Multi-Fidelity Automatic Hyper-Parameter Tuning via
Transfer Series Expansion *

Yi-Qi Hu'?, Yang Yu', Wei-Wei Tu?, Qiang Yang®, Yugiang Chen?, Wenyuan Dai”
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
24Paradigm Inc., Beijing, China
3Hong Kong University of Science and Technology, Hong Kong, China
{huyq,yuy } @lamda.nju.edu.cn, tuweiwei @4paradigm.com

Abstract

Automatic machine learning (AutoML) aims at automatically
choosing the best configuration for machine learning tasks.
However, a configuration evaluation can be very time con-
suming particularly on learning tasks with large datasets. This
limitation usually restrains derivative-free optimization from
releasing its full power for a fine configuration search us-
ing many evaluations. To alleviate this limitation, in this pa-
per, we propose a derivative-free optimization framework for
AutoML using multi-fidelity evaluations. It uses many low-
fidelity evaluations on small data subsets and very few high-
fidelity evaluations on the full dataset. However, the low-
fidelity evaluations can be badly biased, and need to be cor-
rected with only a very low cost. We thus propose the Trans-
fer Series Expansion (TSE) that learns the low-fidelity correc-
tion predictor efficiently by linearly combining a set of base
predictors. The base predictors can be obtained cheaply from
down-scaled and experienced tasks. Experimental results on
real-world AutoML problems verify that the proposed frame-
work can accelerate derivative-free configuration search sig-
nificantly by making use of the multi-fidelity evaluations.

Introduction

Machine learning is an important subfield of artificial intel-
ligence which discovers knowledge via experience. During
the past decades, machine learning has achieved great suc-
cesses in many applications, e.g., computer vision (Bradski
1998), recommender system (Broder 2008), financial mar-
ket analysis (Ball 2013), and so on. But the model con-
figuration with best performance has to be customized for
different learning problems. And it crucially relies on hu-
man machine learning experts. Lack of machine learning ex-
pert limits the range of machine learning applications. Au-
tomatic machine learning (AutoML) is proposed to choose
model configuration without any human participation. Re-
cently, AutoML is often considered as the combined algo-
rithm selection and hyper-parameter optimization (CASH)

*This work is supported by the National Key R&D Pro-
gram of China (2017YFB1001903), NSFC (61876077), Jiangsu
SF (BK20160066), and Collaborative Innovation Center of Novel
Software Technology and Industrialization. Yang Yu is the corre-
sponding author. This work is partially done when Yi-Qi Hu was
an intern in 4Paradigm Inc.

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problem (Feurer et al. 2015). Some derivative-free optimiza-
tion methods (Liu et al. 2006; Bergstra and Bengio 2012;
Shahriari et al. 2015; Hansen, Miiller, and Koumoutsakos
2003; Hutter, Hoos, and Leyton-Brown 2011; Munos 2011;
Bergstra et al. 2011; Yu, Qian, and Hu 2016) have been ap-
plied to solve this problem successfully. Further more, some
open-source tools (Feurer et al. 2015; Thornton et al. 2013)
based on those methods make application of AutoML easier.

Despite of the preliminary success on AutoML appli-
cations, derivative-free optimization still suffers low effi-
ciency issue. Without gradient, derivative-free optimization
explores search space by evaluating samples. But evalua-
tions on AutoML are extremely expensive with k-fold cross
validation as criterion. For limited time consuming, a small
number of evaluations makes it impossible to get a good
enough model configuration. Some previous works (Lin-
dauer and Hutter 2018; Hu, Yu, and Zhou 2018) were pro-
posed to reduce the evaluation requirement of derivative-free
optimization. On the other hand, some methods were pro-
posed to make evaluations cheaper. One of the most popular
method is multi-fidelity optimization (March and Willcox
2012; Fernandez-Godino et al. 2016). It decreases total eval-
uation cost by combing many cheap low-fidelity evaluations
and few expensive high-fidelity evaluations. Multi-fidelity
optimization has been deeply studied on surrogate model op-
timization such as Bayesian optimization (Huang et al. 2006;
Kandasamy et al. 2016; 2017). Few works (Sen, Kandasamy,
and Shakkottai 2018) involve other optimization methods.

In this paper, we propose a general framework to extend
multi-fidelity optimization to any derivative-free optimiza-
tion methods. It should be noticed that AutoML follows
multi-fidelity setting naturally by evaluating model config-
uration on small data subset. But evaluation on a part of
dataset is badly biased. Thus, it is necessary to fix the biases
for low-fidelity evaluations. In this work we propose to learn
a predictor ® to fix the bias with some observations of low
and high-fidelity evaluations. Because of high cost, lack of
high-fidelity observations makes it hard to learn the predic-
tor. To tackle this issue, we propose Transfer Series Expan-
sion (TSE) method. TSE linearly combines a series of base
predictors to W. The base predictors can be obtained from
down-scaled and experienced tasks. Because base predictors
contain meta knowledge, they can be even transfered among
different AutoML problems. From experiments on Light-

GBM (Ke et al. 2017) hyper-parameter tuning tasks, TSE
can effectively fix the biases with only few high-fidelity ob-
servations. Multi-fidelity optimization with TSE shows good
performance on most of AutoML problems.

The rest of five sections present the background & related
works, problem setting, proposed method, experiments and
conclusion.

Background & Related Works

Model configuration is often considered as model selec-
tion (Brazdil, Soares, and Da Costa 2003; Chapelle, Vap-
nik, and Bengio 2002; Maron and Moore 1994; Zhao and
Yu 2006) and hyper-parameter tunning (Bergstra and Ben-
gio 2012; Snoek, Larochelle, and Adams 2012). Let A € A
denote a learning model, where A denotes the model space.
Let 64 € A4 denote a hyper-parameter setting of A, where
A 4 is the hyper-parameter space. k-fold cross validation is
a popular criterion of model configuration:

k
f(Aa (sA) = %Zﬂ (A76A7DETaiH7D;_/alid) ,

i=1

where £(-) is the loss function, D, DYalid denote the train
and validation dataset in the ¢-th fold. In this paper, we focus
on hyper-parameter optimization problem for algorithm A:
07 = argming, cn, fa(64).

Because of non-differentiable, non-convex and non-
continuous properties of AutoML formulation, it is usually
solved by derivative-free optimization. Derivative-free op-
timization is designed for solving sophisticated problems.
We consider the minimization problem which is to find
x* € X st. Ve € X : f(x*) < f(x), where X denotes
the compact search space, f : X — R denotes the objec-
tive function. In constraint, derivative-free optimization can
only query f but can’t get any other optimization informa-
tion. Popular derivative-free optimization methods such as
Bayesian optimization (Shahriari et al. 2015), evolutionary
optimization (Hansen, Miiller, and Koumoutsakos 2003),
classification-based optimization (Yu, Qian, and Hu 2016;
Hu, Qian, and Yu 2017), etc. are model-based. For examples,
Bayesian optimization models the search space by Gaussian
process (GP) or tree-structure (Hutter, Hoos, and Leyton-
Brown 2011). And classification-based optimization learns
a classifier to model search space.

Derivative-free optimization always suffers from effi-
ciency issue. It means that many evaluations will be spent
to get a good solution. However, evaluation in AutoML is
extremely expensive. Some previous works were proposed
to improve the sample efficiency. In (Lindauer and Hut-
ter 2018), the authors proposed warm start techniques. It
makes the optimization start from good enough initialization
points and models. (Hu, Yu, and Zhou 2018) proposed an
experienced directional model which was learned from the
previous optimization processes to predict the optimization
direction. On the other hand, the methods which decrease
the evaluation cost is attacking the researchers’ attention.
The multi-fidelity optimization (March and Willcox 2012;
Fernandez-Godino et al. 2016) is one of them. Multi-fidelity
setting is applicable where a much cheaper approximated

evaluation is available. Most of multi-fidelity optimization
methods are studied on Bayesian optimization. Recently,
(Sen, Kandasamy, and Shakkottai 2018) extended multi-
fidelity step to a tree-search based derivative-free optimiza-
tion DOO (Munos 2011).

Focusing on big data hyper-parameter tuning tasks, eval-
vation on full dataset is high-fidelity. Evaluation on a
small data subset is low-fidelity. It is biased, but just only
takes seconds to minutes. According to PAC learning theo-
rem (Valiant 1984), the evaluation will approach real gen-
eralization performance when the training dataset is large
enough. Thus, the low-fidelity evaluation is too coarse to
apply on optimization directly. In this paper, we propose a
general multi-fidelity optimization framework with transfer
series expansion (TSE). Based on this framework, optimiza-
tion with corrected low-fidelity evaluations is practical.

Problem Setting

In this section, we will introduce the multi-fidelity optimiza-
tion problem setting, and formulate multi-fidelity optimiza-
tion on hyper-parameter tunning problems.

Multi-fidelity optimization
In multi-fidelity optimization, samples can be evaluated in
several different levels. For the simplest situation, there can
be two evaluation functions. One function outputs precise
evaluation values, e.g., from the full data set, but is quite
time-consuming. This is called as the high-fidelity evalua-
tion, denoted as fy : X — R. Meanwhile, the other func-
tion is much cheaper to calculate, e.g., from a data subset,
but usually is badly biased. We call this as low-fidelity eval-
uation, denoted as f;, : X — R. The motivation of multi-
fidelity optimization is to use fz, many times instead of f,
so that the total evaluation cost can be reduced. But because
f1 is biased, for each x € X, the simple regret is used to
measure the residual between fy and fr:

R(z) = fu(x) — fr(@).
From the simple regret formulation, we can see that, once
R is available, we can avoid evaluating fz by applying
fr + R as a substitution. When we have collected a set
of coupled low-fidelity/high-fidelity samples, we can make
a dataset D = {(x1,y1), (X2,y2), - - -, (Tn,yn)} about the
low-fidelity and the simple regret, where y; = R(x;). It is
easy to see that the simple regret function R can be learned
by a supervised regression learner ¥ from D. Because of the
high evaluation cost of f7, we can only able to collect a few
high-fidelity evaluations in multi-fidelity optimization. The
number of instances in D is very small. Therefore, the chal-
lenge of this work is to learn an accurate residual predictor
from a very small dataset.

Multi-fidelity on hyper-parameter tuning

Hyper-parameter tuning problem meets multi-fidelity setting
perfectly. In machine learning process, dataset D is often
split as training set D™ validation set D' and testing
set D", For a hyper-parameter configuration &, the high-
fidelity evaluation can be defined as:

fu(8) = L(4, psain Dvalid).

When D is a huge dataset, evaluation of f is expensive. If
we train learning model on a small subset of D, evaluation
turns to be very cheap. Let DS*® denote a random chosen
subset of D, where r is the subsample ratio. Let 0 < rp, < 1
denote a small subsample ratio. Low-fidelity evaluation can
be defined as:

fL(é) — ﬁ((;, Dsub IDvalid).

L)

With fg and fr, hyper-parameter tuning problem follows
multi-fidelity optimization setting. Thus, the core task is
how to learn the residual predictor ¥ with some observa-
tions of fy.

Proposed method

We propose a general multi-fidelity optimization framework,
which can be easily applied into any derivative-free op-
timization methods. With some high-fidelity observations,
the main idea of proposed framework is to learn a resid-
ual predictor to correct the biases of the low-fidelity eval-
uations during optimization. Because of few high-fidelity
evaluations, it is hard to train a accurate predictor. To tackle
this issue, we propose the Transfer Series Expansion (TSE)
method. TSE trains predictor by transferring a series of
base predictors. Let W denote the final predictor and ¢ =
{t1,1, ..., } denote a series of base predictors. Linear
combination is used to expand) to .

We will present our proposed method as: multi-fidelity
optimization framework, details of TSE, acquisition of base
predictors and discussion about why TSE works.

Multi-fidelity optimization framework

Previous works on multi-fidelity optimization often rely
upon some special optimization structure. In our work, we
design a general multi-fidelity framework for any derivative-
free optimization methods. We focus on minimization prob-
lem. The key step of derivative-free optimization is how
to generate a new sample x. Let Samplep denote it,
where O is a derivative-free optimization method. Most of
the derivative-free optimization methods are model-based.
Sample step includes the processes of modeling on (X, f)
and sampling based on model. Different methods have dif-
ferent Sample steps. In multi-fidelity optimization, the
low-fidelity evaluation f;, is introduced to decrease the total
evaluation cost. The proposed framework learns a predictor
U to estimated the residual between high and low-fidelity
evaluations. And then, optimization on the corrected evalu-
ations (f;, + V) can find a good sample which performance
is still good on high-fidelity evaluation.

General multi-fidelity derivative-free optimization frame-
work is Algorithm 1. X is a sample set. Each x € Xpy
is evaluated by fg. y is a set of regression target accord-
ing to X . At the beginning, Xy and y are empty (line
1). U is a predictor to estimate the residual between fy and
fr. At the beginning (line 2), ¥ can only output 0, because
of no learning information. X, is a set to store all samples
that method generates. Initialization step (line 3) is to sample
several solutions from &" uniformly. In each iteration, firstly,
the corrected low-fidelity evaluation (f + W) is considered

Algorithm 1 Multi-Fidelity Optimization Framework

Input:
X': The optimization space;
fr, fr: Low and high-fidelity evaluation functions;
Tr: The budget of high-fidelity evaluations;
Tr: The low-fidelity evaluation times between high-
fidelity evaluations;
Initialization: Initialization step;
Sampley: The sample step in optimization method O;
Find: Select a sample to be high-fidelity evaluated;
Train: Predictor training process.
Procedure:
I Xg,y=10,0
2: ¥ = predictor Initialization, V& € X : () =0
3: Xy =Initialization(X)
4: forty = 1to Ty do

5 fort;, = 1to T, do

6: x = Sampley (X, fr + P)
7 Xr=XpUx

8 end for

9: ' =Find(Xyp)

100 ' = fu(2')

I XHay:XHuw/7yU(’yl_fL($l))
122 U =Train(Xpy,y)

13: end for

14: return argminge x, fu(x)

as the objective function. And 77, samples is generated in
this loop (line 5 to 8). And then, a sub-process Find chooses
a sample to be evaluated by fx (line 9 to 10). With the high-
fidelity evaluated sample, framework constructs the regres-
sion dataset (line 11) to re-train the predictor ¥ (line 12).
With the growth of ¢z, the W is approaching to the real sim-
ple regret function. Optimization on corrected low-fidelity
evaluation is similar to which on high-fidelity function. At
last, algorithm returns the best-so-far sample (line 14).

Transfer Series Expansion (TSE)

In Algorithm 2, the instance number of dataset for training
¥ is small because of the high evaluation cost of ff;. TSE is
proposed to make W converge when training dataset is small.
We assume that there are a series of pre-trained base predic-

tors ¢ = {t1,%s,..., ¥, }. A simple way to aggregate the
base predictors is linear combination:

k
U(x) = Zwﬂ/h‘(-’ﬂ) +b.

w = {wi;ws;...;wg; b} denotes the weight vector of base
predictors. And D = {(x1,y1), (€2,¥2),- -, (@m,Ym)}
denotes the raw regression training dataset, where y; =
R (x;). For each «;, after predicting by each base
predictor, the new instance for linear combination is
zi = Avi(®@i), o(xi), ... Yp(xi), 1} Let Z =
{z1; z2;...; zm } denote the input matrix for training linear
combination, and y = {y1;y2; ... ; Ym denote the learning
target. With the mean squared error, the linear combination

of base predictors can be defined:
w* = argmin (y — Zw)" (y — Zw).

If the Z is a full-rank matrix, w* = (ZTZ)_1 Z%y. So

that, to learn the combination predictor W, firstly, we use the
base predictors to predict on D. And then, the combination
regression dataset Z can be got. Secondly, ¥ can be trained
on Z with a close-form solution. On training and prediction
phases, linear combination has the closed-form solution and
the regression dataset is small. Thus, it has high-efficiency
to train the linear combination predictor.

The linear combination in TSE makes U have simple
structure and easy to train. Another important part of TSE
is the set of base predictors. If base predictor contains meta-
knowledge of optimization, it can make ¥ converge faster
even when training dataset is small. Thus, the next step is
how to get the base predictors.

Acquisition of base predictors

In fact, base predictor is a mapping from search space to a
real number. A direct idea is training predictors on easier
and related regression problems. In this paper, we decom-
pose residual regression into some middle-level problems.
In hyper-parameter tuning problem, middle-level problem
is easy to construct by introducing middle-fidelity evalua-
tion: far(6) = L(8, D5, DY), where ry; is subsample
ratio and 0 < rp < rp < 1. The middle level prob-
lem is to estimate the residual between fj; and f;,. Because
rym < 1, evaluations on fj; are still much cheaper than
fr. We can get many middle-fidelity observations. A good
enough base predictor can be trained on middle-level regres-
sion problem. If we need to train k base predictors, there
are k middle-regression problems should be constructed
as {(stubl Dsubl) , (Dsub2 Dsub2) e, (stubk stubk)}. In

rL 0T TM™ L)T TM™ L 2T TM
addition, an extra D:f.“Lb is needed to construct the final re-

gression problem (D3P, D) So that, there are k + 1 D"
and k D;*PJE should be sampled randomly.
On a middle-level regression problem (DSUb DSUb), we

rL) Trm

will organize regression training dataset DM for). Consid-
ering derivative-free optimization property, optimization is
a searching process on optimization space. We care more
about the regression performance of samples on optimiza-
tion trajectory. So that, the instances in DM can be col-
lected by applying derivative-free optimization methods to
optimize on objective function f,;. After optimization, for
each sample 4, it will be evaluated by f7. The regression
target of & can be got by fys(8) — f(9). With the labeled
regression dataset, it is the supervised regression problem
to train . On hyper-parameter optimization problems, the
hyper-parameter space is probably discrete, categorical or
even mixed. Thus, we choose the random forest regressor as
base predictor. Because the datasets for training base predic-
tors can be collected in parallel. It will not spend much time
to train base predictors.

However, on huge datasets, accurate base predictors are
unavailable because of extremely high time-cost of f;. For
example, we tune hyper-parameters for a learning model on

Algorithm 2 Multi-Fidelity optimization with TSE
Input: (extra input than Algorithm 1)

¥ = {W1,v2,...,Y}: The base predictor set.
Procedure:
1: XHvzay: @,@,@
2 0¥ =0y

3: X;=Initialization(X)
4 (@,9) = (0, +c0)
5: fortg =1to Ty do

6 fort;, = 1to Ty, do
7: x = Samplep (XL7fL + \Ilﬁ)
8 X, =X, Ux

9: end for

10: @ = argminge x, _x, [z (®) + ¥ (2)
1: o = fu(a)

12: if+" < 4 then

13: (@,7) = (&',

14: end if

15 Xy, y=XpUa', yU(y — fr(z’)
16: Z=ZU{Y (), a(x)),..., ¢ ()}
17 w=(22)"' Z7y

18: end for

19: return (&,7)

two different datasets D; and Ds. D; is too huge to get the
base predictors. D, is a small dataset that we can get the
base predictors on it. Because the hyper-parameter space
is only defined by learning model. The regression space is
same between D; and D,. The base predictors of Dy con-
tain meta knowledge about the learning model. Thus, they
can be transfered to combine the final predictor when op-
timizing hyper-parameters on Dy. We will verify the effec-
tiveness of base predictors transfer on experiment section.

Discussion

The proposed multi-fidelity optimization framework focuses
on the evaluation phase of derivative-free optimization. Only
evaluation phase is changed in optimization. Thus, this
framework can be applied to any derivative-free optimiza-
tion methods easily. In addition, we propose the transfer
series expansion (TSE) to learn the residual predictor. Be-
cause high-fidelity evaluation is expensive, training dataset
is not big enough to learn a accurate predictor. TSE applied
a linear combination of base predictors to simplify the re-
gression model. And the base predictors make the combina-
tion predictor avoid starting from nothing. We get the base
predictors by constructing middle-level regression problems
which is related with the final regression problem. On hyper-
parameter tuning problems, middle-level regression prob-
lem is to estimate the simple regret between fy; and fr.
The base predictors are aligned by learning model. They
can be transfered among different datasets. We just focus on
the optimization local trajectory to sample regression train-
ing dataset. Thus, only few instances are enough for com-
bination predictor convergence. With precise but cheap esti-
mated evaluations as substitution, optimization can explore
more to get a better solution with affordable cost.

Experiments

We implement the proposed multi-fidelity framework with
TSE based on classification-based optimization method
SRAcOs (Yu, Qian, and Hu 2016; Hu, Qian, and Yu 2017),
and name it TSESRACOS. In this section, we apply TSES-
RACOS to tune hyper-parameters of LightGBM on some real
datasets. Comparing with other methods, five main conclu-
sions about the proposed framework that we should investi-
gate as follows:

e Optimization on corrected low-fidelity evaluations is nec-
essary. That is to say, the solution with the best low-
fidelity evaluation value is usually not best on high-
fidelity space;

e Low-fidelity evaluations can be corrected by learning a
residual predictor. In another word, the regression predic-
tor can effectively predict the residual between f5; and fr;

e We should investigate that TSE can learn a good predictor
even when regression training dataset is extremely small;

e The base predictors have transfer ability among differ-
ent datasets. It is meaningful for huge dataset hyper-
parameter tuning problem in which base predictors are
hard to obtain;

e The last but most important conclusion we have to ver-
ify is that multi-fidelity optimization with TSE can fast
the optimization process. That is to verify, when TSES-
RACOS has the same evaluation budget with high-fidelity
optimization, it can get a similar performance but spends
less time comparing with high-fidelity optimization.

We firstly show the experiment settings. And then, we ver-
ify the conclusions based on empirical result analysis.

Experiment settings

We empirically investigate the proposed method on Light-
GBM (Ke et al. 2017) hyper-parameter tuning problems. All
11 hyper-parameters in LightGBM are selected including
learning rate, number of leaves, tree depth, round number,
etc. We optimize hyper-parameters of LightGBM on 12 se-
lected datasets. The details of datasets are showed in Table 1.
Some of datasets such as Musk, HTRU2, Magic04, Adult,
Sensorless, Connect and Higgs are benchmark datasets from
UCI. Rest of them such as Credit, Miniboone, Airline,
MovieLens, Criteo come from machine learning competi-
tion. They are all real machine learning application datasets.
The size of datasets ranges from thousands to 40 million.
The subsample ratio settings are showed in Table 1 too. For
small datasets which number of instances is less then 100
thousand, the low-fidelity subsample ratio rz, is 0.05, and
the middle-fidelity subsample ratio rj; is 0.2. But for big
datasets, r;, and rj; depend on dataset size.

We propose other three compared methods besides TSES-
RAcos. First, TSETRANS is the TSESRACOS but which
base predictors are transfered from other dataset. In this sec-
tion, the base predictors of TSETRANS are all transfered
from Miniboone. Second, we replace the linear combination
predictor with random forest regressor, and name it RFS-
RAco0S. Third, we optimize hyper-parameter setting only on

Table 1: The information of datasets. |D| means the number
of instances in dataset D. The validation datasets are con-
structed by sampling 10% instances from D"". v, and 7y

are subsample ratios of Di“Lb and Df}j};.

Dataset | Dtrain| | D rL M
Musk 4,991 2,083 0.05 0.2
HTRU2 14,318 3,580 0.05 0.2
Magic04 15,215 3,805 0.05 0.2
Credit 24,000 6,000 0.05 0.2
Adult 32,561 16,281 0.05 0.2
Sensorless 40,883 17,525 0.05 0.2
Connect 47,504 20,053 0.05 0.2
Miniboone 104,052 26,012 0.01 0.04
Airline 773,469 215,358 0.005 0.02
Higgs 10,000,000 1,000,000 0.001 0.004
MovieLens 16,000,210 4,000,053 0.001 0.004
Criteo 40,000,000 4,840,617 0.0005 0.002

the low-fidelity evaluation f1, and name it LF-ONLY. In ad-
dition, we only optimize on the high-fidelity evaluation fy,
and name it HF-ONLY. HF-ONLY is the upper bound of
compared methods. Because of high time-cost, HF-ONLY
are only used on some small datasets. For all five meth-
ods, the base derivative-free optimization method is SRA-
C0S. TSESRAC0S, RFSRACOS and TSETRANS follow the
proposed multi-fidelity optimization framework.

The evaluation criterion of experiments is AUC
score (Fawcett 2006). For multi-fidelity optimization
methods, we get one high-fidelity evaluation for every 100
low-fidelity evaluations. That is to say, 7, = 100. The
total high-fidelity evaluation budget is 50 (T'y = 50) in
optimization. Thus, there are all 5000 low-fidelity evalu-
ations and 50 high-fidelity evaluations on a multi-fidelity
optimization process. For TSESRACOS, TSETRANS and
RFSRACOS, there are 5 base predictors on combination
predictor. For LF-ONLY, the low-fidelity evaluation budget
is 5000 as the same as it in multi-fidelity optimization.
For HF-ONLY, we test it on small datasets which size is
less than 100,000 (Musk, HTRU2, Magic04, Credit, Adult,
Sensorless, Connect, Miniboone) with 5000 evaluation
times. On big datasets (Airline, Higgs, MovieLens, Criteo),
we early stop them when the time they spend is more
than three times that TSETRANS spends (HF-ONLY*).
For TSETRANS, the base regressors are transfered from
Miniboone. For huge datasets (MovieLens, Criteo), even
middle-fidelity evaluation is unavailable. Thus, we didn’t
test TSESRACOS, but apply TSETRANS on them directly.

Empirical analysis

Table 2 shows the AUC score and running wall-clock time
of compared methods on each dataset. Especially, for TSES-
RACOS, time cost of training base predictors is added in the
total running time. Comparing TSESRACOS and LF-ONLY,
Figure 1 illustrates the AUC score curves with running time
within limited time zoom (LF-ONLY gets). To investigate
the effectiveness of TSE, we compare the mean regression

Table 2: The AUC performance and wall-clock time of compared methods. LF-Eval and HF-Eval mean the best solution’s low
and high-fidelity evaluation values. Test means the generalization performance of best solution. The bold number means the
best AUC score among compared methods. On TSETRANS, the base predictors of Miniboone are transfered to other datasets.

Thus, results of TSETRANS on Miniboone are empty. HF-ONLY* means the early-stopped HF-ONLY on huge datasets.

Dataset Method LF-Eval HF-Eval Test Time \ Dataset Method LF-Eval HF-Eval Test Time
TSeESRacos 0.9018 0.9991 0.9977 0:07:31 TSeSRacos 0.9733 0.9841 0.9632 0:02:44

TSETRANS 0.9204 0.9991 0.9985 0:07:16 TSETRANS 0.9650 0.9758 0.9636 0:01:41

Musk RFSRACOS 0.9220 0.9990 0.9980 0:06:40 | HTRU2 RFSRACOS 0.9773 09814 0.9616 0:01:27
LF-ONLY 0.9294 0.9989 0.9974 0:05:46 LF-ONLY 0.9750 0.9791 0.9613 0:02:11

HF-ONLY - 1.0000 0.9978 1:49:08 \ HF-ONLY - 0.9871 0.9645 0:08:48
TSeSRacos 0.8859 0.9446 0.9236 0:04:40 TSeSRacos 0.6407 0.7451 0.7612 0:03:46

TSETRANS 0.9013 0.9438 0.9227 0:03:04 TSETRANS 0.6654 0.7432 0.7531 0:01:36

Magic04 RFSRACOS 0.8994 0.9387 0.9225 0:02:16 | Credit RFSRAcCOS 0.6889 0.7404 0.7579 0:01:21
LF-ONLY 0.9092 0.9296 0.9201 0:02:45 LF-ONLY 0.7270 0.7324 0.7531 0:00:59

HF-ONLY - 0.9495 0.9203 0:20:06 \ HF-ONLY - 0.7554 0.7643 0:04:26
TSESRACOS 0.8961 0.9261 0.9219 0:04:20 TsSESRAcos 0.9974 0.9999 0.9999 0:33:29

TSETRANS 0.8896 0.9224 0.9206 0:02:17 TSETRANS 0.9973 0.9999 0.9999 0:21:33

Adult RFSRACOS 0.9086 0.9190 09181 0:02:37 | Sensorless RFSRACOS 0.9978 0.9999 0.9998 0:54:30
LF-ONLY 0.9070 09157 0.9156 0:02:37 LF-ONLY 0.9973 0.9997 0.9997 0:19:38

HF-ONLY - 0.9281 0.9234 0:26:02 \ HF-ONLY - 0.9999 0.9999 2:23:44
TSeSRacos 0.8604 0.9318 0.9374 0:11:02 TSESRAacos 0.9664 0.9789 0.9785 0:27:53

TSETRANS 0.8650 0.9319 0.9353 0:11:14 TSETRANS - - - -

Connect RFSRAcCOS 0.8630 0.9284 0.9330 0:09:15 | Miniboone RFSRACOS 0.9674 0.9787 0.9781 0:12:44
LF-ONLY 0.8684 0.9219 0.9272 0:10:32 LF-ONLY 0.9694 09779 0.9771 0:14:54

HF-ONLY - 0.9367 0.9404 1:20:28 \ HF-ONLY - 09814 0.9797 0:51:00
TSeSRacos 0.6392 0.6801 0.8893 0:44:06 TseSRacos 0.7743 0.8037 0.8023 14:09:18

TSETRANS 0.6462 0.6674 0.8696 0:40:31 TSETRANS 0.7770 0.8046 0.8044 11:37:50

Airline RFSRAcCOS 0.6519 0.6674 0.8762 0:35:55 | Higgs RFSRAcCOs 0.7847 0.8025 0.8035 12:57:22
LF-ONLY 0.6566 0.6600 0.8693 0:41:29 LF-ONLY 0.7872 0.7991 0.7988 8:53:33

HF-ONLY* - 0.6900 0.8961 2:00:00 \ HF-ONLY* - 0.8145 0.8140 45:00:00

TSETRANS 0.6344 0.6682 0.6476 11:53:56 TSETRANS 0.7258 0.7513 0.7496 62:00:25

MovieLen RFSRACOS 0.6444 0.6543 0.6591 11:35:42 Crit RFSRACOS 0.7289 0.7454 0.7496 65:41:30
OVIELENS |k ONLY 0.6443 0.6477 0.6361 11:10:26 o LF-ONLY 0.7298 0.7480 0.7480 60:52:23
HF-ONLY* - 0.6767 0.6591 36:00:00 \ HF-ONLY* - 0.7652 0.7584 180:00:00

error of TSESRACOS and RFSRACOS in each regression
step, and the results are shown in Figure 2. We will verify
conclusions based on those results.

Low-fidelity evaluation correction is necessary. From
Table 2, LF-ONLY usually gets the best low-fidelity evalu-
ation values. However, corresponding high-fidelity evalua-
tions are not good. On Figure 1, comparing the same color
solid and dash lines, it is easy to discover that a sample
with good low-fidelity evaluation value probably has the bad
high-fidelity evaluation value. Focusing on blue solid line,
high-fidelity curve is extremely unstable during optimizing
on low-fidelity evaluations. Thus, It is necessary to correct
the low-fidelity evaluation in optimization.

Correction by regression predictor is effective. From
Table 2, the best AUC score that optimizations with correc-
tion (TSESRAC0S, RFSRACOS, TSETRANS) get is near to
the upper bound score (HF-ONLY gets). They are much bet-
ter than LF-ONLY in most of datasets.

TSE makes regression converge fast. On Figure2, we
compare the regression error on TSE with random forest re-
gression. At beginning (regression training dataset only has
one instance), TSE has big regression error. But the error of

TSE decreases fast when data size is more than 5. Especially,
the error variance of TSE is much smaller than random for-
est regression. It means TSE has good stability.

Base predictors can transfer among datasets. From Ta-
ble 2, except for TSESRACOS, TSETRANS receives 1st rank
for 10 times in all 11 datasets. Comparing with TSESRA-
Cos, TSETRANS gets the similar optimization performance,
but spends less time because of no pre-train base predictors
phase. It verifies that base regressors can be transfered to
other datasets easily. It is meaningful for huge dataset which
is hard to train the base predictors.

Multi-fidelity optimization with TSE is effective. From
Table 2, TSESRACOS outperforms others in most cases (8
times 1st rank in all 10 dataset). Comparing with LF-ONLY
and HF-ONLY, TSESRACOS can get performance nears to
HF-ONLY meanwhile spend similar time with LF-ONLY.
On Figure 1, TESSRACOS is always better than HF-ONLY
within limited time (the green solid line is over the yellow
line all the time). It verifies that multi-fidelity optimization
with TSE can improve optimization performance clearly
with acceptable extra time-cost.

1.00
- o8 094 0.74
0.98
097 093 o072
” 1~=, BV L =t i)
g £ 096 2092 3 NS ¢
5 0.94 4 / - So70{ 1 .‘,f Vv
o e~ ~TTN e 5095 o o ”~
Son 1 \ aad E ! So91 P g Soee /
< ! . HF Only hf-eval ool 1 < oe?® <™ ®
030{ Al o e m-® " —— LFONIyNfeval 0 IR g o N oesl ¢
N ~~. LF Only If-eval 093] 1 Vi !
0.88 . —— TSE hf-eval ! F IRV \Yi 1
¢ I 0.89 1
- —— TSE If-eval 092] & S VoY osay 4
086
50 100 150 200 250 300 350 [20 40 6 80 6 20 40 60 g 100 120 140 0 10 20 0 60 70 80
wall-clock time (s) wall-clock time (s) wall-clock time (s) wall-clock time (s)
(a) Musk (b) HTRU2 (c) Magic04 (d) Credit
0925 1.00 — s 0.980
0.920 090 0,975
098
0915 e T 0970
e £0.96 g 08 > g
S 0910 s s 5 0.965
M - 3 3 } §
So90s] @, o0 So94{ ¥ Yoso| &/ Q 0.960
= R P 2 = =
0.900 P . 0.955
L ARV AN ' ol 0950
08951 @l ' ¢
P | P 0.90 0.945
0.890 ’ 070
0 20 40 60 80 100 120 140 0 200 400 600 800 1000 1200 0 100 2060 300 400 500 600 0 260 400 6 800
wall-clock time (s) wall-clock time (s)

wall-clock time (s) wall-clock time (s)

(e) Adult (f) Sensorless (g) Connect (h) Miniboone

Figure 1: The AUC curves under wall-clock time. Solid lines are the high-fidelity value curves. Dash lines are the low-fidelity
value curves. The lines with circle mean that they are objective function curves on optimization. Solid and dash lines with same
color are high and low fidelity evaluation values on same samples. X axis spans to the time used by LF-ONLY.

0016

°
N
&

0.14 B TSESRacos
. o0
s RFSRacos

0.12 ooz 0.20
5010 5 oo 5 5
3 0.08 [} 3 0.03 $o1s
0 " n
Q Q o
< 0.06 < < .02 <o.10
0.04
0.01 0.05
0.00
1 5 10 20 30 50 1 5 10 20 50 1 5 10 20 30 50 1 5 10 20
the number of low-eval/high-eval examples the number of low-eval/high-eval examples the number of low-eval/high-eval examples the number of low-eval/high-eval examples
(a) Musk (b) HTRU2 (c) Magic04 (d) Credit
0.05 0014 0.0200
0012 oours
0.04
0010 o150
. . 5 ooz
go03 2 0.008 2
o @ 9 5000
4 8 0008 2
<002 < < 000
0.004
0.010 00050
0.01
0.02 0.005 00025
0.00 0.000 0.000 00000

1 5 10 20 30 50
the number of low-eval/high-eval examples

(h) Miniboone

1 5 10 20 50
the number of low-eval/high-eval examples

(g) Connect

1 5 10 20 30 50
the number of low and high-fidelity pairs

(f) Sensorless

1 5 10 20 30 50
the number of low-eval/high-eval examples

(e) Adult

Figure 2: The histograms of mean regression prediction error | f;, +W — fg| in each training step. It only compares the prediction
error on TSESRACOS (green) and RFSRACOS (blue). The X axis means the number of instances in regression training dataset.

mization optimizes on the corrected low-fidelity evaluations.
But, high-fidelity evaluations are hard to obtain. The regres-
sion dataset is too small to train a accurate predictor. We
propose the transfer series expansion (TSE) to tackle this is-
sue. TSE linearly combines some pre-trained base predictors
to make regression converge faster. In addition, base pre-
dictors are trained on the middle-level regression problems
which training datasets are more easier to get. Experiments
on LightGBM hyper-parameter tuning problems verify that

Conclusion

Multi-fidelity optimization is a popular technique to tackle
expensive sophisticated optimization problems. Especially,
on AutoML problems, low-fidelity evaluation can be get
by validating model configuration on a small data subset.
And it is cheap but badly biased. Previous works of multi-
fidelity optimization are often based on a specific method.
In this paper, we propose a general multi-fidelity optimiza-

tion framework for derivative-free optimization. A correc-
tion predictor is trained to estimate the residual between high
and low-fidelity evaluations. And then, derivative-free opti-

the multi-fidelity optimization with TSE can effectively fast
the optimization process.

References

Ball, P. 2013. Counting google searches predicts market
movements. Nature 12879.

Bergstra, J., and Bengio, Y. 2012. Random search for hyper-
parameter optimization. Journal of Machine Learning Re-
search 13:281-305.

Bergstra, J. S.; Bardenet, R.; Bengio, Y.; and Kégl, B. 2011.
Algorithms for hyper-parameter optimization. In Advances
in Neural Information Processing Systems (NIPS’11), 2546—
2554.

Bradski, G. R. 1998. Computer vision face tracking for use
in a perceptual user interface.

Brazdil, P. B.; Soares, C.; and Da Costa, J. P. 2003. Ranking
learning algorithms: Using IBL and meta-learning on accu-
racy and time results. Machine Learning 50(3):251-277.

Broder, A. Z. 2008. Computational advertising and recom-
mender systems. In Proceedings of the ACM Conference on
Recommender systems, 1-2. ACM.

Chapelle, O.; Vapnik, V.; and Bengio, Y. 2002. Model
selection for small sample regression. Machine Learning
48(1):9-23.

Fawcett, T. 2006. An introduction to roc analysis. Pattern
recognition letters 27(8):861-874.

Fernandez-Godino, M. G.; Park, C.; Kim, N.-H.; and Haftka,
R. T. 2016. Review of multi-fidelity models. arXiv preprint
arXiv:1609.07196.

Feurer, M.; Klein, A.; Eggensperger, K.; , J.; Blum, M.;
and Hutter, F. 2015. Efficient and robust automated ma-
chine learning. In Advances in Neural Information Process-
ing Systems (NIPS’15), 2962-2970.

Hansen, N.; Miiller, S. D.; and Koumoutsakos, P. 2003. Re-
ducing the time complexity of the derandomized evolution
strategy with covariance matrix adaptation (CMA-ES). Evo-
lutionary Computation 11(1):1-18.

Hu, Y-Q.; Qian, H; and Yu, Y. 2017. Sequential
classification-based optimization for direct policy search. In
Proceedings of the 31st AAAI Conference on Artificial Intel-
ligence (AAAI’17), 2029-2035.

Hu, Y.-Q.; Yu, Y.;; and Zhou, Z.-H. 2018. Experienced
optimization with reusable directional model for hyper-
parameter search. In Proceeding of the 27th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’18),
2276-2282.

Huang, D.; Allen, T. T.; Notz, W. L.; and Miller, R. A. 2006.
Sequential kriging optimization using multiple-fidelity eval-
vations. Structural and Multidisciplinary Optimization
32(5):369-382.

Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential model-based optimization for general algorithm
configuration. LION 5:507-523.

Kandasamy, K.; Dasarathy, G.; Oliva, J. B.; Schneider, J.;
and Poczos, B. 2016. Multi-fidelity gaussian process bandit
optimisation. arXiv preprint arXiv:1603.06288.

Kandasamy, K.; Dasarathy, G.; Schneider, J.; and Poczos, B.

2017. Multi-fidelity bayesian optimisation with continuous
approximations. arXiv preprint arXiv:1703.06240.

Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.;
Ye, Q.; and Liu, T.-Y. 2017. Lightgbm: A highly efficient
gradient boosting decision tree. In Advances in Neural In-
formation Processing Systems (NIPS’17), 3146-3154.

Lindauer, M., and Hutter, F. 2018. Warmstarting of
model-based algorithm configuration. In Proceedings of the
32nd AAAI Conference on Artificial Intelligence (AAAI’18),
1355-1362.

Liu, R.; Liu, E.; Yang, J.; Li, M.; and Wang, F. 2006. Op-
timizing the hyper-parameters for svm by combining evolu-
tion strategies with a grid search. In Intelligent Control and
Automation. Springer. 712-721.

March, A., and Willcox, K. 2012. Provably convergent mul-
tifidelity optimization algorithm not requiring high-fidelity
derivatives. AIAA journal 50(5):1079-1089.

Maron, O., and Moore, A. W. 1994. Hoeffding races: Accel-
erating model selection search for classification and function
approximation. In Advances in Neural Information Process-
ing Systems (NIPS’94), 59—66.

Munos, R. 2011. Optimistic optimization of a deter-
ministic function without the knowledge of its smooth-

ness. In Advances in Neural Information Processing Systems
(NIPS’11), 783-791.

Sen, R.; Kandasamy, K.; and Shakkottai, S. 2018. Multi-
fidelity black-box optimization with hierarchical partitions.
In Proceedings of the 35th International Conference on Ma-
chine Learning (ICML’18), 4545-4554.

Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; and Fre-
itas, N. D. 2015. Taking the human out of the loop: A re-
view of Bayesian optimization. Proceedings of the IEEE
104(1):148-175.

Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practi-
cal bayesian optimization of machine learning algorithms.

In Advances in Neural Information Processing Systems
(NIPS’12),2951-2959.

Thornton, C.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K.
2013. Auto-weka: Combined selection and hyperparameter
optimization of classification algorithms. In Proceedings of
the 19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (SIGKDD’13), 847-855.
Valiant, L. G. 1984. A theory of the learnable. Communica-
tions of the ACM 27(11):1134-1142.

Yu, Y.; Qian, H.; and Hu, Y.-Q. 2016. Derivative-
free optimization via classification. In Proceedings of the
30th AAAI Conference on Artificial Intelligence (AAAI’16),
2286-2292.

Zhao, P, and Yu, B. 2006. On model selection con-

sistency of lasso. Journal of Machine Learning Research
7(Nov):2541-2563.

