the function value.

The rest of the paper is organized as follows. Section 2 in-
troduces the notations of MO optimization and reviews ran-
dom embedding for the high-dimensional single-objective
optimization. Section 3 extends random embedding to the
high-dimensional MO optimization and presents the pro-
posed general approach ReMO. Section 4 shows three de-
sirable theoretical properties of ReMO, and Section 5 shows
the experimental results. Section 6 concludes the paper.

Background
Multi-Objective Optimization
Multi-objective (MO) optimization simultaneously opti-
mizes two or more objective functions as Definition 1. In
this paper, we consider minimization problems.

DEFINITION 1 (Multi-Objective Optimization)
Given m objective functions f1, . . . , fm defined on the so-
lution space X ⊆ RD, the minimum multi-objective opti-
mization aims to find the solution x∗ ∈ X s.t.

x∗ = argmin
x∈X

f(x) = argmin
x∈X

(
f1(x), . . . , fm(x)

)
,

where f(x) =
(
f1(x), . . . , fm(x)

)
is the objective function

vector of the solution x.

This paper only considers X = RD, i.e., unconstrained
MO optimization problems. In most cases, it is impossible
that there exist a solution x ∈ RD such that x is optimal for
all the objectives, since the objectives are often conflicted
with each other and optimizing one objective alone will de-
grade the other objectives. Thus, MO optimization attempts
to find out a set of solutions that reach different optimal
balances of the objective functions according to some crite-
ria. A widely-used criterion is the Pareto optimality that uti-
lizes the dominance relationship between solutions as Defi-
nition 2. The solution set with Pareto optimality is called the
Pareto set as Definition 3.



DEFINITION 2 (Dominance Relationship)
Let f = (f1, . . . , fm) : RD → Rm be the objective func-
tion vector, where RD is the solution space and Rm is the
objective space. For two solutions x1,x2 ∈ RD:

• x1 weakly dominates x2 iff fi(x1) ≤ fi(x2) for all i ∈
{1, . . . ,m}. Denote the weak dominance relationship as
x1 �f x2.

• x1 dominates x2 iff x1 �f x2 (i.e., x1 weakly domi-
nates x2) and fi(x1) < fi(x2) for some i ∈ {1, . . . ,m}.
Denote the dominance relationship as x1 ≺f x2.

DEFINITION 3 (Pareto Optimality)
Let f = (f1, . . . , fm) : RD → Rm be the objective function
vector, where RD is the solution space and Rm is the objec-
tive space. A solution x is called Pareto optimal if there ex-
ists no other solution in RD which dominates x. A solution
set is called the Pareto set if it only contains the Pareto op-
timal solutions. The collection of objective function vectors
of the Pareto set is called the Pareto front of the Pareto set.

Under the criterion of Pareto optimality, MO optimiza-
tion aims at finding the largest Pareto set PS that is also
called the optimal Pareto set, and the corresponding optimal
Pareto front denoted as PF . To be specific, for each mem-
ber in PF , MO optimization attempts to find at least one
corresponding solution in PS .

Random Embedding for Single-Objective
Optimization
Before introducing our general approach to handling a large
class of high-dimensional MO functions, in this section
we will review the previously proposed random embed-
ding technique for optimizing the high-dimensional single-
objective functions with low effective dimensions, and also
will present the desirable theoretical property of it.

It has been observed that, for a wide class of high-
dimensional single-objective optimization problems, such as
hyper-parameter optimization in machine learning (Bergstra
and Bengio 2012; Hutter, Hoos, and Leyton-Brown 2014),
the objective function value is only affected by a few ef-
fective dimensions. Here, we adopt the concept of effective
dimension introduced in (Wang et al. 2013; 2016) as Defi-
nition 4. We call the effective dimension of single-objective
function as S-effective dimension in order to distinguish it
from the effective dimension of MO functions that will be
formally defined in the next section.

DEFINITION 4 (S-Effective Dimension)
A function f : RD → R is said to have S-effective dimen-
sion de with de ≤ D, if

• there exists a linear subspace V ⊆ RD with dimension dV
such that for all x ∈ RD, we have f(x) = f(xe + xc) =
f(xe), where xe ∈ V ⊆ RD, xc ∈ V⊥ ⊆ RD and V⊥ is
the orthogonal complement of V .

• de = minV∈V dV , where V is the collection of all the
subspaces V with the property described above.

We call V the effective subspace of f and V⊥ the constant
subspace of f .

Intuitively, Definition 4 means that the function value of
f(x) only varies along the effective subspace V , and does
not vary along the constant subspace V⊥. For the high-
dimensional single-objective functions with low S-effective
dimensions, Theorem 1 (Wang et al. 2013; 2016) below
implies that the random embedding technique is effective.
Let N (0, 1) denote the standard Gaussian distribution, i.e.,
mean = 0 and variance = 1. The proof of Theorem 1 can be
found in (Wang et al. 2013; 2016).

THEOREM 1
Given a function f : RD → R with S-effective dimension
de, and a random matrix A ∈ RD×d with independent mem-
bers sampled from N (0, 1) where d ≥ de, then, with prob-
ability 1, for any x ∈ RD there exists y ∈ Rd such that
f(x) = f(Ay).

From Theorem 1, we know that, given a high-dimensional
single-objective function with low S-effective dimension
(i.e., de � D) and a random embedding matrix A ∈ RD×d,
for any maximizer x∗ ∈ RD, there must exist y∗ ∈ Rd such
that f(Ay∗) = f(x∗) with probability 1. Namely, random
embedding enables us to optimize the lower-dimensional
function g(y) = f(Ay) in Rd instead of optimizing the
original high-dimensional f(x) in RD, while the function
value is still evaluated in the original solution space.

Due to the desirable theoretical property of random em-
bedding, this technique has been applied in some state-of-
the-art derivative-free single-objective optimization meth-
ods for optimizing high-dimensional single-objective func-
tions with low S-effective dimensions. The performance
of them is remarkable, and successful examples include
Bayesian optimization (Wang et al. 2013; 2016), simulta-
neous optimistic optimization (Qian and Yu 2016), and esti-
mation of distribution algorithm (Sanyang and Kaban 2016).

Multi-Objective Optimization
via Random Embedding

Inspired from the successful and remarkable cases of ap-
plying random embedding to handle the high-dimensional
single-objective functions with low S-effective dimen-
sions (Wang et al. 2013; 2016; Qian and Yu 2016; Sanyang
and Kaban 2016), in this section, we extend the concept of
effective dimension from single-objective functions to MO
functions. Conditions under which f has the effective di-
mension are disclosed, which are useful to verify the exis-
tence of the effective dimension. For the high-dimensional
MO functions with low effective dimensions, we extend
random embedding for handling this function class in a
more general way, and thus propose the approach of multi-
objective optimization via random embedding (ReMO).

High-Dimensional Multi-Objective Functions with
Low Effective Dimensions
The concept of effective dimension for MO functions is for-
mally defined as Definition 5. We call the effective dimen-
sion of MO optimization problem as M-effective dimension
in order to distinguish it from the effective dimension of
single-objective optimization problem.



DEFINITION 5 (M-Effective Dimension)
Let f = (f1, . . . , fm) : RD → Rm be the objective function
vector, where RD is the solution space and Rm is the objec-
tive space, then, f is said to have M-effective dimension ϑe
with ϑe ≤ D, if

• there exists a linear subspace V ⊆ RD with dimension ϑV
such that for all x ∈ RD, we have f(x) = f(xe+xc) =
f(xe), where xe ∈ V ⊆ RD, xc ∈ V⊥ ⊆ RD and V⊥ is
the orthogonal complement of V .

• ϑe = minV∈V ϑV , where V is the collection of all the
subspaces V with the property described above.

We call V the effective subspace of f and V⊥ the constant
subspace of f .

Similar to the case of high-dimensional single-objective
functions, Definition 5 intuitively indicates that there ex-
ists as least one linear subspace V ⊆ RD called effective
subspace along which f(x) varies, and its orthogonal com-
plement V⊥ called constant subspace makes no effects on
f(x). It is worthwhile to point out that the definition not
only includes the cases of axis-aligned M-effective dimen-
sions but also is not limited to this special cases. It can be
verified directly that an effective subspace of f(x) is also
an effective subspace of each fi(x). Therefore, if f(x) has
M-effective dimension ϑe, then each fi(x) has S-effective
dimension d(i)e ≤ ϑe for i = 1, . . . ,m, where d(i)e denotes
the S-effective dimension of fi(x).

Given the definition of M-effective dimension, a natural
question that we are interested in is how to verify the exis-
tence of it. To answer this question, theoretically, we first de-
rive a sufficient and necessary condition under which f(x)
has the M-effective dimension as Theorem 2. We denote the
transpose of matrix M as M>. If a matrix M ∈ RD×D

satisfying MM> = M>M = I , then we call M the or-
thogonal matrix, where I is the identity matrix.

THEOREM 2
Given any f = (f1, . . . , fm) : RD → Rm and an or-
thogonal matrix M ∈ RD×D, let fM (x) = f(Mx) =
(f1(Mx), · · · , fm(Mx)), then f has the M-effective di-
mension ϑe if and only if fM has the M-effective dimension
ϑe.

The proof of Theorem 2 is shown in the appendix1. The-
orem 2 indicates that f has the effective subspace if and
only if the rotation of f has the effective subspace, and they
share the same M-effective dimension. This observation pro-
vides the possibility that we may verify the existence of M-
effective dimension easily via rotating f in a smart way.

In addition to Theorem 2, we also derive a sufficient con-
dition under which f(x) has the M-effective dimension as
Theorem 3.

THEOREM 3
Given any f = (f1, . . . , fm), if each fi has at least one
effective subspace Vi ⊆ RD with dimension di such that Vi

1The appendix presenting all the proofs can be found in the
homepage of the author http://cs.nju.edu.cn/yuy.

Algorithm 1 Multi-Objective Optimization via Random
Embedding (ReMO)
Input:

MO function f(x) = (f1(x), . . . , fm(x));
Derivative-free MO optimization algorithmM;
Number of function evaluation budget n;
Upper bound of the M-effective dimension ϑ (≥ ϑe).

Procedure:
1: Generate a random matrix A ∈ RD×ϑ with Ai,j ∼
N (0, 1).

2: Apply M to optimize the low-dimensional MO func-
tion g(y) = f(Ay) = (f1(Ay), . . . , fm(Ay)) with n
function evaluations, where y ∈ Rϑ.

3: Obtain the approximate optimal Pareto set PS ′g of g as
well as the approximate optimal Pareto front PF ′g of g
found byM.

4: Let PS ′f = {Ay | y ∈ PS ′g} and PF ′f = PF ′g .
5: return PS ′f and PF ′f .

is orthogonal to Vj for any i 6= j ∈ {1, . . . ,m}, then f has
the M-effective dimension ϑe ≤

∑m
i=1 di.

The proof of Theorem 3 is shown in the appendix. The-
orem 3 inspires us that we may verify the existence of M-
effective dimension of f via each fi, which decomposes the
problem into relatively easy problems. Let S1 + S2 denote
the sum of linear vector subspaces S1,S2 ⊆ RD. Namely,
S1 + S2 = {x1 + x2 | x1 ∈ S1,x2 ∈ S2}. It is easy
to verify that the sum of linear subspaces S1 + S2 ⊆ RD

is also a linear subspace. The proof of Theorem 3 implies
that

∑m
i=1 Vi ⊆ RD is an effective subspaces of f , which

means that we can construct the effective subspace of f via
the effective subspace of each fi.

The ReMO Approach
For the high-dimensional MO functions with low M-
effective dimensions (i.e., ϑe � D), we extend random em-
bedding to optimize this function class in a more general
way, and propose the multi-objective optimization via ran-
dom embedding (ReMO) as depicted in Algorithm 1.

If f has theM -effective dimension, given an upper bound
of the M-effective dimension ϑ ≥ ϑe (instead of know-
ing ϑe exactly), ReMO first generates a random embed-
ding matrix A ∈ RD×ϑ with each member i.i.d. sampled
from the standard Gaussian distribution N (0, 1) as line 1.
Then, ReMO applies some MO optimization algorithm to
optimize the lower-dimensional function g(y) = f(Ay) =
(f1(Ay), . . . , fm(Ay)) in Rϑ while the function value is
still evaluated in the original solution space RD, and then
gets the approximate optimal Pareto set PS ′g and the ap-
proximate optimal Pareto front PF ′g of g as line 2 to 3. It
is worthwhile to point out that the derivative-free MO opti-
mization algorithmM equipped in ReMO can be quite gen-
eral and is not restricted to any special algorithm. That is to
say, we can equip ReMO with any well-known derivative-
free MO algorithm such as improved version of the strength
Pareto evolutionary algorithm (SPEA2) (Zitzler, Laumanns,



and Thiele 2001), region-based selection in evolutionary
multi-objective optimization (PESA-II) (Corne et al. 2001),
non-dominated sorting genetic algorithm II (NSGA-II) (Deb
et al. 2002), multi-objective evolutionary algorithm based
on decomposition (MOEA/D) (Zhang and Li 2007), non-
dominated neighbor immune algorithm (NNIA) (Gong et al.
2008) and the like. At last, as line 4 to 5, ReMO constructs
the approximate optimal Pareto set PS ′f and the approxi-
mate optimal Pareto front PF ′f of f from PS ′g and PF ′g ,
and then returns them as the output. Obviously, PS ′f ⊆
{Ay | y ∈ PSg} and PF ′f ⊆ PFg ⊆ PFf . In the next
section, we will show that {Ay | y ∈ PSg} ⊆ PSf and
PFg = PFf , therefore, PS ′f ⊆ PSf and PF ′f ⊆ PFf .

ReMO is suitable for a general function class, we only
need to get an upper bound of the M-effective dimension
rather than knowing ϑe exactly, and any derivative-free MO
algorithm can be cooperated with ReMO flexibly. All of
these reflect that ReMO is a general approach to optimizing
the high-dimensional MO functions with low M-effective di-
mensions. Besides, the implementation of ReMO is simple.

Theoretical Study
If we apply ReMO to optimize the high-dimensional f with
low M-effective dimension ϑe, theoretically, we show that
ReMO inherits the merits of random embedding and pos-
sesses the desirable theoretical properties of optimal Pareto
front preservation, time complexity reduction, and rotation
perturbation invariance.

Optimal Pareto Front Preservation
Let g(y) = f(Ay) = (f1(Ay), . . . , fm(Ay)), where
y ∈ Rϑ with ϑe ≤ ϑ ≤ D. Theorem 4 proves that, with
probability 1, the optimal Pareto front of g(y) is as same
as that of f(x) and the optimal Pareto set of f(x) can be
recovered from that of g(y), i.e., optimal Pareto front and
optimal Pareto set preservation. Denote the optimal Pareto
set of f , g as PSf ⊆ RD,PSg ⊆ Rϑ, and denote the opti-
mal Pareto front of f , g as PFf ,PFg ⊆ Rm, respectively.

THEOREM 4
Given any f = (f1, . . . , fm) : RD → Rm with M-effective
dimension ϑe, then, with probability 1, we have that {Ay |
y ∈ PSg} ⊆ PSf and PFg = PFf .

The proof of Theorem 4 is shown in the appendix. The-
orem 4 implies that, in the procedure of ReMO, optimizing
the lower-dimensional function g(y) in Rϑ instead of opti-
mizing the original high-dimensional function f(x) in RD

will not miss any part of PSf and PFf ifM can find PSg
and PFg perfectly. Here, an MO optimization algorithmM
can find the optimal Pareto set PS perfectly means that, for
each member in the optimal Pareto front PF ,M can find at
least one corresponding solution in PS .

Time Complexity Reduction
Since ReMO only optimizes the lower-dimensional function
g and can preserve the optimal Pareto front, the time com-
plexity of ReMO is less than that of optimizing f directly,
as Theorem 5.

THEOREM 5
Given any f = (f1, . . . , fm) : RD → Rm with M-effective
dimension ϑe, assume thatM can find the PSf and PFf

with time complexityO(φ(D,m)), then, with probability 1,
ReMO equipped with the same algorithm M can find the
PSf and PFf with time complexity O(φ(ϑ,m)), where
φ(d,m) is a monotone increasing function with respect to
the dimension of solution space d.

The proof of Theorem 5 is shown in the appendix. From
Theorem 5, we know that how much the time complexity can
be reduced relies on the form of function φ, and thus depends
on the specific function f and the specific algorithmM.

Rotation Perturbation Invariance
At last, we theoretically show that ReMO is robust to ro-
tation perturbation (i.e., rotation perturbation invariance) as
Theorem 6. The similar result of the single-objective func-
tion optimization can be found in (Wang et al. 2016).

THEOREM 6
Given any f = (f1, . . . , fm) : RD → Rm with M-effective
dimension ϑe and an orthogonal matrix M ∈ RD×D, let
fM (x) = f(Mx) = (f1(Mx), · · · , fm(Mx)) denote
the rotation perturbation of f , if we apply ReMO to opti-
mize fM , ReMO can still find the PSf and PFf of f with
probability 1.

The proof of Theorem 6 is shown in the appendix. Theo-
rem 6 indicates that the rotation perturbation of f may not
affect ReMO finding the PSf and PFf . That is to say,
ReMO is robust to rotation perturbation.

Experiments
On Functions with M-Effective Dimensions
We first verify the effectiveness of ReMO empirically on
three high-dimensional bi-objective (i.e., m = 2) optimiza-
tion testing functions ZDT10, ZDT20 and ZDT30 with low
M-effective dimensions. They are constructed based on the
first three bi-objective functions ZDT1, ZDT2 and ZDT3
introduced in (Zitzler, Deb, and Thiele 2000). The dimen-
sions of ZDT1, ZDT2 and ZDT3 are all 30. ZDT10, ZDT20

and ZDT30 are constructed to meet the M-effective dimen-
sion assumption as follows: ZDT1, ZDT2 and ZDT3 are
embedded into a D-dimensional solution space X ⊆ RD

with D � 30. The embedding is done by firstly adding ad-
ditional D − 30 dimensions, but the additional dimensions
have no effects on the function value; secondly, the embed-
ded functions are rotated via an orthogonal matrix. Thus, the
dimensions of ZDT10, ZDT20 and ZDT30 are D while their
M-effective dimensions are 30. For these bi-objective testing
functions, ZDT10 has a convex optimal Pareto front, ZDT20

has a non-convex optimal Pareto front, and ZDT30 has a dis-
continuous optimal Pareto front. The second objective func-
tions of ZDT10, ZDT20 and ZDT30 are all non-convex.

For the practical issues in experiments, we set the high-
dimensional solution space X = [−1, 1]D and the low-
dimensional solution space Y = [−1, 1]ϑ, instead of RD and
Rϑ. To implement the MO algorithm in Y , since there may



Table 1: Comparing the achieved hyper-volume indicators of the algorithms on 10000-dimensional multi-objective functions
with low M-effective dimensions (mean ± standard derivation). In each row, an entry of Re-NSGA-II (or Re-MOEA/D) is bold
if its mean value is better than NSGA-II (or MOEA/D); and an entry of Re-NSGA-II (or Re-MOEA/D) is marked with bullet if
it is significantly better than NSGA-II (or MOEA/D) by t-test with 5% significance level.

Algorithm NSGA-II Re-NSGA-II MOEA/D Re-MOEA/D

ZDT10 0.4176±0.0099 0.8633±0.0398• 0.5935±0.0078 0.6718±0.0153•
ZDT20 0.2259±0.0355 0.7076±0.0333• 0.4313±0.0261 0.6931±0.0294•
ZDT30 0.4248±0.0191 0.8289±0.0209• 0.5868±0.0254 0.6818±0.0243•

Table 2: Comparing the achieved hyper-volume indicators of the algorithms on 10000-dimensional multi-objective functions
without low M-effective dimensions (mean ± standard derivation). In each row, an entry of Re-NSGA-II (or Re-MOEA/D) is
bold if its mean value is better than NSGA-II (or MOEA/D); and an entry of Re-NSGA-II (or Re-MOEA/D) is marked with
bullet if it is significantly better than NSGA-II (or MOEA/D) by t-test with 5% significance level.

Algorithm NSGA-II Re-NSGA-II MOEA/D Re-MOEA/D

ZDT1ε 0.2681±0.0138 0.4308±0.0220• 0.4063±0.0245 0.3961±0.0160
ZDT2ε 0.0939±0.0140 0.3208±0.0237• 0.1934±0.0334 0.2998±0.0310•
ZDT3ε 0.2799±0.0240 0.4666±0.0152• 0.3404±0.0189 0.3804±0.0230•

exist y′ ∈ Y s.t. Ay′ /∈ X and thus f cannot be evaluated at
point Ay′. To address this problem, we use Euclidean pro-
jection, i.e., Ay′ is projected to X when it is outside X by
PX (Ay′) = argminx∈X ‖x−Ay′‖2. We employ two well-
known derivative-free MO optimization methods to mini-
mize ZDT10, ZDT20 and ZDT30: non-dominated sorting
genetic algorithm II (NSGA-II) (Deb et al. 2002), and multi-
objective evolutionary algorithm based on decomposition
(MOEA/D) (Zhang and Li 2007). The implementations of
them are both by their authors. When applying the ran-
dom embedding technique to these optimization methods,
we denote them by the prefix “Re-”. Thus, we have com-
binations including Re-NSGA-II and Re-MOEA/D. NSGA-
II and MOEA/D are compared with Re-NSGA-II and Re-
MOEA/D on these three testing functions with dimension
D = 10000(� ϑe = 30). We set the function evaluation
budget n = 0.3D = 3000 and the upper bound of M-
effective dimension ϑ = 50 > ϑe = 30. To measure the
performance of each algorithm, we adopt the hyper-volume
indicator with reference point (1, 4) that quantifies the close-
ness of the approximate optimal Pareto front each algorithm
found to the true optimal Pareto front. The hyper-volume in-
dicator ranges from 0 to 1, and the larger the better. Each
algorithm is repeated 30 times independently. The hyper-
volume indicator is reported in Table 1.

Table 1 shows that, for high-dimensional MO functions
with low M-effective dimensions, ReMO is always signif-
icantly better than applying derivative-free MO methods
in high-dimensional solution space directly on all the test-
ing functions, whenever we choose NSGA-II or MOEA/D.
And the advantage of ReMO is particularly obvious when
comparing Re-NSGA-II with NSGA-II. This indicates that
ReMO is effective for MO functions with M-effective di-
mensions, and its effectiveness is general.

Due to the restriction of space, the additional experimen-
tal results which show the approximate optimal Pareto front
each algorithm found for ZDT10, ZDT20 and ZDT30 can be
found in the appendix.

On Functions without M-Effective Dimensions

Furthermore, we also verify the effectiveness of ReMO em-
pirically on three high-dimensional bi-objective optimiza-
tion testing functions ZDT1ε, ZDT2ε and ZDT3ε where all
dimensions are effective but most only have a small and
bounded effect (up to ε but not zero effect) on the func-
tion value. This MO function class, where the M-effective
dimension assumption may no longer hold, is more general
since the MO functions with M-effective dimensions (i.e.,
ε = 0) are special cases of this function class. To meet this
requirement, ZDT1ε, ZDT2ε and ZDT3ε are constructed on
the basis of ZDT1, ZDT2 and ZDT3 as follows: ZDT1,
ZDT2 and ZDT3 are embedded into a D-dimensional so-
lution space X with D = 10000. The embedding is done by
adding additional D − 30 dimensions

∑D
i=31 xi/D. We set

the function evaluation budget n = 0.3D = 3000 and set
the reference point as (1, 4) to calculate the hyper-volume
indicator (the larger the better). Each algorithm is repeated
30 times independently. The achieved hyper-volume indica-
tor is reported in Table 2.

Table 2 indicates that, except Re-MOEA/D on ZDT1ε,
ReMO is always significantly better than applying MO
methods directly (especially when comparing Re-NSGA-II
with NSGA-II). This implies that, for high-dimensional MO
functions where all dimensions are effective but most only
have a small and bounded impact, ReMO still works well
and can also be applied.



Conclusion
This paper proposes a general, theoretically-grounded yet
simple approach ReMO that can scale any derivative-free
MO optimization algorithm to the high-dimensional non-
convex MO functions with low M-effective dimensions via
random embedding. Theoretically, we disclose the condi-
tions under which the high-dimensional MO functions have
the M-effective dimensions, and prove that ReMO possesses
the desirable theoretical properties of Pareto front preserva-
tion, time complexity reduction, and rotation perturbation
invariance (i.e., robust to rotation perturbation) for such kind
of functions. Experimental results show that ReMO is ef-
fective to improve the scalability of current derivative-free
MO optimization algorithms, and even may be effective for
the high-dimensional MO functions without low M-effective
dimensions. In the future, we will apply ReMO to more so-
phisticated real-world tasks.
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dimensional bayesian optimisation and bandits via additive
models. In Proceedings of the 32nd International Confer-
ence on Machine Learning, 295–304.
Li, L.; Yao, X.; Stolkin, R.; Gong, M.; and He, S. 2014.
An evolutionary multiobjective approach to sparse recon-
struction. IEEE Transactions on Evolutionary Computation
18(6):827–845.

Ma, X.; Liu, F.; Qi, Y.; Wang, X.; Li, L.; Jiao, L.; Yin, M.;
and Gong, M. 2016. A multiobjective evolutionary algo-
rithm based on decision variable analyses for multiobjec-
tive optimization problems with large-scale variables. IEEE
Transactions on Evolutionary Computation 20(2):275–298.
Minku, L. L., and Yao, X. 2013. Software effort estimation
as a multi-objective learning problem. ACM Transactions
on Software Engineering and Methodology 22(4):35.
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In this appendix, we present the proofs of Theorem 1 to 6
in the paper in Section 1 to 6, respectively. Section 7 presents
the additional experimental results of the paper.

Proof of Theorem 1
This section presents the proof of Theorem 1 in the paper.
Let N (0, 1) denote the standard Gaussian distribution, i.e.,
mean = 0 and variance = 1, and M> denote the transpose
of matrixM . The proof of Theorem 1 is shown below which
can be found in (Wang et al. 2013; 2016).

THEOREM 1
Given a function f : RD → R with S-effective dimension
de, and a random matrixA ∈ RD×d with independent mem-
bers sampled from N (0, 1) where d ≥ de, then, with prob-
ability 1, for any x ∈ RD there exists y ∈ Rd such that
f(x) = f(Ay).

Proof. Since f has the effective dimension de, there exists
an effective subspace V ⊆ RD with dim(V) = de. In ad-
dition, any x ∈ RD can be decomposed as x = xe + xc,
where xe ∈ V , xc ∈ V⊥ and V⊥ is the orthogonal comple-
ment of V . By the definition of effective subspace, we have
f(x) = f(xe +xc) = f(xe). Therefore, it suffices to show
that, with probability 1, for any xe ∈ V there exists y ∈ Rd

such that f(xe) = f(Ay).
Let Φ ∈ RD×de be a matrix whose columns form a stan-

dard orthonormal basis of V . Thus, for any xe ∈ V , there
exists c ∈ Rde such that xe = Φc. Let us for now assume
that Φ>A has rank de. If rank(Φ>A) = de, there must ex-
ist y ∈ Rd such that (Φ>A)y = c, because rank(Φ>A) =
rank([Φ>A, c]). The orthonormal projection of Ay onto V
is given by ΦΦ>Ay = Φc = xe. Thus, Ay = xe + x̃,
where x̃ ∈ V⊥ since xe is the orthonormal projection ofAy
onto V . Therefore, we have f(Ay) = f(xe + x̃) = f(xe).

At last, it remains to verify that rank(Φ>A) = de with
probability 1. Let Ae ∈ RD×de be a sub-matrix of A con-
sisting of any de columns of A, which are i.i.d. samples
distributed according to N (0, I), where I is the identity
matrix. Let ai denote any column of Ae. By the standard
orthonormal property of Φ, Φ>ai are i.i.d. samples from
N (0,Φ>Φ) = N (0de

, Ide×de
), and thus we have Φ>Ae,
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when considered as an element of Rd2
e , is a sample from

N (0d2
e
, Id2

e×d2
e
). On the other hand, the set of singular ma-

trices in Rd2
e has Lebesgue measure zero, since it is the zero

set of a polynomial (i.e., the determinant function) and poly-
nomial functions are Lebesgue measurable. Furthermore,
the Gaussian distribution is absolutely continuous with re-
spect to the Lebesgue measure, so Φ>Ae is almost surely
non-singular, which means that it has rank de, and thus the
same holds for Φ>A whose columns contain the columns
of Φ>Ae.

Proof of Theorem 2
This section presents the proof of Theorem 2 in the paper.
A matrix M ∈ RD×D is called the orthogonal matrix if
and only if MM> =M>M = I , where I is the identity
matrix.

THEOREM 2
Given any f = (f1, . . . , fm) : RD → Rm and an or-
thogonal matrix M ∈ RD×D, let fM (x) = f(Mx) =
(f1(Mx), · · · , fm(Mx)), then f has the M-effective di-
mension ϑe if and only if fM has the M-effective dimension
ϑe.

Proof. On the one hand, if fM has the M-effective di-
mension, let V ⊆ RD be any effective subspace of fM
with dimension ϑ. Let {α1, . . . ,αϑ} be a basis of V , and
{αϑ+1, . . . ,αD} be a basis of V⊥ where V⊥ is the or-
thogonal complement of V . Let VM = {Mx | x ∈
V} ⊆ RD. Since M is an orthogonal matrix, we have
that M−1 always exists and M−1 = M>. We can ver-
ify directly that VM is also a linear subspace if V is a
linear subspace, {Mα1, . . . ,Mαϑ} is a basis of VM if
{α1, . . . ,αϑ} is a basis of V and M is an orthogonal
matrix, and {Mαϑ+1, . . . ,MαD} is a basis of V⊥M if
{αϑ+1, . . . ,αD} is a basis of V⊥ and M is an orthogonal
matrix. Therefore, the dimension of VM is also ϑ. We now
prove that VM is an effective subspace of f . For any x ∈
RD, since x =

∑ϑ
i=1 aiMαi +

∑D
j=ϑ+1 ajMαj where∑ϑ

i=1 aiMαi ∈ VM and
∑D

j=ϑ+1 ajMαj ∈ V⊥M , we

have that f(x) = f(
∑ϑ

i=1 aiMαi +
∑D

j=ϑ+1 ajMαj) =

fM (
∑ϑ

i=1 aiαi +
∑D

j=ϑ+1 ajαj) = fM (
∑ϑ

i=1 aiαi) =



fM (M−1 ∑ϑ
i=1 aiMαi) = f(

∑ϑ
i=1 aiMαi), where the

third equality is by that V is an effective subspace of fM
and

∑ϑ
i=1 aiαi ∈ V , and the last equality is by that f(x) =

fM (M−1x). This shows that VM is an effective subspace
of f .

On the other hand, if f has the M-effective dimension, let
V ⊆ RD be any effective subspace of f with dimension ϑ.
Consider the linear subspace VM−1 = {M−1x | x ∈ V} ⊆
RD with dimension ϑ. With the same arguments above, we
can verify that VM−1 is an effective subspace of fM , which
proves the theorem.

Proof of Theorem 3
This section presents the proof of Theorem 3 in the paper.
Before presenting the proof of Theorem 3, we first show
three lemmas below that will be used in the poof of The-
orem 3. Let S1 + S2 denote the sum of linear vector sub-
spaces S1,S2 ⊆ RD. Namely, S1 + S2 = {x1 + x2 | x1 ∈
S1,x2 ∈ S2}. It is easy to verify that the sum of linear sub-
spaces S1+S2 ⊆ RD is also a linear subspace. Let 〈x1,x2〉
denote the inner product of two vectors x1,x2.

LEMMA 1
Given two linear subspaces S1,S2 ⊆ RD, let S⊥1 , S⊥2 and
(S1+S2)⊥ denote the orthogonal complement subspaces of
S1, S2 and S1+S2 respectively, then (S1+S2)⊥ = S⊥1 ∩S⊥2 .

Proof. On the one hand, given any x ∈ (S1 + S2)⊥, by the
definition of S1 + S2, we have that S1,S2 ⊆ S1 + S2 and
thus x ∈ S⊥1 ∩ S⊥2 , i.e., (S1 + S2)⊥ ⊆ S⊥1 ∩ S⊥2 .

On the other hand, given any x ∈ S⊥1 ∩ S⊥2 , for all x1 ∈
S1 and x2 ∈ S2, we have that 〈x,x1〉 = 〈x,x2〉 = 0.
Therefore, 〈x,x1 + x2〉 = 〈x,x1〉 + 〈x,x2〉 = 0 for all
x1 ∈ S1 and x2 ∈ S2. That is to say, x ∈ (S1 + S2)⊥
and thus S⊥1 ∩ S⊥2 ⊆ (S1 + S2)⊥. Therefore, we have that
(S1 + S2)⊥ = S⊥1 ∩ S⊥2 .

LEMMA 2
Given a linear subspace S1 ⊆ RD, let S⊥1 denote its orthog-
onal complement subspace, if there exists a linear subspace
S2 ⊆ RD such that S1 + S2 = RD and S2 is orthogonal to
S1, then S2 = S⊥1 .

Proof. Since S1 + S2 = RD as well as S2 is orthogonal to
S1, we have that S2 is also an orthogonal complement sub-
space of S1. To prove S2 = S⊥1 , it suffices to verify that the
orthogonal complement subspace of S1 is unique. Assume
that there exist two linear subspaces S ′1,S ′′1 ⊆ RD such that
S1+S ′1 = RD, S1+S ′′1 = RD, and S ′1,S ′′1 are both orthog-
onal to S1. Given any x ∈ S ′1, we have x = x1+x2, where
x1 ∈ S1 and x2 ∈ S ′′1 . Since S ′1,S ′′1 are both orthogonal to
S1, we have

〈x,x1〉 = 〈x1 + x2,x1〉 = 〈x1,x1〉+ 〈x2,x1〉
= 〈x1,x1〉 = 0.

That is to sayx1 = 0 and thusx ∈ S ′′1 , i.e., S ′1 ⊆ S ′′1 . On the
other hand, given any x ∈ S ′′1 , we have x = x1+x2, where
x1 ∈ S1 and x2 ∈ S ′1. Similarly, we can verify that x1 = 0
and thus x ∈ S ′1, i.e., S ′′1 ⊆ S ′1. Therefore, S ′1 = S ′′1 , which
indicates that S2 = S⊥1 .

LEMMA 3
Given two linear subspaces S1,S2 ⊆ RD with dimensions
dim(S1) and dim(S2), then dim(S1 + S2) ≤ dim(S1) +
dim(S2).

Proof. Let p = dim(S1), q = dim(S1), {α1, . . . ,αp} be
a basis of S1 and {β1, . . . ,βq} be a basis of S2. Given
any x ∈ S1 + S2, we have that x = x1 + x2, where
x1 =

∑p
i=1 aiαi ∈ S1 and x2 =

∑q
i=1 biβi ∈ S2. Thus,

x =
∑p

i=1 aiαi +
∑q

i=1 biβi, i.e., x can be linearly rep-
resented by {α1, . . . ,αp,β1, . . . ,βq}, which indicates that
dim(S1 + S2) ≤ p+ q.

On the basis of Lemma 1, 2 and 3, we show the proof of
Theorem 3 below.

THEOREM 3
Given any f = (f1, . . . , fm), if each fi has at least one
effective subspace Vi ⊆ RD with dimension di such that Vi
is orthogonal to Vj for any i 6= j ∈ {1, . . . ,m}, then f has
the M-effective dimension ϑe ≤

∑m
i=1 di.

Proof. If each fi has the S-effective dimension, we have that
there exist subspaces V1, . . . ,Vm ⊆ RD such that Vi is the
effective subspace of fi, where i = 1, . . . ,m. That is to say,
for any x ∈ RD and each i = 1, . . . ,m, fi(x) = fi(x

(i)
e +

x
(i)
c ) = fi(x

(i)
e ), where x(i)

e ∈ Vi and x(i)
c ∈ V⊥i ⊆ RD.

Since the sum of linear subspaces is also a linear subspace,
we consider the linear subspace V = V1 +V2 + · · ·+Vm ⊆
RD. Let V⊥ denote the orthogonal complement subspace of
V . We have that V+V⊥ = V1+V2+ · · ·+Vm+V⊥ = RD.
Since Vi is orthogonal to Vj for any i 6= j ∈ {1, . . . ,m},
given any x ∈ RD, let xe =

∑m
i=1 x

(i)
e ∈ V , then x = xe+

xc, where xc ∈ V⊥. To prove the theorem, it is sufficient to
prove that f(x) = f(xe), i.e., fi(x) = fi(xe) for each
i = 1, . . . ,m.

Without loss of generality, we only prove the case when
i = 1, since the proof procedure for i = 2, . . . ,m is as same
as that for i = 1. For f1 with effective subspace V1, on the
one hand, we have that f1(x) = f1(x

(1)
e ), where x(1)

e ∈ V1.
On the other hand, since V⊥ is the orthogonal complement
of V = V1+V2+· · ·+Vm, V⊥ = (V1+V2+· · ·+Vm)⊥. By
Lemma 1, we know that V1 is orthogonal to V⊥. Under the
condition that V1 is orthogonal to Vj for any j = 2, . . . ,m,
we have that V1 is orthogonal to V2+ · · ·+Vm+V⊥. Since
V1+V2+ · · ·+Vm+V⊥ = RD, by Lemma 2, we know that
V⊥1 = V2 + · · · + Vm + V⊥. Therefore,

∑m
i=2 x

(i)
e ∈ V⊥1

and f1(xe) = f1(x
(1)
e +

∑m
i=2 x

(i)
e ) = f1(x

(1)
e ). To sum

up, we have that f1(x) = f1(xe) and the same conclusion
holds when i = 2, . . . ,m.

Therefore, V = V1 + V2 + · · · + Vm ⊆ RD is one of
the effective subspaces of f(x). By Lemma 3, we know that
dim(V) ≤

∑m
i=1 di. This proves that f has the M-effective

dimension ϑe ≤ dim(V) ≤
∑m

i=1 di.

Proof of Theorem 4
This section presents the proof of Theorem 4 in the paper.
Before presenting the proof of Theorem 4, we first show



Lemma 4 below that will be used in the poof of Theorem 4.

LEMMA 4
Given any f = (f1, . . . , fm) : RD → Rm with M-effective
dimension ϑe, and a random matrix A ∈ RD×ϑ with in-
dependent members sampled from N (0, 1) where ϑ ≥ ϑe,
then, with probability 1, for anyx ∈ RD there exists y ∈ Rϑ

such that f(x) = f(Ay).

Proof. If f has the M-effective dimension, then there ex-
ists an effective subspace V ⊆ RD of f with dimension ϑe.
Since any x ∈ RD can be decomposed as x = xe + xc,
where xe ∈ V , xc ∈ V⊥ and V⊥ is the orthogonal com-
plement of V , by the definition of M-effective subspace, we
have that f(x) = f(xe + xc) = f(xe). Thus, it is suf-
ficient to show that, with probability 1, for any xe ∈ V
there exists y ∈ Rd such that f(xe) = f(Ay). Let
Ψ ∈ RD×ϑe be a matrix whose columns form a standard
orthonormal basis of V . Thus, for any xe ∈ V , there ex-
ists c ∈ Rϑe such that xe = Ψc. Let us for now as-
sume that Ψ>A has rank ϑe. If rank(Ψ>A) = ϑe, there
must exist y ∈ Rϑ such that (Ψ>A)y = c, because
rank(Ψ>A) = rank([Ψ>A, c]). The orthonormal projec-
tion ofAy onto V is given by ΨΨ>Ay = Ψc = xe. Thus,
Ay = xe + x̃, where x̃ ∈ V⊥ since xe is the orthonormal
projection of Ay onto V . Since V is the effective subspace
of f , we have f(Ay) = f(xe + x̃) = f(xe). At last, we
can verify that rank(Ψ>A) = ϑe with probability 1 directly
with the same arguments in Theorem 1.

Let g(y) = f(Ay) = (f1(Ay), . . . , fm(Ay)), where
y ∈ Rϑ with ϑe ≤ ϑ ≤ D. Based on Lemma 4, we prove
that, with probability 1, the optimal Pareto front of g(y) is as
same as that of f(x) and the optimal Pareto set of f(x) can
be recovered from that of g(y), i.e., optimal Pareto front and
optimal Pareto set preservation. Denote the optimal Pareto
set of f , g as PSf ⊆ RD,PSg ⊆ Rϑ, and denote the opti-
mal Pareto front of f , g as PFf ,PFg ⊆ Rm, respectively.

THEOREM 4
Given any f = (f1, . . . , fm) : RD → Rm with M-effective
dimension ϑe, then, with probability 1, we have that {Ay |
y ∈ PSg} ⊆ PSf and PFg = PFf .

Proof. For any Ay ∈ {Ay | y ∈ PSg}, there exists no
other solution in Rϑ which dominates y. If Ay /∈ PSf ,
then there must exist x′ ∈ RD such that x′ ≺f Ay. By
Lemma 4, we know that, with probability 1, there exists y′ ∈
Rϑ such that g(y′) = f(Ay′) = f(x′). Since g(y) =
f(Ay), we have that y′ ≺g y, which make a contradiction.
Therefore, Ay ∈ PSf and {Ay | y ∈ PSg} ⊆ PSf with
probability 1.

On the one hand, since g(y) = f(Ay) ∈ Rm and
{Ay | y ∈ PSg} ⊆ PSf with probability 1, we have that
PFg ⊆ PFf with probability 1. On the other hand, given
any z ∈ PFf , there exists x ∈ PSf such that f(x) = z.
By Lemma 4, we know that, with probability 1, there ex-
ists ỹ ∈ Rϑ such that g(ỹ) = f(Aỹ) = f(x). Therefore,
g(ỹ) = z with probability 1. If ỹ /∈ PSg , there must ex-
ist ŷ ∈ Rϑ such that ŷ ≺g ỹ, and thus g(ŷ) = f(Aŷ) is

strictly better than g(ỹ) = z, which contradicts the condi-
tion of z ∈ PFf . Therefore, ỹ ∈ PSg . Now, we get that
z ∈ PFg and PFf ⊆ PFg with probability 1. To sum up,
PFg = PFf with probability 1.

Proof of Theorem 5
This section presents the proof of Theorem 5 in the paper.

THEOREM 5
Given any f = (f1, . . . , fm) : RD → Rm with M-effective
dimension ϑe, assume thatM can find the PSf and PFf

with time complexityO(φ(D,m)), then, with probability 1,
ReMO equipped with the same algorithm M can find the
PSf and PFf with time complexity O(φ(ϑ,m)), where
φ(d,m) is a monotone increasing function with respect to
the dimension of solution space d.

Proof. Since M can find the PSf and PFf of f with
time complexityO(φ(D,m)), from the procedure of ReMO
as depicted in Algorithm 1 in the paper, we have that M
can find the PSg and PFg of g with time complexity
O(φ(ϑ,m)).

By Theorem 4, i.e., {Ay | y ∈ PSg} ⊆ PSf and
PFg = PFf with probability 1, we can conclude that, with
probability 1, ReMO equipped with M can find the PSf
and PFf of f with time complexity O(φ(ϑ,m)).

Proof of Theorem 6
This section presents the proof of Theorem 6 in the paper.
Before presenting the proof of Theorem 6, we first show
Lemma 5 below that will be used in the poof of Theorem 6.
A matrix M ∈ RD×D is called the orthogonal matrix if
and only if MM> =M>M = I , where I is the identity
matrix.

LEMMA 5
Given an orthogonal matrixM ∈ RD×D, letA ∈ RD×ϑ be
a random matrix with independent members sampled from
N (0, 1), then, the members ofM−1A are also i.i.d. random
variables sampled from N (0, 1).

Proof. Since M ∈ RD×D is an orthogonal matrix, namely,
MM> = M>M = I , we have that M−1 = M>. It is
sufficient to prove that the members of M>A are also i.i.d.
random variables sampled from N (0, 1).

Let mi,j and ai,j denote the members that lie in the i-th
row and j-th column of M> and A respectively, then the
member lying in the i-th row and j-th column of M>A

is
∑D

k=1mi,kak,j . Since A is a random matrix with inde-
pendent members sampled from N (0, 1),

∑D
k=1mi,kak,j is

also a random variable sampled from Gaussian distribution
with expectation

E[
D∑

k=1

mi,kak,j ] =

D∑
k=1

mi,kE[ak,j ] = 0,

and variance

V[
D∑

k=1

mi,kak,j ] =

D∑
k=1

m2
i,kV[ak,j ] =

D∑
k=1

m2
i,k = 1,



where the last equality is by the property of orthogonal ma-
trix. Consider another member

∑D
k=1mp,kak,q that lies in

the p-th row and q-th column of M>A, where p 6= i or
q 6= j. If p = i and q 6= j, by the definition of A, we
know that

∑D
k=1mi,kak,j and

∑D
k=1mp,kak,q are indepen-

dent. If p 6= i and q = j, consider the covariance between∑D
k=1mi,kak,j and

∑D
k=1mp,kak,j

Cov[
D∑

k=1

mi,kak,j ,

D∑
k=1

mp,kak,j ]

= E[(
D∑

k=1

mi,kak,j) · (
D∑

k=1

mp,kak,j)]

− E[
D∑

k=1

mi,kak,j ] · E[
D∑

k=1

mp,kak,j ]

= E[(
D∑

k=1

mi,kak,j)(

D∑
k=1

mp,kak,j)]

= E[
D∑

k=1

mi,kmp,ka
2
k,j ]

=

D∑
k=1

mi,kmp,k = 0,

where the third equality is by E[ak,jak′,j ] = E[ak,j ] ·
E[ak′,j ] = 0 for k 6= k′, the fourth equality is by
E[a2k,j ] = V[a2k,j ] + E2[ak,j ] = 1, and the last equality is
by the property of orthogonal matrix. Since

∑D
k=1mi,kak,j

and
∑D

k=1mp,kak,q are both Gaussian random variable,∑D
k=1mi,kak,j and

∑D
k=1mp,kak,q are independent, which

proves the lemma.

On the basis of Lemma 5, we show that ReMO possesses
the property of rotation perturbation invariance.

THEOREM 6
Given any f = (f1, . . . , fm) : RD → Rm with M-effective
dimension ϑe and an orthogonal matrix M ∈ RD×D, let
fM (x) = f(Mx) = (f1(Mx), · · · , fm(Mx)) denote
the rotation perturbation of f , if we apply ReMO to opti-
mize fM , ReMO can still find the PSf and PFf of f with
probability 1.

Proof. During the procedure of ReMO optimizing fM ,
we use the random matrix M−1A ∈ RD×ϑ instead of
A. By Theorem 2, Theorem 4 and Lemma 5, we know
that ReMO can find the PSfM

and PFfM
of fM with

probability 1. Furthermore, noticing that fM (M−1Ay) =
f(MM−1Ay) = f(Ay), we have that PSfM

= PSf
and PFfM

= PFf , which proves the theorem.

Additional Experimental Results
On Functions with M-Effective Dimensions
We verify the effectiveness of ReMO empirically on three
high-dimensional bi-objective (i.e., m = 2) optimization

testing functions ZDT10, ZDT20 and ZDT30 with low M-
effective dimensions. They are constructed based on the first
three bi-objective functions ZDT1, ZDT2 and ZDT3 intro-
duced in (Zitzler, Deb, and Thiele 2000). The dimensions
of ZDT1, ZDT2 and ZDT3 are all 30. ZDT10, ZDT20 and
ZDT30 are constructed to meet the M-effective dimension
assumption as follows: ZDT1, ZDT2 and ZDT3 are embed-
ded into a D-dimensional solution space X ⊆ RD with
D � 30. The embedding is done by firstly adding addi-
tional D − 30 dimensions, but the additional dimensions
have no effects on the function value; secondly, the embed-
ded functions are rotated via an orthogonal matrix. Thus, the
dimensions of ZDT10, ZDT20 and ZDT30 are D while their
M-effective dimensions are 30. For these bi-objective testing
functions, ZDT10 has a convex optimal Pareto front, ZDT20

has a non-convex optimal Pareto front, and ZDT30 has a dis-
continuous optimal Pareto front. The second objective func-
tions of ZDT10, ZDT20 and ZDT30 are all non-convex.

For the practical issues in experiments, we set the high-
dimensional solution space X = [−1, 1]D and the low-
dimensional solution space Y = [−1, 1]ϑ, instead of RD and
Rϑ. To implement the MO algorithm in Y , since there may
exist y′ ∈ Y s.t.Ay′ /∈ X and thus f cannot be evaluated at
point Ay′. To address this problem, we use Euclidean pro-
jection, i.e., Ay′ is projected to X when it is outside X by
PX (Ay

′) = argminx∈X ‖x−Ay′‖2. We employ two well-
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Figure 1: Comparing the approximate optimal Pareto front
each algorithm found with dimension D = 10000.



known derivative-free MO optimization methods to mini-
mize ZDT10, ZDT20 and ZDT30: non-dominated sorting
genetic algorithm II (NSGA-II) (Deb et al. 2002), and multi-
objective evolutionary algorithm based on decomposition
(MOEA/D) (Zhang and Li 2007). The implementations of
them are both by their authors. When applying the ran-
dom embedding technique to these optimization methods,
we denote them by the prefix “Re-”. Thus, we have com-
binations including Re-NSGA-II and Re-MOEA/D. NSGA-
II and MOEA/D are compared with Re-NSGA-II and Re-
MOEA/D on these three testing functions with dimension
D = 10000(� ϑe = 30). We set the function evalua-
tion budget n = 0.3D = 3000 and the upper bound of
M-effective dimension ϑ = 50 > ϑe = 30. The approxi-
mate optimal Pareto front each algorithm found for ZDT10,
ZDT20 and ZDT30 is depicted in Figure 1.

Figure 1 shows that, for high-dimensional MO func-
tions with low M-effective dimensions, the performance
of directly applying derivative-free MO methods in high-
dimensional solution space is unsatisfying. Meanwhile,
ReMO that enables optimization to be implemented in the
low-dimensional solution space has the better performance
on all the testing functions whenever we choose Re-NSGA-
II or Re-MOEA/D, which implies that ReMO is effective
and its effectiveness is general. To be specific, Figure 1 re-
flects the effectiveness of ReMO from two aspects. First,
ReMO can find the significantly higher-quality solutions on
both objectives, especially in (a), (c), (d), (e), since some
solutions found by MO are dominated by those of ReMO.
Second, the distribution of approximate optimal Pareto front
found by ReMO is more diverse and uniform, especially in
(a), (c), (e), (f), which means that ReMO can find the better
solutions that reach different optimal balances of the objec-
tive functions.
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